www.sciencemag.org/content/359/6378/900/suppl/DC1

Supplementary Material for

Breakup of last glacial deep stratification in the South Pacific

Chandranath Basak,* Henning Fröllje, Frank Lamy, Rainer Gersonde, Verena Benz, Robert F. Anderson, Mario Molina-Kescher, Katharina Pahnke

*Corresponding author. Email: cbasak@csub.edu

Published 23 February 2018, *Science* **359**, 900 (2017) DOI: 10.1126/science.aao2473

This PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S5 Tables S1 to S4 References

34 Materials and Methods

35 <u>Sample material and processing</u>

36

37 Cores PS75/073-2, PS75/059-2, PS75/056-1, and PS75/054-1 used in this 38 study were recovered during RV Polarstern cruise ANT-XXVI/2 in the South Pacific 39 in November 2009-January 2010 (53). Bulk sediment samples from core E11-2 were 40 obtained from a pre-sampled archive at Lamont Doherty Earth Observatory of Co-41 lumbia University. All PS75 samples were washed and size-fractionated at the Al-42 fred-Wegener-Institute, Bremerhaven. All following sample processing was done at 43 the University of Oldenburg. Sediment samples were freeze dried and wet sieved to 44 obtain the >63 μ m fraction. From the >125 μ m and >250 μ m fractions, fish teeth and broken fish bones (hereafter called 'fish debris') and foraminifera, respectively, 45 46 were picked for Nd isotope analyses. The Nd isotope record of core PS75/056-1 is 47 based entirely on fish debris, whereas that of core E11-2 is based entirely on foram-48 inifera. All other cores (PS75/054-1, PS75/059-2, PS75/073-2) have combined fish 49 debris-foraminifera ε_{Nd} records.

50 Fish debris were cleaned in multiple steps, involving ultrasonication in opti-51 ma grade methanol and MilliQ water (Millipore, 18 M Ω). The samples were then 52 treated with a 1:1 solution of H₂O₂ (30%) and MilliQ, followed by dissolution in a 1:1 53 mixture of HNO₃ and HCl and drydown under a laminar flow hood. The samples 54 were finally re-dissolved in 0.5 mL of 1 N HNO₃ in preparation for column chemis-55 try.

56 Mixed species of planktic foraminifera (>250 µm fraction) from cores 57 PS75/054-1 and E11-2 were subjected to physical cleaning only, according to pub-58 lished protocols for 'unclean foraminifera' [e.g. (22, 54)]. Cleaning comprised multi-59 ple rinses and sonication in optima grade methanol, followed by multiple rinses in 60 deionized water. Following this step, foraminifera were gently crushed between 61 glass slides to break open the inner chamber before repeating the sonication and 62 rinse steps. The cleaned foraminifera fragments were examined under a microscope to ensure that no clay fragments were left in the sample. Cleaned crushed foraminif-63 era were dried and dissolved in <10% acetic acid for 5-10 min. The dissolved solu-64 65 tion was centrifuged and the supernatant was dried down and re-dissolved in 1 N HNO₃. Samples from cores PS75/059-2 and PS75/073-2 contained highly fragile 66 67 foraminifera tests, which were cleaned using a slightly modified cleaning and disso-68 lution protocol following that published by Tachikawa et al. (54). About 30 mg of 69 uncrushed for a minifera were transferred to a 15 mL centrifuge tube containing 500 70 μL of ultrapure water, 800-1000 μL of 1 M acetic acid was added at 100-200 μL in-71 crements to slowly dissolve the foraminifera. The dissolution process was stopped 72 before the entire sample went into solution in order to minimize the potential of at-73 tacking lithogenic particles. This resulted in a residue consisting of chamber fragments and lithogenic particles. The solution-particle mixture was centrifuged at 74 75 5000 rpm for 10 min, the supernatant transferred to a 1.5 mL centrifuge tube and 76 centrifuged again at 1000 rpm for 10 min. The final supernatant was transferred to 77 a clean Teflon beaker, dried and transferred to nitric form by drying in concentrated 78 HNO₃ followed by 1 N HNO₃.

We digested the lithogenic particles in order to monitor the Nd isotope signature of these potential contaminating phases that might be attacked during dissolution of foraminiferal calcite. The particle residue was transferred to a clean Teflon beaker and digested using HNO₃, HCl and HF at 100-150°C. The final solution was dried and transferred to nitric form by drying in 1 N HNO₃.

- 84
- 85 86

Column Chemistry and Isotope Measurements

87 In preparation for isotope measurements, Nd from all archives was isolated 88 and purified by two-step column chemistry following established methods (55). 89 Briefly, rare earth elements (REE) were separated from major cations using Ei-90 chrom TRU-Spec resin (particle size 100-150 µm) and Nd was purified from other 91 REE using Eichrom or TrisKem LN-Spec resin (particle size 50-100 µm) and 0.23-92 0.25 N HCl as eluent. The Nd fraction was completely dried and treated with a 1:1 93 mixture of H_2O_2 (30%) and concentrated HNO_3 to ensure breakdown of any organic 94 compounds that may have leaked during column chemistry. The samples were final-95 ly brought up in 2% HNO₃ for isotope analysis using a ThermoScientific Neptune 96 Plus multi-collector inductively coupled plasma mass-spectrometer (MC-ICP-MS) at 97 the University of Oldenburg.

98 All samples were aspirated into the MC-ICP-MS using a 100 µl nebulizer via a 99 Cetac Aridus II desolvating unit. Nitrogen was used in the desolvating unit in order 100 to stabilize the signal and minimize oxide formation. Preamplifier gains were per-101 formed at the beginning of each measurement session. Nd isotope data were ac-102 quired in static mode with 0.8 sec integration time over 4 blocks of 12 cycles each. All measured ¹⁴³Nd/¹⁴⁴Nd ratios were corrected for mass bias using an exponential 103 law and a ¹⁴⁶Nd/¹⁴⁴Nd natural ratio of 0.7219 (56). In general, the international 104 standard [Ndi-1 was analyzed every 3 samples and all reported ¹⁴³Nd/¹⁴⁴Nd ratios 105 106 were normalized to a JNdi-1 value of 0.512115 (57) using the mean ¹⁴³Nd/¹⁴⁴Nd of 107 the JNdi-1 measurements of each analytical session. Standards analyzed in the 108 course of the study were always concentration-matched with the samples. The ex-109 ternal reproducibility was separately calculated for each session using the analyses 110 of INdi-1 and was generally better than $\pm 0.3 \epsilon_{Nd}$ units (2 σ). Propagated errors are reported from combined external reproducibility of the measuring session and indi-111 vidual sample error (internal run error, 2σ) (Tables S1-S3). The procedural blank 112 113 was ≤ 13 pg Nd (n=22).

- 114
- 115 Age Models
- 116

117 The age models of our cores were established by tuning their benthic or 118 planktic δ^{18} O records to those of the high-resolution core MD97-2120 from the 119 Chatham Rise in the Southwest Pacific (19, 20) (Fig. 1). In order to account for up-120 dated ¹⁴C-calendar age calibrations (58), reservoir ages (560 ± 40 years (Holocene), 121 1970 \pm 390 years (late glacial, ~28.7 ka) (59, 60), revised age of the Kawakawa ash 122 (61), and additional 14 C ages (60), we revised the age scale of core MD97-2120 (Ta-123 ble S4, Figure S1). Age models of the investigated cores (except PS75/054-1) were created by graphical correlation of benthic δ^{18} O (PS75/056-1, PS75/059-2, E11-2) 124

and planktic δ^{18} O (PS75/073-2) to reference core MD97-2120 on its updated age scale using the software AnalySeries 2.0.8 (62). The resulting age models of our cores and the updated age model of reference core MD97-2120 are summarized in Table S4 and Figure S1 and are described in detail in the following paragraphs.

129 The age model of core PS75/056-1 is based on the correlation of the benthic 130 δ^{18} O isotope record [measured on *Cibicidoides kullenbergi*, published in (63)] to the benthic δ^{18} O of core MD97-2120 (20). The age model is based on seven age tie 131 132 points within the upper 100 cm, which corresponds to ages of <30 ka. Resulting sed-133 imentation rates range from 2 to 12 cm/ka. Our age model is in good agreement with a published age model that is based on correlation to reference core PS75/059-134 135 2 using benthic δ^{18} O, diatom abundances, Fe and CaCO₃ contents, and summer sea surface temperatures (64), showing differences of ≤ 1.6 ka in the deglacial part (10-136 137 25 ka), and thus have no bearing on the interpretations of our results. Thus, age 138 model uncertainties alone cannot account for the difference in timing of ε_{Nd} change 139 between PS75/056-1 (at 18.8 ka) and core PS75/059-2, where ε_{Nd} starts to decrease 140 at 13.4 ka (Table S1).

141 The age model for core PS75/059-2 was created by correlation of benthic 142 δ^{18} O [measured on *C. kullenbergi*, published in (63)] to the benthic δ^{18} O record of 143 MD97-2120 (20). This age model is based on six age tie points and results in sedimentation rates of 1 to 4 cm/ka. The deglacial decrease in δ^{18} O is in good agreement 144 145 with that of PS75/056-1. Good correlation of XRF Sr and Fe data from PS75/059-2 146 with those of MD97-2120 suggest that the age model is robust. Further, our age 147 model is in good agreement with recently published age models that are based on 148 XRF tuning (7) and radiocarbon dating (64) with age differences of ≤ 1.1 ka and ≤ 1.5 149 ka, respectively between 0-20 ka. The decrease in ε_{Nd} values (~13.4 ka) in our age 150 model happens at the same time when applying the age model of Ronge et al. (7). 151 The ε_{Nd} decrease occurs at a younger age (~12.5 ka) when the age model of Benz et al. (64) is applied. Thus, the delay in ε_{Nd} decrease in core PS75/059-2 compared to 152 153 the remaining deep cores is robust and cannot be attributed to age model uncertain-154 ties.

The age model of core PS75/073-2 is based on correlation of the planktic 155 156 δ^{18} O record (measured on *Neogloboquadrina pachyderma* sinistral (64) to planktic 157 δ^{18} O (*Globigerina bulloides*) of core MD97-2120 (19). The resulting sedimentation 158 rates range between 1 and 8 cm/ka. Our age model is in good agreement with a pub-159 lished age model of this core that is based on radiocarbon dates (64) and with a re-160 cently published age model of nearby core (PS75/072-4) that is based on radiocar-161 bon ages and correlation of planktic δ^{18} O to the EDC ice core deuterium record (65). Further, these authors report similar sedimentations rates (~ 0.2 to 9.5 cm/ka) as 162 we observe for core PS75/073-2 for the studied interval. During the last 20 ka, dif-163 164 ferences between the published (64) and our age model are ≤ 2.5 ka (late glacial) and 165 \leq 1.4 ka (rest of the deglacial and Holocene record). Age model uncertainties are smaller than the observed delay in ε_{Nd} change (PS75/59-2 and probably E11-2 com-166 pared to core PS75/073-2) in our time series records, and therefore have no bearing 167 168 on the interpretation and conclusion of this study. However, age model uncertainty 169 may explain the delay (~1.5 ka) in the early deglacial (W1) ε_{Nd} change in core 170 PS75/073-1 compared to that of PS75/056-1.

171 In order to maintain consistency, a new age model for core E11-2 was creat-172 ed based on correlation of the benthic δ^{18} O record (*66*) to that of core MD97-2120 173 (*20*). Sedimentation rates derived from this age model range between 6 and 16 174 cm/ka. The age model shows good agreement with the age model of nearby core 175 PS75/056-1. When compared to the published age model by Ninnemann and 176 Charles (*66*), all intervals exhibit age differences of <1 ka (Figure S3A), which has no 177 bearing on the overall conclusions of this study.

178 The age model of core PS75/054-1 is based on correlation to nearby core 179 PS75/056-1 (see above). We used XRF core scanner records of rubidium (Rb) data (XRF core scanner of the Alfred Wegener Institute, Bremerhaven). Rubidium is a 180 181 common element in the siliciclastic fraction of the sediment and is concentrated in 182 the fine-grained fraction. Similar to other lithogenic elements, Rb originates mainly 183 from dust input at both locations and should therefore show the same temporal var-184 iations in both cores. Due to high water contents of the opal-rich glacial sediments in 185 core PS75/54-1, we used the XRF scans of the heavier element Rb which is less af-186 fected by pore water than the commonly used Fe scans. Moreover, the Rb record is 187 unaffected by bottom water redox changes or other early diagenetic overprints. We 188 chose to correlate the Rb scan of core PS75/054-1 to that of core PS75/056-1 in-189 stead of to MD97-2120 in order to account for differences in terrigenous sediment 190 supply to the Southeast (primarily eolian) and Southwest Pacific (primarily fluvial). 191 Our age model is created using six age tie points within the last 30 ka, which results 192 in sedimentation rates of 6 to 24 cm/ka for the last 20 ka (Figure S2). To corrobo-193 rate the good correlation in the glacial to Holocene part of our core, Figure S2 shows 194 the alignment of XRF Rb data throughout the last 150 ka between cores PS75/056-1 195 and PS75/054-1 as well as the Sr XRF data of cores PS75/056-1 and PS75/054-1. 196 Rubidium shows a similar pattern in both cores throughout the last glacial-197 interglacial cycle, and the robustness of the Rb-based alignment is confirmed by the 198 excellent agreement of the Sr data that largely follow carbonate fluctuations in the 199 two cores.

200Overall, the age models for the cores (except PS75/054-1) are independently201derived, but referenced to the same age model (MD97-2120), making them internal-202ly consistent. The age models match those of previously published age models of the203same and nearby cores in the deglacial section in general within ≤ 1.6 ka [(7, 64-66),204see detailed discussion above]. Thus, the age scales provide accurate relative ages205between cores and the best achievable absolute ages.

206 In order to test if the observed delays in ε_{Nd} in cores E11-2 and PS75/059-2 207 compared to cores PS75/056-1 and PS75/073-2 are an artifact of age model tuning, 208 we created age models for cores E11-2 and PS75/059-2 by tuning their ε_{Nd} records 209 to core PS75/056-1 (Figure S3). Results show that when aligning ε_{Nd} to the refer-210 ence core, benthic δ^{18} O of both cores shift towards older ages, significantly offsetting 211 them from that of the reference core (PS75/056-1). Further, the resulting age models do not agree with previously published age models of these cores (7, 64, 66). 212 213 Thus, we conclude that the observed delay in ε_{Nd} is a real feature of our records and is not due to age model uncertainties. 214

215 Supplementary Text

216 <u>Hydrography and core locations</u>217

218 The Southern Ocean is dominated by the eastward flowing Antarctic Circum-219 polar Current (ACC) and the circum-Antarctic frontal system with the Subantarctic 220 Front (SAF) to the north, the Southern AAC Front to the south, and the Antarctic Po-221 lar Front (APF) in between [e.g., (47)]. Deep water that upwells south of the APF 222 feeds both Antarctic Bottom Water (AABW) formation close the Antarctic continent 223 and Antarctic Intermediate and Mode Water formation north of the APF [e.g., (36, 224 (67)]. In the South Pacific, the overall location of the SAF and the APF varies by $\sim 5^{\circ}$, 225 with a more northward position in the west and southward in the east [(47), Figure 226 1 of the main text]. The Southern Ocean's major water mass, the Circumpolar Deep Water (CDW), is subdivided into an upper and lower branch. Lower CDW (LCDW) is 227 228 identified by a salinity maximum that is inherited from North Atlantic Deep Water 229 (NADW) (47, 68). Upper CDW (UCDW) is typically identified as an oxygen minimum 230 layer, which is derived from oxygen-depleted, nutrient-rich Indian Deep Water 231 (IDW) and North Pacific Deep Water (NPDW) (69). Lower CDW and UCDW are 232 transported into the North Pacific, where they are transformed to NPDW and return 233 to the Southern Ocean in the East Pacific along the South American continent at 234 1500-3500 m water depth (70). North of the SAF, UCDW is centered at approximate-235 ly 1500 m depth and LCDW covers depths below 2000 m.

236 Core PS75/073-2 (3234 m) from the central/southwest Pacific is bathed today by 237 LCDW and located south of the modern APF. By virtue of its location in the center of the 238 ACC (Figure 1 of the main text), this core offers the ideal opportunity to study the evolu-239 tion of pure CDW over the last deglaciation. Southeast Pacific cores PS75/056-1, 240 PS75/059-2, E11-2, and PS75/054-1 are all located north of the modern SAF i.e., north of 241 the ACC core. Currently, cores PS75/056-1 (3581 m) and E11-2 (3109) are bathed by 242 LCDW, but are located close to the LCDW/UCDW boundary with some influence of 243 low-oxygen UCDW, particularly to core E11-2 (Figure 1 of the main text). Thus, these 244 two cores are best fitted to monitor past changes in the mixing proportions between 245 LCDW and UCDW. Based on salinity values, core PS75/059-2 (3613 m) also represents LCDW, but it is separated from the other cores by the East-Pacific Rise (EPR) and has 246 247 significant influence of low-oxygen NPDW (Figure 1 of the main text). Below LCDW, 248 northward spreading dense AABW that is formed in the Weddell Sea, Ross Sea, and 249 along the Adélie Coast, covers the abyss around Antarctica. In the South Pacific, the ex-250 pansion of Ross Sea Bottom Water (RSBW), the coldest and saltiest variety of AABW, is 251 restricted by bottom topography to areas south of the Pacific-Antarctic Ridge (71). Mix-252 ture of RSWB with overlying LCDW leads to erosion of the typical hydrographic proper-253 ties along its flowpath towards the southeast Pacific (71), which is also seen in the ε_{Nd} signatures [e.g., (11)]. Core PS75/054-1 (4085 m) is located at the deeper limit of LCDW 254 255 and just north of the modern extent of RSBW (Figure 1 of the main text). Its proximity to 256 the RSBW boundary is ideal to investigate past changes in RSBW. Together, the southeast Pacific cores (E11-2, PS75/056-1, PS75/054-1) define an approximate meridional 257 258 depth transect that can track the evolution of the water mass structure in the Southern Ocean during the last deglaciation. 259

261 <u>Neodymium isotopes as a water mass tracer</u>

262

263 The neodymium isotope composition ($^{143}Nd/^{144}Nd$) is expressed in the ε_{Nd} 264 notation and defined as $\varepsilon_{Nd} = [(^{143}Nd/^{144}Nd)_{sample}/(^{143}Nd/^{144}Nd)_{CHUR} -1]*10,000$ where CHUR is the Chondritic Uniform Reservoir with $^{143}Nd/^{144}Nd = 0.512638$ (72). 265 The heterogeneous distribution of ε_{Nd} on the continents [e.g., (73)] is imprinted to 266 seawater by transport of Nd from the continents to the ocean through rivers, dust 267 268 and interaction with margin sediments known as 'boundary exchange'. Together 269 with the short residence time of Nd in the ocean of 300-1000 years (74, 75), sea-270 water $\varepsilon_{\rm Nd}$ allows the tracing of water masses back to their source region (13, 76, 77).

271 In the modern ocean, NADW has an ε_{Nd} signature of -13.5 (13), whereas 272 NPDW is more radiogenic with an ε_{Nd} signature of -3.5 (14). Circumpolar Deep Wa-273 ter as a mixture of NADW and NPDW has intermediate values [ε_{Nd} = -8 to -9; (11, 12, 274 78)]. Deep waters formed around Antarctica carry a distinct ε_{Nd} signal depending on 275 the formation region, ranging from $\varepsilon_{Nd} = -7$ (RSBW) in the Pacific sector (11, 78, 79) 276 to -9 in the Atlantic sector of the Southern Ocean (12). In the South Pacific and the 277 Pacific sector of the Southern Ocean, the main water masses carry distinct seawater 278 ε_{Nd} signatures [e.g., NPDW, CDW, RSBW; (11, 78-80)]. Thus, Nd isotopes are an ideal 279 proxy to study the paleo-water column structure in the South Pacific.

280 In the past, as NADW supply diminished or ceased, the relative contribution 281 of NPDW increased changing the mixing proportion and altering the ε_{Nd} of CDW 282 (33). Implicit in this mechanism is the assumption that the end-member ε_{Nd} signa-283 tures of NADW and NPDW remained constant over the time that is considered. 284 Temporal stability of end-member NADW and NPDW ε_{Nd} signatures for the last 2 Ma 285 is well established [e.g., (15, 39, 40, 81, 82)]. Broadly, NADW is a mixture of water from the Labrador Sea ($\epsilon_{Nd} \sim -17$) and Iceland-Scotland Overflow Water (ISOW, ϵ_{Nd} 286 287 ~ -8.2) with very distinct and different ε_{Nd} signatures acquired through interaction 288 with surrounding lithogenic material (83). It is often suggested that the proportion 289 of Labrador Sea Water and ISOW in NADW might have been different in the past, 290 however, a concurrent change in NADW's ε_{Nd} signature has not yet been definitively 291 reported. For RSBW (and other AABW varieties) that are formed on the Antarctic 292 shelf and therefore inherit the ε_{Nd} of the shelf sediments, a change in ε_{Nd} would be 293 conceivable if the provenance and lithology of these shelf sediments would have 294 changed substantially. Since the Ross Sea receives its sediments through glacier 295 transport, a change on the timescales discussed here is unlikely. Thus, we assume 296 that the RSBW end-member remained constant for the time window of our study.

Fish teeth and Fe-Mn oxide coatings on foraminifera and sediment particles capture the bottom water ε_{Nd} signature at the sediment water interface and do not lose that signal during subsequent burial in the sediment column [e.g., (22, 84, 85)]. These archives have been effectively used to extract pristine paleo-bottom water signatures and as a proxy to trace water masses in past oceans [e.g., (11, 16, 22, 86)].

- 303 <u>Testing the reliability of sedimentary archives and the Nd isotope proxy in the South Pa-</u> 304 cific
- 305

306 One pre-requisite to interpret ε_{Nd} changes in relation to water mass mixing and 307 ocean circulation changes is to ascertain the reliability of sedimentary archive-derived 308 core-top ε_{Nd} values in reflecting overlying bottom waters. The ε_{Nd} values from the core-309 tops in the South Pacific region show excellent agreement with those of overlying and/or 310 nearby bottom water masses that are already published (Figure S4). It has recently been 311 shown that boundary exchange in the deep South Pacific is limited to locations directly 312 above the mid-ocean ridge (11) and therefore boundary exchange is not an issue for our 313 core sites. Further, contributions from pore water fluids, as suggested for the Oregon 314 margin (87) seem very unlikely, as nearby seawater ε_{Nd} profiles show no significant in-315 crease of Nd concentrations towards the seafloor, in fact, Nd concentrations south of the 316 Polar Front are almost constant with depth and hence show the least increase with water 317 depth found anywhere in the Pacific so far (11, 78).

318 Recent studies using dissolved Nd isotopes indicate a potential influence of NPDW 319 on the isotope composition of deep waters in the southeast Pacific (11, 80). Thus, we in-320 terpret paleo ε_{Nd} signatures of the southeast Pacific (cores PS75/056-1, PS75/059-2, E11-321 2) in the context of admixture of NPDW and South Pacific CDW. Core PS75/073-2 is 322 situated along the western flank of the Pacific-Antarctic Ridge. The core-top ε_{Nd} signa-323 ture of -8.3 matches the nearest deep water representing CDW [Figure S4; (11)]. We thus 324 consider this core as a representative of pure CDW composition in the South Pacific, ex-325 cluded from direct influence of NPDW.

326 Neodymium isotope values of contemporaneous fossil fish teeth and debris 327 have been demonstrated to be identical (85, 88). Here, separate analyses of contem-328 poraneous fossil fish teeth and fish debris from one interval in core PS75/073-2 329 show that these two archives record the same ε_{Nd} values within analytical uncertain-330 ty, confirming the previous results (Table S2). In order to check the reproducibility 331 between fossil fish teeth within a single sample, two samples with abundant teeth 332 material were divided into sub-samples and consequently analyzed for Nd isotopes. 333 The Nd isotope results of the subsamples are in agreement within the analytical un-334 certainty (Table S2).

335 Mixed species of planktic foraminifera were analyzed in samples and/or 336 cores where fish debris was absent or revealed high measurement errors as a result 337 of low availability and subsequent low Nd concentrations. To achieve highest relia-338 bility of our foraminifera based ε_{Nd} results, a few of these analyses were under-339 pinned by fossil fish debris values during the course of this study (Table S1). 340 For aminfera ε_{Nd} vs. fish teeth/debris ε_{Nd} from the same sample show agreement 341 within analytical error and closely follow a 1:1 line independent of the applied 342 cleaning protocol (Table S2, Figure S5). Further, true replicates of uncleaned foram-343 inifera reveal ε_{Nd} values within error, demonstrating the reproducibility of the anal-344 ysis (Table S2). Based on our results, it is reasonable to assume that ε_{Nd} derived from fossil fish debris and Fe-Mn oxide coatings on foraminifera both record past 345 346 bottom water ε_{Nd} in the South Pacific.

347 Leftover clay and/or lithogenic particles in foraminifera chambers are con-348 sidered as one of the main sources of contamination when using a foraminiferal ar-349 chive for ε_{Nd} studies [e.g., (89)]. To test the extent of contamination from these clay 350 particles in samples that were not physically cleaned, we measured the ε_{Nd} composi-351 tion of the residual particles (mixture of lithogenic particles and some undissolved foraminiferal calcite) following dissolution of the samples (Table S3). The ε_{Nd} signa-tures in these residual particles are in general more radiogenic, with a constant off-set by ~1-2 ε_{Nd} units from the corresponding foraminifera and fish teeth values (Figure S5, Tables S2, S3). Given this constant offset and the consistency between fish teeth and foraminifera ε_{Nd} , we rule out contaminating influence of lithogenic material on uncleaned foraminifera for our samples. Based on our results and on what has previously been reported for directly dissolved foraminifera (90), we sug-gest that physical cleaning of foraminifera can be avoided when incremental disso-lution of foraminifera is applied; this is at least true for our study region in the South Pacific, however, this approach should be tested on a regional basis.

384 Fig. S1

Age model of investigated cores and reference core MD97-2120. A) Benthic $\delta^{18}O(20)$ 385 and B) planktic δ^{18} O (19) of core MD97-2120 on the updated age scale. Grev filled trian-386 gles indicate ¹⁴C-based tie points, open triangle indicates the Kawakawa Tephra tie point. 387 C) Benthic δ^{18} O of cores PS75/056-1 (blue), PS75/059-2 (black) and E11-2 (green) 388 aligned to MD97-2120. Benthic δ^{18} O of cores PS75/056-1 and PS75/059-2 from (63) and 389 390 of E11-2 from (66). Triangles mark age tie points. D) Planktic δ^{18} O of core PS75/073-2 [red, (64)] aligned to MD97-2120 together with planktic δ^{18} O of nearby core PS75/072-4 391 392 [orange, (65)]. Red triangles are age tie points. E) Resulting sedimentation rates (colors 393 as in C and D).

395 Fig. S2

A) Age model construction for core PS75/054-1 using XRF Rb data of core PS75/054-1
(purple) and aligning them to the Rb scan of core PS75/056-1 (blue) over the last 150 ka.
B) XRF Sr scan of core PS75/054-1 on the Rb-based age model compared to XRF Sr data of PS75/056-1. C) Resulting sedimentation rate for PS75/054-1. Age tie points indicated by triangles. Note reversed y-axis in A).

403 **Fig. S3**

404 Testing age model robustness. A) Comparison of benthic δ^{18} O record of core E11-2 405 on the age model used in this study (green) to a previously published age model 406 [orange, (66)] and an age model constructed by aligning the timing of ε_{Nd} changes to 407 those of core PS75/056-1 (open symbols). B) Benthic δ^{18} O records of PS75/056-1 408 (blue) and PS75/059-2 (black) on age models used in this study, and of PS75/059-2 409 (open symbols) on an age model constructed by aligning its ε_{Nd} record to that of PS75/056-1. The latter shows prominent disagreement in absolute δ^{18} O values to 410 411 that of PS75/056-1, making this age model unrealistic. C) Planktic δ^{18} O record of PS75/073-2 on the age model used in this study. D) Benthic δ^{18} O record of core 412 413 MD97-2120 (for details see Figure S1) plotted as a reference core to show the tim-414 ing of change in the southern hemisphere. Age models of PS75/059-2 and E11-2, 415 when tuned to the ε_{Nd} record of PS75/056-1 produce unrealistic patterns in their 416 δ^{18} O records.

419 Fig. S4

418

420 Comparison of core-top foraminiferal or fish debris ε_{Nd} signatures (colored symbols) with 421 water column profiles [black open symbols, (11, 78)] from A) the Western/Central and 422 B) the Eastern South Pacific. Grey bars indicate range of ε_{Nd} for CDW. Bottom waters at 423 site PS75/065-3 are influenced by RSBW (11). Arrow indicates general flow direction of 424 the ACC, which becomes progressively more radiogenic from west to east, as expressed 425 by increasing ε_{Nd} values of CDW. Seawater ε_{Nd} profiles from stations PS75/044-1, PS75/052-1, PS75/057-1, PS75/065-3, and PS75/095-1 from (11), data of station 022 426 427 from (78). C) Locations of sediment cores (colored) and seawater stations (grey) used in 428 A) and B). Map created with Ocean Data View (91).

 ϵ_{Nd} values derived from foraminifera, fossil fish debris, and total digested silicate parti-433 cles plotted in ϵ_{Nd} - ϵ_{Nd} space. A) Fish debris ϵ_{Nd} vs. foraminifera ϵ_{Nd} fall close to the ideal 434 1:1 line indicating fish debris and foraminifera archives can be used interchangeably. B) 435 Total digested silicate particle ϵ_{Nd} vs. foraminifera ϵ_{Nd} exhibit a systematic offset of 1-2 436 epsilon units towards more radiogenic values in particles. The silicate particles used in 437 these analyses were collected from inside the foraminifera tests collected during crushing 438 and cleaning procedures. Detailed data presented in Tables S2 and S3.

454 Table S1.

455 456_ Core information and composite ε_{Nd} records of all cores from this study.

Sample inter- val (cm)	Age (ka)	Material	Normalized ¹⁴³ Nd/ ¹⁴⁴ Nd ^a	8 _{Nd}	± Internal ε _{Nd} error (2σ SE)	± External ε _{Nd} error (2σ SD)	± Propagated error
E11-2-1, 56°S, 115	5°W, 3109 m	1					
21-22	9.13	foraminifera	0.512243	-7.7	0.08	0.13	0.15
26-27	9.70	foraminifera	0.512241	-7.7	0.14	0.13	0.19
41-42	11.39	foraminifera	0.512242	-7.7	0.02	0.13	0.13
43-44	11.62	foraminifera	0.512252	-7.5	0.12	0.13	0.18
44-45	11.73	foraminifera	0.512250	-7.6	0.17	0.22	0.28
53-54	12.84	foraminifera	0.512267	-7.2	0.07	0.13	0.15
60-61	13.88	foraminifera	0.512271	-7.2	0.22	0.13	0.26
72-73	15.39	foraminifera	0.512320	-6.2	0.20	0.24	0.31
74-75	15.57	foraminifera	0.512339	-5.8	0.09	0.23	0.25
76-77	15.74	foraminifera	0.512319	-6.2	0.16	0.23	0.28
83-84	16.36	foraminifera	0.512341	-5.8	0.08	0.13	0.15
84-85	16.45	foraminifera	0.512341	-5.8	0.15	0.13	0.20
85-86	16.53	foraminifera	0.512335	-5.9	0.22	0.13	0.26
86-87	16.65	foraminifera	0.512347	-5.7	0.12	0.22	0.25
93-94	17.49	foraminifera	0.512339	-5.8	0.19	0.22	0.29
103-104	18.22	foraminifera	0.512332	-6.0	0.11	0.22	0.25
137-138	20.45	foraminifera	0.512326	-6.1	0.12	0.22	0.25
144-145	20.94	foraminifera	0.512332	-6.0	0.11	0.22	0.25
145-146	21.01	foraminifera	0.512322	-6.2	0.15	0.22	0.27
146-147	21.08	foraminifera	0.512327	-6.1	0.11	0.22	0.25
152-153	21.51	foraminifera	0.512329	-6.0	0.17	0.22	0.28
155-156	21.72	foraminifera	0.512326	-6.1	0.21	0.22	0.30
156-157	21.79	foraminifera	0.512328	-6.0	0.07	0.22	0.23
157-158	21.86	foraminifera	0.512325	-6.1	0.16	0.22	0.27
164-165	22.35	foraminifera	0.512313	-6.3	0.16	0.22	0.27
165-166	22.42	foraminifera	0.512317	-6.3	0.02	0.22	0.22
176-177	23.19	foraminifera	0.512322	-6.2	0.08	0.22	0.23
195-196	24.53	foraminifera	0.512304	-6.5	0.10	0.22	0.24

PS75/073-2, 57°12.27'S, 151°36.63'W, 3234 m

2.4	2 50	6	0 512212	0.2	0.16	0.21	0.26
3-4	2.58	foraminifera	0.512213	-8.3	0.16	0.21	0.26
7.5-8.5	3.18	foraminifera	0.512227	-8.0	0.08	0.21	0.22
12.5-13.5	3.86	fish teeth/debris	0.512215	-8.3	0.06	0.31	0.32
22.5-23.5	5.20	fish debris/foram. ^b		-8.3	0.26	0.26	0.37
27.5-28.5	5.87	fish debris	0.512217	-8.2	0.18	0.29	0.34
33-34	6.61	fish debris	0.512211	-8.3	0.33	0.30	0.45
42.5-43.5	7.89	fish debris	0.512205	-8.4	0.39	0.29	0.49
52.5-53.5	9.24	foraminifera	0.512227	-8.0	0.13	0.21	0.25
57-58	9.84	foraminifera	0.512221	-8.1	0.21	0.21	0.30
62.5-63.5	10.56	fish teeth/debris	0.512234	-7.9	0.48	0.27	0.55
67.5-68.5	11.18	fish debris	0.512220	-8.2	0.08	0.29	0.30
72-73	11.73	fish teeth/debris	0.512226	-8.0	0.16	0.31	0.35
73-75	11.91	fish debris	0.512231	-7.9	0.32	0.23	0.39
75-76	12.10	fish debris	0.512230	-8.0	0.11	0.39	0.41
77-78	12.34	foraminifera	0.512248	-7.6	0.11	0.21	0.24
79-80	12.59	fish debris	0.512258	-7.4	0.20	0.23	0.30
82-83	12.95	foraminifera	0.512278	-7.0	0.17	0.21	0.27
84-85	13.19	foraminifera	0.512283	-6.9	0.19	0.27	0.33
87-88	13.55	fish teeth/debris	0.512291	-6.8	0.15	0.31	0.34
89-90	13.79	foraminifera	0.512288	-6.8	0.21	0.27	0.34
92-93	14.15	fish teeth/debris	0.512297	-6.7	0.16	0.29	0.33
94-95	14.52	fish debris	0.512285	-6.9	0.14	0.23	0.27
97.5-98.5	15.21	foraminifera	0.512296	-6.7	0.18	0.21	0.28
103-104	16.29	fish debris/foram. ^b		-6.5	0.27	0.24	0.36
104-105	16.49	fish teeth	0.512298	-6.6	0.31	0.33	0.45
108-109	17.28	fish debris/foram. ^b		-6.0	0.18	0.37	0.41
109-110	17.48	fish teeth/debris	0.512330	-6.0	0.13	0.18	0.22
113-114	19.14	fish teeth/debris	0.512326	-6.1	0.12	0.12	0.17
114-115	20.06	fish teeth	0.512320	-6.2	0.05	0.21	0.22
117.5-118.5	23.28	fish teeth	0.512328	-6.0	0.07	0.31	0.32
118-119	23.74	fish teeth	0.512325	-6.1	0.09	0.18	0.20
122.5-123.5	27.88	fish teeth ^b		-6.1	0.25	0.18	0.31
123.5-124.5	28.79	fish teeth	0.512328	-6.0	0.23	0.21	0.31

PS75/056-1, 55°09.74'S, 114°47.31'W, 3581 m

0-1.5	7.38	fish debris	0.512243	-7.7	0.12	0.32	0.34
4.5-6	8.51	fish debris	0.512292	-6.7	0.48	0.32	0.58
9.5-11	9.63	fish debris	0.512229	-8.0	0.86	0.25	0.90
14.5-16	10.76	fish debris	0.512254	-7.5	0.67	0.34	0.75
19.5-21	11.89	fish debris	0.512247	-7.6	0.14	0.25	0.29
24.5-26	12.74	fish debris	0.512258	-7.4	0.24	0.25	0.35
29.5-31	13.45	fish debris	0.512293	-6.7	0.13	0.25	0.28
34.5-36	14.17	fish debris	0.512314	-6.3	0.16	0.25	0.30
39.5-41	14.89	fish debris	0.512294	-6.7	0.25	0.25	0.35
44.4-46 °	16.33	fish debris	0.512315	-6.3	0.36	0.20	0.41
49.5-51	17.46	fish debris	0.512329	-6.0	0.10	0.25	0.27
54.5-56	18.11	fish debris	0.512335	-5.9	0.26	0.25	0.36
59.5-61	18.76	fish debris	0.512353	-5.6	0.03	0.23	0.23
64.5-66	19.41	fish debris	0.512347	-5.7	0.16	0.23	0.28
69.5-71	20.82	fish debris	0.512351	-5.6	0.22	0.23	0.32
74.5-76	22.41	fish debris	0.512331	-6.0	0.28	0.23	0.36
79.5-81	23.48	fish debris	0.512328	-6.0	0.31	0.23	0.39
84.5-86	24.56	fish debris	0.512330	-6.0	0.14	0.13	0.19
89.5-91	25.63	fish debris	0.512314	-6.3	0.22	0.18	0.28
94.5-96	26.45	fish debris	0.512311	-6.4	0.11	0.25	0.27
99.5-101	27.02	fish debris	0.512286	-6.9	0.36	0.25	0.44
104.5-106	27.59	fish debris	0.512313	-6.3	0.15	0.27	0.31
114.5-116	28.73	fish debris	0.512325	-6.1	0.10	0.27	0.29
124.5-126	29.87	fish debris	0.512315	-6.3	0.30	0.23	0.38
PS75/059-2, 54°12	80'S, 125°25	.53'W, 3613 m					
2-3	3.46	fish debris	0.512270	-7.2	0.26	0.30	0.40
7-8	4.75	fish debris	0.512282	-6.9	0.09	0.28	0.29
12-13	6.04	foraminifera	0.512264	-7.3	0.16	0.21	0.26
17-18	7.33	foraminifera	0.512265	-7.3	0.11	0.21	0.24
22-23	8.62	foraminifera	0.512264	-7.3	0.13	0.21	0.25
27.28	9.78	fish debris	0.512276	-7.1	0.22	0.28	0.36
32.33	10.92	fish debris	0.512284	-6.9	0.07	0.28	0.29
37-38	12.06	foraminifera ^b		-6.6	0.38	0.30	0.48
42-43	13.40	fish teeth/debris	0.512342	-5.8	0.14	0.27	0.30

47-48	14.76	fish tooth /dobris	0 512346	-57	0.13	0.20	0.24
T 7 T 0	14.70		0.312340	-3.7	0.15	0.20	0.24
52-53	16.12	fish teeth/debris	0.512345	-5.7	0.16	0.20	0.26
57-58	17.63	foraminifera	0.512338	-5.9	0.22	0.21	0.30
62-63	21.68	fish teeth/debris	0.512341	-5.8	0.42	0.27	0.50
67-68	25.73	fish teeth	0.512329	-6.0	0.30	0.30	0.42
72-73	28.48	fish teeth/debris	0.512321	-6.2	0.21	0.30	0.37
PS75/054-1, 56°	°9.105'S, 115°	7.982'W, 4085 m					
17.5-19	12.91	foraminifera	0.512245	-7.7	0.04	0.13	0.14
22.5-24	13.45	fish debris	0.512325	-6.1	0.10	0.32	0.34
27.5-29	14.27	fish debris/foram. ^b		-7.8	0.30	0.35	0.46
32.5-34	15.05	fish debris	0.512304	-6.5	0.42	0.32	0.53
37.5-39	15.99	fish debris/foram. ^b		-7.5	0.49	0.35	0.60
47.5-49	17.41	fish debris/foram. ^b		-7.7	0.32	0.27	0.42
57.5-59	17.93	fish debris/foram. ^b		-7.6	0.21	0.39	0.45
67.5-69	18.45	foraminifera	0.512257	-7.4	0.15	0.23	0.27
87.5-89	19.41	foraminifera	0.512276	-7.1	0.13	0.13	0.18

^a Sample ¹⁴³Nd/¹⁴⁴Nd ratios measured by MC-ICP-MS were normalized to the mean of JNdi-1 of the particular analytical session, relative to a JNdi-1 value of 0.512115 (57)
 ^b Average of two individual measurements (fish teeth, fish debris, foraminifera) from the same sample. Individual results in Table S2
 ^c Sample analyzed at Helmholtz Institute for Marine Research, Geomar, Kiel (Germany).

1	1	\mathbf{r}
4	n	•
-	••	

464 Table S2.

465 466 Data of individual analyses of fish teeth/debris and foraminifera.

Sample in- terval (cm)	Age (ka)	Material	Normalized ¹⁴³ Nd/ ¹⁴⁴ Nd	E _{Nd}	± Internal ε _{Nd} error (2σ SE)	± External ε _{Nd} error (2σ SD)	± Propagated error	
PS75/073-2, 57°12.27'S, 151°36.63'W, 3234 m								
3-4	2.58	fish teeth/debris	0.512199	-8.6	0.86	0.72	1.12	
3-4	2.58	foraminifera	0.512213	-8.3	0.16	0.21	0.26	
7.5-8.5	3.18	fish debris	0.512221	-8.1	0.10	0.30	0.32	
7.5-8.5	3.18	foraminifera	0.512227	-8.0	0.08	0.21	0.22	
22.5-23.5	5.20	fish debris	0.512218	-8.2	0.14	0.20	0.24	
22.5-23.5	5.20	foraminifera	0.512211	-8.3	0.22	0.16	0.27	
52.5-53.5	9.24	fish debris ^a	0.512335	-5.9	0.98	0.27	1.02	
52.5-53.5	9.24	foraminifera	0.512227	-8.0	0.13	0.21	0.25	
57-58	9.84	fish debris ^a	0.512212	-8.3	0.67	0.72	0.98	
57-58	9.84	foraminifera	0.512221	-8.1	0.21	0.21	0.30	
77-78	12.34	fish debris ^a	0.512250	-7.6	0.17	0.29	0.34	
77-78	12.34	foraminifera	0.512248	-7.6	0.11	0.21	0.24	
89-90	13.79	fish teeth/debris ^a	0.512261	-7.4	0.41	0.33	0.53	
89-90	13.79	foraminifera	0.512288	-6.8	0.21	0.27	0.34	
103-104	16.29	fish debris	0.512304	-6.5	0.13	0.12	0.18	
103-104	16.29	foraminifera	0.512310	-6.4	0.24	0.21	0.32	
108-109	17.28	fish debris	0.512324	-6.1	0.07	0.20	0.21	
108-109	17.28	fish teeth	0.512335	-5.9	0.17	0.31	0.35	
122.5-123.5	27.88	fish teeth	0.512328	-6.0	0.22	0.12	0.25	
122.5-123.5	27.88	fish teeth	0.512324	-6.1	0.12	0.13	0.18	
127.5-128.5	32.47	fish teeth $^{\rm b}$	0.512314	-6.3	0.19	0.12	0.22	
127.5-128.5	32.47	fish teeth $^{\rm b}$	0.512335	-5.9	0.17	0.12	0.21	
PS75/059-2, 54	₽°12.80'S,	125°25.53'W, 3613 m						
12-13	6.04	fish debris ^a	0.512238	-7.8	0.98	0.28	1.02	
12-13	6.04	foraminifera	0.512264	-7.3	0.16	0.21	0.26	
22-23	8.62	fish debris ^a	0.512269	-7.2	0.64	0.27	0.69	
22-23	8.62	foraminifera	0.512264	-7.3	0.13	0.21	0.25	
37-38	12.06	foraminifera	0.512298	-6.6	0.34	0.21	0.40	
37-38	12.06	foraminifera	0.512303	-6.5	0.16	0.21	0.26	

77-78	31.08	fish debris ^b	0.512331	-6.0	0.10	0.20	0.22
77-78	31.08	foraminifera ^b	0.512311	-6.4	0.02	0.18	0.18
	0 10520 111						
PS/5/054-1, 56	9.105 5, 11	5 7.982 W, 4085 m					
27.5-29	14.27	fish debris	0.512246	-7.6	0.28	0.32	0.43
27.5-29	14.27	foraminifera	0.512232	-7.9	0.10	0.13	0.16
37.5-39	15.99	fish debris	0.512269	-7.2	0.47	0.13	0.49
37.5-39	15.99	foraminifera	0.512241	-7.7	0.12	0.32	0.34
47.5-49	17.41	fish debris	0.512253	-7.5	0.32	0.24	0.40
47.5-49	17.41	foraminifera	0.512238	-7.8	0.04	0.13	0.14
57.5-59	17.93	fish debris	0.512253	-7.5	0.21	0.32	0.38
57.5-59	17.93	foraminifera	0.512247	-7.6	0.04	0.23	0.23

^a Values used in supplementary figures for archive- or replicate-comparison. These values are excluded from the composite record (Table S1) due to higher error or low voltage during measurement
 ^b Values used in supplementary figures for archive- or replicate-comparison but not included in the composite records due to ages >30 ka (Table S1).

Table S3.

474 Data of individual analyses of lithogenic particles from inside foraminifera shells.

Sample in- terval (cm)	Age (ka)	Normalized ¹⁴³ Nd/ ¹⁴⁴ Nd	ENd	± Internal ε _{Nd} error (2σ SE)	± External ε _{Nd} error (2σ SD)	± Propagated error
PS75/073-2, 57°12.27'S, 151°36.63'W, 3234 m						
3-4	2.58	0.512229	-8.0	0.16	0.33	0.37
7.5-8.5	3.18	0.512221	-8.1	0.15	0.33	0.36
22.5-23.5	5.20	0.512270	-7.2	0.34	0.55	0.65
52.5-53.5	9.24	0.512283	-6.9	0.24	0.26	0.35
57-58	9.84	0.512280	-7.0	0.34	0.33	0.47
77-78	12.34	0.512297	-6.7	0.15	0.33	0.36
82-83	12.95	0.512325	-6.1	0.14	0.26	0.30
84-85	13.19	0.512342	-5.8	0.33	0.36	0.49
89-90	13.79	0.512332	-6.0	0.09	0.16	0.18
97.5-98.5	15.21	0.512346	-5.7	0.30	0.26	0.40
103-104	16.29	0.512345	-5.7	0.26	0.26	0.37

PS75/059-2, 54°12.80'S, 125°25.53'W, 3613 m

12-13	6.04	0.512301	-6.6	0.32	0.33	0.46
17-18	7.33	0.512343	-5.8	0.27	0.26	0.37
22-23	8.62	0.512357	-5.5	0.31	0.26	0.40
37-38	12.06	0.512369	-5.2	0.26	0.26	0.37
37-38	12.06	0.512391	-4.8	0.22	0.26	0.34
57-58	17.63	0.512384	-5.0	0.06	0.21	0.22
77-78	31.08	0.512373	-5.2	0.03	0.21	0.21

Table S4.

Updated age model tie points of reference core MD97-2120 and tie points of the investi-gated cores 482

Core	Sample in- terval (cm)	Age (ka)	Туре	Sed. Rate (cm/ka)	Data Reference
MD97-2120	22.5	2.06	¹⁴ C	8.8	(19)
	36.5	3.66	¹⁴ C	14.8	(19)
	98.5	7.86	¹⁴ C	21.9	(19)
	202.5	12.61	¹⁴ C	20.3	(19)
	230.5	13.99	¹⁴ C	23.7	(19)
	252.5	14.92	¹⁴ C	20.6	(19)
	330.5	18.7	¹⁴ C	23.3	(60)
	344.5	19.3	¹⁴ C	30.7	(60)
	390.5	20.8	¹⁴ C	39.3	(60)
	418	21.5	¹⁴ C	13.7	(60)
	471	25.36	Kawakawa Tephra	16.3	(61)
	525	28.67	¹⁴ C	14.8	(19)
E11-2	32.5	10.37	Benthic δ^{18} O	8.8	(66)
	50.8	12.44	Benthic δ^{18} O	6.8	(66)
	68.3	15.02	Benthic δ^{18} O	11.4	(66)
	85.6	16.54	Benthic $\delta^{18}O$	8.4	(66)
	95.5	17.72	Benthic $\delta^{18}O$	16.1	(66)
	123.4	19.46	Benthic $\delta^{18}O$	14.2	(66)
	234.5	27.27	Benthic $\delta^{18}O$	15.8	(66)
	274.2	29.78	Benthic $\delta^{18}O$		(66)
PS75/073-2	10.5	3.52	Planktic δ ¹⁸ O	7.4	(64)
	61.4	10.37	Planktic δ^{18} O	8.2	(64)
	80.7	12.73	Planktic δ^{18} O	8.3	(64)
	92.8	14.19	Planktic δ^{18} O	5.1	(64)
	112.3	18.02	Planktic δ^{18} O	1.1	(64)
	130.4	34.64	Planktic δ^{18} O	1.1	(64)
	135.2	39.06	Planktic δ^{18} O		(64)

PS75/056-1	6.6	8.74	Benthic $\delta^{18}O$	4.4	(63)
	22.1	12.25	Benthic δ^{18} O	7.0	(63)
	40.9	14.95	Benthic $\delta^{18}O$	3.3	(63)
	48.3	17.17	Benthic $\delta^{18}O$	7.7	(63)
	67.7	19.69	Benthic $\delta^{18}O$	2.5	(63)
	73.3	21.93	Benthic $\delta^{18}O$	4.7	(63)
	93.0	26.17	Benthic $\delta^{18}O$	8.8	(63)
	139.8	31.51	Benthic $\delta^{18}O$	11.9	(63)
	212.4	37.60	Benthic $\delta^{18}O$		(63)
PS75/059-2	11.6	5.81	Benthic δ ¹⁸ Ο	3.9	(63)
/	23.0	8.75	Benthic δ^{18} O	4.4	(63)
	38.1	12.20	Benthic δ ¹⁸ O	3.7	(63)
	57.2	17.41	Benthic δ ¹⁸ Ο	1.2	(63)
	68.0	26.16	Benthic δ ¹⁸ O	1.9	(63)
	89.9	37.55	Benthic δ ¹⁸ Ο		(63)
PS75/054-1	15.8	10.82	XRF Rb	7.9	
	29.7	13.34	XRF Rb	6.0	
	40.6	14.90	XRF Rb	6.1	
	49.2	17.29	XRF Rb	18.7	
	64.9	19.33	XRF Rb	23.9	
	125.5	29.87	XRF Rb	60.1	
	159.3	33.14	XRF Rb	30.3	
	227.1	41.20	XRF Rb	16.9	
	249.8	46.75	XRF Rb	11.7	
	290.6	56.70	XRF Rb	17.4	
	319.3	63.07	XRF Rb	18.6	
	341.5	67.70	XRF Rb	23.5	
	414.1	79.37	XRF Rb	20.9	
	478.0	87.62	XRF Rb	17.6	
	497.8	91.65	XRF Rb	17.2	
	594.8	109.80	XRF Rb	12.3	
	633.8	117.52	XRF Rb	2.8	
	680.6	126.70	XRF Rb	2.7	
	697.0	130.60	XRF Rb	4.1	

761.4 147.36

XRF Rb

References and Notes

- F. Parrenin, V. Masson-Delmotte, P. Köhler, D. Raynaud, D. Paillard, J. Schwander, C. Barbante, A. Landais, A. Wegner, J. Jouzel, Synchronous change of atmospheric CO₂ and Antarctic temperature during the last deglacial warming. *Science* 339, 1060–1063 (2013). <u>doi:10.1126/science.1226368</u> <u>Medline</u>
- 2. D. M. Sigman, E. A. Boyle, Glacial/interglacial variations in atmospheric carbon dioxide. *Nature* **407**, 859–869 (2000). <u>doi:10.1038/35038000 Medline</u>
- 3. D. M. Sigman, M. P. Hain, G. H. Haug, The polar ocean and glacial cycles in atmospheric CO(2) concentration. *Nature* **466**, 47–55 (2010). <u>doi:10.1038/nature09149</u> <u>Medline</u>
- 4. A. Abelmann, R. Gersonde, G. Knorr, X. Zhang, B. Chapligin, E. Maier, O. Esper, H. Friedrichsen, G. Lohmann, H. Meyer, R. Tiedemann, The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink. *Nat. Commun.* 6, 8136 (2015). doi:10.1038/ncomms9136 Medline
- 5. R. F. Anderson, S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson, L. H. Burckle, Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO₂. *Science* 323, 1443–1448 (2009). doi:10.1126/science.1167441 Medline
- 6. A. Burke, L. F. Robinson, The Southern Ocean's role in carbon exchange during the last deglaciation. *Science* **335**, 557–561 (2012). <u>doi:10.1126/science.1208163</u> <u>Medline</u>
- 7. T. A. Ronge, R. Tiedemann, F. Lamy, P. Köhler, B. V. Alloway, R. De Pol-Holz, K. Pahnke, J. Southon, L. Wacker, Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. *Nat. Commun.* 7, 11487 (2016). <u>doi:10.1038/ncomms11487</u> <u>Medline</u>
- 8. I. N. McCave, L. Carter, I. R. Hall, Glacial–interglacial changes in water mass structure and flow in the SW Pacific Ocean. *Quat. Sci. Rev.* 27, 1886–1908 (2008). doi:10.1016/j.quascirev.2008.07.010
- 9. E. L. Sikes, M. S. Cook, T. P. Guilderson, Reduced deep ocean ventilation in the Southern Pacific Ocean during the last glaciation persisted into the deglaciation. *Earth Planet. Sci. Lett.* 438, 130–138 (2016). doi:10.1016/j.epsl.2015.12.039
- R. Ferrari, M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, A. F. Thompson, Antarctic sea ice control on ocean circulation in present and glacial climates. *Proc. Natl. Acad. Sci.* U.S.A. 111, 8753–8758 (2014). doi:10.1073/pnas.1323922111 Medline
- 11. C. Basak, K. Pahnke, M. Frank, F. Lamy, R. Gersonde, Neodymium isotopic characterization of Ross Sea Bottom Water and its advection through the southern South Pacific. *Earth Planet. Sci. Lett.* **419**, 211–221 (2015). <u>doi:10.1016/j.epsl.2015.03.011</u>
- T. Stichel, M. Frank, J. Rickli, B. A. Haley, The hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean. *Earth Planet. Sci. Lett.* 317-318, 282–294 (2012). doi:10.1016/j.epsl.2011.11.025
- F. Lacan, C. Jeandel, Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water. *Geochem. Geophys. Geosyst.* 6, Q12008 (2005). <u>doi:10.1029/2005GC000956</u>

- 14. H. Fröllje, K. Pahnke, B. Schnetger, H.-J. Brumsack, H. Dulai, J. N. Fitzsimmons, Hawaiian imprint on dissolved Nd and Ra isotopes and rare earth elements in the central North Pacific: Local survey and seasonal variability. *Geochim. Cosmochim. Acta* 189, 110–131 (2016). doi:10.1016/j.gca.2016.06.001
- L. D. Pena, S. L. Goldstein, Thermohaline circulation crisis and impacts during the mid-Pleistocene transition. *Science* 345, 318–322 (2014). <u>doi:10.1126/science.1249770</u> <u>Medline</u>
- 16. A. M. Piotrowski, S. L. Goldstein, S. R. Hemming, R. G. Fairbanks, Intensification and variability of ocean thermohaline circulation through the last deglaciation. *Earth Planet. Sci. Lett.* 225, 205–220 (2004). doi:10.1016/j.epsl.2004.06.002
- L. C. Skinner, A. E. Scrivner, D. Vance, S. Barker, S. Fallon, C. Waelbroeck, North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. *Geology* 41, 667–670 (2013). doi:10.1130/G34133.1
- 18. J. Lippold, M. Gutjahr, P. Blaser, E. Christner, M. L. de Carvalho Ferreira, S. Mulitza, M. Christl, F. Wombacher, E. Böhm, B. Antz, O. Cartapanis, H. Vogel, S. L. Jaccard, Deep water provenance and dynamics of the (de)glacial Atlantic meridional overturning circulation. *Earth Planet. Sci. Lett.* 445, 68–78 (2016). doi:10.1016/j.epsl.2016.04.013
- K. Pahnke, R. Zahn, H. Elderfield, M. Schulz, 340,000-year centennial-scale marine record of Southern Hemisphere climatic oscillation. *Science* 301, 948–952 (2003). <u>doi:10.1126/science.1084451</u> <u>Medline</u>
- 20. K. Pahnke, R. Zahn, Southern Hemisphere water mass conversion linked with North Atlantic climate variability. *Science* **307**, 1741–1746 (2005). <u>doi:10.1126/science.1102163</u> <u>Medline</u>
- 21. G. Siani, E. Michel, R. De Pol-Holz, T. Devries, F. Lamy, M. Carel, G. Isguder, F. Dewilde, A. Lourantou, Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. *Nat. Commun.* **4**, 2758 (2013). <u>doi:10.1038/ncomms3758 Medline</u>
- 22. N. L. Roberts, A. M. Piotrowski, J. F. McManus, L. D. Keigwin, Synchronous deglacial overturning and water mass source changes. *Science* **327**, 75–78 (2010). <u>doi:10.1126/science.1178068 Medline</u>
- 23. W. B. Curry, D. W. Oppo, Glacial water mass geometry and the distribution of δ¹³C of ΣCO₂ in the western Atlantic Ocean. *Paleoceanography* 20, PA1017 (2005).
 <u>doi:10.1029/2004PA001021</u>
- 24. J. N. W. Howe, A. M. Piotrowski, T. L. Noble, S. Mulitza, C. M. Chiessi, G. Bayon, North Atlantic Deep Water Production during the Last Glacial Maximum. *Nat. Commun.* 7, 11765 (2016). <u>doi:10.1038/ncomms11765</u> <u>Medline</u>
- 25. L. D. Keigwin, S. A. Swift, Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. *Proc. Natl. Acad. Sci. U.S.A.* **114**, 2831–2835 (2017). doi:10.1073/pnas.1614693114 Medline

- 26. J. W. B. Rae, M. Sarnthein, G. L. Foster, A. Ridgwell, P. M. Grootes, T. Elliott, Deep water formation in the North Pacific and deglacial CO₂ rise. *Paleoceanography* 29, 645–667 (2014). doi:10.1002/2013PA002570
- 27. I. R. Hall, I. N. McCave, N. J. Shackleton, G. P. Weedon, S. E. Harris, Intensified deep Pacific inflow and ventilation in Pleistocene glacial times. *Nature* 412, 809–812 (2001). doi:10.1038/35090552 Medline
- 28. J. F. Adkins, The role of deep ocean circulation in setting glacial climates. *Paleoceanography* **28**, 539–561 (2013). <u>doi:10.1002/palo.20046</u>
- 29. J. F. Adkins, K. McIntyre, D. P. Schrag, The salinity, temperature, and δ¹⁸O of the glacial deep ocean. *Science* 298, 1769–1773 (2002). <u>doi:10.1126/science.1076252</u> <u>Medline</u>
- 30. F. Lamy, H. W. Arz, R. Kilian, C. B. Lange, L. Lembke-Jene, M. Wengler, J. Kaiser, O. Baeza-Urrea, I. R. Hall, N. Harada, R. Tiedemann, Glacial reduction and millennial-scale variations in Drake Passage throughflow. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 13496–13501 (2015). <u>doi:10.1073/pnas.1509203112 Medline</u>
- 31. M. Nikurashin, R. Ferrari, Overturning circulation driven by breaking internal waves in the deep ocean. *Geophys. Res. Lett.* **40**, 3133–3137 (2013). <u>doi:10.1002/grl.50542</u>
- 32. L. C. Skinner, S. Fallon, C. Waelbroeck, E. Michel, S. Barker, Ventilation of the deep Southern Ocean and deglacial CO2 rise. *Science* **328**, 1147–1151 (2010). <u>doi:10.1126/science.1183627</u> <u>Medline</u>
- 33. A. M. Piotrowski, S. L. Goldstein, S. R. Hemming, R. G. Fairbanks, Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. *Science* **307**, 1933–1938 (2005). <u>doi:10.1126/science.1104883</u> <u>Medline</u>
- 34. J. Lynch-Stieglitz, J. F. Adkins, W. B. Curry, T. Dokken, I. R. Hall, J. C. Herguera, J. J.-M. Hirschi, E. V. Ivanova, C. Kissel, O. Marchal, T. M. Marchitto, I. N. McCave, J. F. McManus, S. Mulitza, U. Ninnemann, F. Peeters, E.-F. Yu, R. Zahn, Atlantic meridional overturning circulation during the Last Glacial Maximum. *Science* **316**, 66–69 (2007). doi:10.1126/science.1137127 Medline
- 35. J. R. Toggweiler, B. Samuels, Effect of drake passage on the global thermohaline circulation. Deep Sea Res. Part I Oceanogr. Res. Pap. 42, 477–500 (1995). doi:10.1016/0967-0637(95)00012-U
- 36. L. Talley, Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. *Oceanography (Wash. D.C.)* 26, 80–97 (2013). doi:10.5670/oceanog.2013.07
- 37. S. Barker, G. Knorr, M. J. Vautravers, P. Diz, L. C. Skinner, Extreme deepening of the Atlantic overturning circulation during deglaciation. *Nat. Geosci.* 3, 567–571 (2010). doi:10.1038/ngeo921
- 38. A. M. Piotrowski, A. Galy, J. A. L. Nicholl, N. Roberts, D. J. Wilson, J. A. Clegg, J. Yu, Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. *Earth Planet. Sci. Lett.* 357-358, 289–297 (2012). doi:10.1016/j.epsl.2012.09.036

- 39. T. van de Flierdt, L. F. Robinson, J. F. Adkins, S. R. Hemming, S. L. Goldstein, Temporal stability of the neodymium isotope signature of the Holocene to glacial North Atlantic. *Paleoceanography* 21, (2006). doi:10.1029/2006PA001294
- 40. G. L. Foster, D. Vance, J. Prytulak, No change in the neodymium isotope composition of deep water exported from the North Atlantic on glacial-interglacial time scales. *Geology* 35, 37–40 (2007). doi:10.1130/G23204A.1
- 41. L. C. Skinner, C. Waelbroeck, A. E. Scrivner, S. J. Fallon, Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 5480–5484 (2014). <u>doi:10.1073/pnas.1400668111 Medline</u>
- 42. F. Lamy, D. Hebbeln, G. Wefer, High-resolution marine record of climatic change in midlatitude chile during the last 28,000 years based on terrigenous sediment parameters. *Quat. Res.* 51, 83–93 (1999). doi:10.1006/qres.1998.2010
- 43. J. R. Toggweiler, J. L. Russell, S. R. Carson, Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. *Paleoceanography* 21, n/a (2006). <u>doi:10.1029/2005PA001154</u>
- 44. E. L. Sikes, A. C. Elmore, K. A. Allen, M. S. Cook, T. P. Guilderson, Glacial water mass structure and rapid δ¹⁸O and δ¹³C changes during the last glacial termination in the Southwest Pacific. *Earth Planet. Sci. Lett.* **456**, 87–97 (2016). <u>doi:10.1016/j.epsl.2016.09.043</u>
- 45. H. E. Garcia et al., World Ocean Atlas 2009, NOAA Atlas No. NESDros. Inf. Serv. 70 (NOAA, 2010).
- 46. J. I. Antonov et al., World Ocean Atlas 2009, NOAA Atlas No. NESDros. Inf. Serv. 69 (NOAA, 2010).
- 47. A. H. Orsi, T. Whitworth III, W. D. Nowlin Jr., On the meridional extent and fronts of the Antarctic Circumpolar Current. *Deep Sea Res. Part I Oceanogr. Res. Pap.* 42, 641–673 (1995). doi:10.1016/0967-0637(95)00021-W
- 48. P. Grootes, M. Stuiver, Oxygen 18/16 variability in Greenland snow and ice with 10⁻³ to 10⁵ year time resolution. J. Geophys. Res. 102 (C12), 26455–26470 (1997). doi:10.1029/97JC00880
- 49. J. Jouzel, V. Masson-Delmotte, O. Cattani, G. Dreyfus, S. Falourd, G. Hoffmann, B. Minster, J. Nouet, J. M. Barnola, J. Chappellaz, H. Fischer, J. C. Gallet, S. Johnsen, M. Leuenberger, L. Loulergue, D. Luethi, H. Oerter, F. Parrenin, G. Raisbeck, D. Raynaud, A. Schilt, J. Schwander, E. Selmo, R. Souchez, R. Spahni, B. Stauffer, J. P. Steffensen, B. Stenni, T. F. Stocker, J. L. Tison, M. Werner, E. W. Wolff, Orbital and millennial Antarctic climate variability over the past 800,000 years. *Science* 317, 793–796 (2007). doi:10.1126/science.1141038 Medline
- 50. D. Veres, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, B. Lemieux-Dudon, F. Parrenin, P. Martinerie, E. Blayo, T. Blunier, E. Capron, J. Chappellaz, S. O. Rasmussen, M. Severi, A. Svensson, B. Vinther, E. W. Wolff, The Antarctic ice core chronology (AICC2012): An optimized multi-parameter and multi-site dating approach for the last 120 thousand years. *Clim. Past* 9, 1733–1748 (2013). doi:10.5194/cp-9-1733-2013

- 51. WAIS Divide Project Members, Onset of deglacial warming in West Antarctica driven by local orbital forcing. *Nature* **500**, 440–444 (2013). <u>doi:10.1038/nature12376</u> <u>Medline</u>
- 52. E. Monnin, A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T. F. Stocker, D. Raynaud, J. M. Barnola, Atmospheric CO₂ concentrations over the last glacial termination. *Science* 291, 112–114 (2001). doi:10.1126/science.291.5501.112 Medline
- 53. R. Gersonde, "The expedition of the research vessel "Polarstern" to the polar South Pacific in 2009/2010 (ANT-XXVI/2 BIPOMAC)" (Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, (2011)).
- 54. K. Tachikawa, A. M. Piotrowski, G. Bayon, Neodymium associated with foraminiferal carbonate as a recorder of seawater isotopic signatures. *Quat. Sci. Rev.* 88, 1–13 (2014). doi:10.1016/j.quascirev.2013.12.027
- 55. C. Pin, J. S. Zalduegui, Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. *Anal. Chim. Acta* **339**, 79–89 (1997). doi:10.1016/S0003-2670(96)00499-0
- 56. R. K. O'Nions, P. J. Hamilton, N. M. Evensen, Variations in143Nd/144Nd and87Sr/86Sr ratios in oceanic basalts. *Earth Planet. Sci. Lett.* **34**, 13–22 (1977). <u>doi:10.1016/0012-821X(77)90100-5</u>
- 57. T. Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M. Yuhara, Y. Orihashi, S. Yoneda, H. Shimizu, T. Kunimaru, K. Takahashi, T. Yanagi, T. Nakano, H. Fujimaki, R. Shinjo, Y. Asahara, M. Tanimizu, C. Dragusanu, JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. *Chem. Geol.* 168, 279–281 (2000). doi:10.1016/S0009-2541(00)00198-4
- 58. P. J. Reimer, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. B. Ramsey, C. E. Buck, H. Cheng, R. L. Edwards, M. Friedrich, P. M. Grootes, T. P. Guilderson, H. Haflidason, I. Hajdas, C. Hatté, T. J. Heaton, D. L. Hoffmann, A. G. Hogg, K. A. Hughen, K. F. Kaiser, B. Kromer, S. W. Manning, M. Niu, R. W. Reimer, D. A. Richards, E. M. Scott, J. R. Southon, R. A. Staff, C. S. M. Turney, J. van der Plicht, IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. *Radiocarbon* 55, 1869–1887 (2013). doi:10.2458/azu_js_rc.55.16947
- 59. E. L. Sikes, C. R. Samson, T. P. Guilderson, W. R. Howard, Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. *Nature* 405, 555– 559 (2000). <u>doi:10.1038/35014581</u> <u>Medline</u>
- 60. K. A. Rose, E. L. Sikes, T. P. Guilderson, P. Shane, T. M. Hill, R. Zahn, H. J. Spero, Upperocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release. *Nature* 466, 1093–1097 (2010). doi:10.1038/nature09288 Medline
- 61. M. J. Vandergoes, A. G. Hogg, D. J. Lowe, R. M. Newnham, G. H. Denton, J. Southon, D. J. A. Barrell, C. J. N. Wilson, M. S. McGlone, A. S. R. Allan, P. C. Almond, F. Petchey, K. Dabell, A. C. Dieffenbacher-Krall, M. Blaauw, A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand. *Quat. Sci. Rev.* 74, 195–201 (2013). doi:10.1016/j.quascirev.2012.11.006
- 62. D. Paillard, L. Labeyrie, P. Yiou, Macintosh program performs time-series analysis. *Eos* (*Wash. D.C.*) 77, 379–379 (1996). doi:10.1029/96EO00259

- 63. F. Lamy, R. Gersonde, G. Winckler, O. Esper, A. Jaeschke, G. Kuhn, J. Ullermann, A. Martinez-Garcia, F. Lambert, R. Kilian, Increased dust deposition in the Pacific Southern Ocean during glacial periods. *Science* 343, 403–407 (2014). doi:10.1126/science.1245424 Medline
- 64. V. Benz, O. Esper, R. Gersonde, F. Lamy, R. Tiedemann, Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean. *Quat. Sci. Rev.* 146, 216–237 (2016). doi:10.1016/j.quascirev.2016.06.006
- 65. A. S. Studer, D. M. Sigman, A. Martínez-García, V. Benz, G. Winckler, G. Kuhn, O. Esper, F. Lamy, S. L. Jaccard, L. Wacker, S. Oleynik, R. Gersonde, G. H. Haug, Antarctic Zone nutrient conditions during the last two glacial cycles. *Paleoceanography* **30**, 845–862 (2015). <u>doi:10.1002/2014PA002745</u>
- 66. U. S. Ninnemann, C. D. Charles, Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. *Earth Planet. Sci. Lett.* **201**, 383–396 (2002). doi:10.1016/S0012-821X(02)00708-2
- 67. B. M. Sloyan, S. R. Rintoul, Circulation, renewal, and modification of Antarctic mode and intermediate water. *J. Phys. Oceanogr.* **31**, 1005–1030 (2001). <u>doi:10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2</u>
- 68. J. L. Reid, R. J. Lynn, On the influence of the Norwegian-Greenland and Weddell seas upon the bottom waters of the Indian and Pacific oceans. *Deep-Sea Res.* **18**, 1063–1088 (1971).
- 69. J. E. Callahan, The structure and circulation of deep water in the Antarctic. *Deep-Sea Res. Oceanogr. Abstr.* **19**, 563–575 (1972). <u>doi:10.1016/0011-7471(72)90040-X</u>
- 70. M. Kawabe, S. Fujio, Pacific ocean circulation based on observation. *J. Oceanogr.* **66**, 389–403 (2010). <u>doi:10.1007/s10872-010-0034-8</u>
- 71. A. H. Orsi, G. C. Johnson, J. L. Bullister, Circulation, mixing, and production of Antarctic Bottom Water. *Prog. Oceanogr.* 43, 55–109 (1999). doi:10.1016/S0079-6611(99)00004-X
- 72. S. B. Jacobsen, G. J. Wasserburg, Sm-Nd isotopic evolution of chondrites. *Earth Planet. Sci. Lett.* **50**, 139–155 (1980). <u>doi:10.1016/0012-821X(80)90125-9</u>
- 73. C. Jeandel, T. Arsouze, F. Lacan, P. Techine, J. Dutay, Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: A compilation, with an emphasis on the margins. *Chem. Geol.* 239, 156–164 (2007). doi:10.1016/j.chemgeo.2006.11.013
- 74. K. Tachikawa, V. Athias, C. Jeandel, Neodymium budget in the modern ocean and paleooceanographic implications. J. Geophys. Res. Oceans 108 (C8), 3254 (2003). doi:10.1029/1999JC000285
- 75. J. Rempfer, T. F. Stocker, F. Joos, J.-C. Dutay, M. Siddall, Modelling Nd-isotopes with a coarse resolution ocean circulation model: Sensitivities to model parameters and source/sink distributions. *Geochim. Cosmochim. Acta* **75**, 5927–5950 (2011). doi:10.1016/j.gca.2011.07.044
- 76. S. L. Goldstein, S. H. Hemming, in *Treatise on Geochemistry*, H. Elderfield, Ed. (Elsevier, 2003), pp. 453–489.

- 77. F. Lacan, C. Jeandel, Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns. *Earth Planet. Sci. Lett.* **186**, 497–512 (2001). <u>doi:10.1016/S0012-821X(01)00263-1</u>
- 78. P. Carter, D. Vance, C. D. Hillenbrand, J. A. Smith, D. R. Shoosmith, The neodymium isotopic composition of waters masses in the eastern Pacific sector of the Southern Ocean. *Geochim. Cosmochim. Acta* 79, 41–59 (2012). doi:10.1016/j.gca.2011.11.034
- 79. J. Rickli, M. Gutjahr, D. Vance, M. Fischer-Gödde, C.-D. Hillenbrand, G. Kuhn, Neodymium and hafnium boundary contributions to seawater along the West Antarctic continental margin. *Earth Planet. Sci. Lett.* **394**, 99–110 (2014). doi:10.1016/j.epsl.2014.03.008
- 80. M. Molina-Kescher, M. Frank, E. Hathorne, South Pacific dissolved Nd isotope compositions and rare earth element distributions: Water mass mixing versus biogeochemical cycling. *Geochim. Cosmochim. Acta* **127**, 171–189 (2014). doi:10.1016/j.gca.2013.11.038
- 81. W. Abouchami, S. L. Goldstein, S. J. G. Gazer, A. Eisenhauer, A. Mangini, Secular changes of lead and neodymium in central Pacific seawater recorded by a Fe-Mn crust. *Geochim. Cosmochim. Acta* 61, 3957–3974 (1997). doi:10.1016/S0016-7037(97)00218-4
- 82. T. M. Marchitto, J. Lynch-Stieglitz, S. R. Hemming, Deep Pacific CaCO₃ compensation and glacial–interglacial atmospheric CO₂. *Earth Planet. Sci. Lett.* **231**, 317–336 (2005). doi:10.1016/j.epsl.2004.12.024
- 83. F. Lacan, C. Jeandel, Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: Constraints on the Iceland Scotland Overflow Water signature. *Geochem. Geophys. Geosyst.* 5, Q11006 (2004). doi:10.1029/2004GC000742
- 84. E. E. Martin, B. A. Haley, Fossil fish teeth as proxies for seawater Sr and Nd isotopes. *Geochim. Cosmochim. Acta* 64, 835–847 (2000). doi:10.1016/S0016-7037(99)00376-2
- 85. E. E. Martin, S. W. Blair, G. D. Kamenov, H. D. Scher, E. Bourbon, C. Basak, D. N. Newkirk, Extraction of Nd isotopes from bulk deep sea sediments for paleoceanographic studies on Cenozoic time scales. *Chem. Geol.* 269, 414–431 (2010). doi:10.1016/j.chemgeo.2009.10.016
- 86. K. Pahnke, S. L. Goldstein, S. R. Hemming, Abrupt changes in Antarctic Intermediate Water circulation over the past 25,000 years. *Nat. Geosci.* 1, 870–874 (2008). <u>doi:10.1038/ngeo360</u>
- 87. A. N. Abbott, B. A. Haley, J. McManus, Bottoms up: Sedimentary control of the deep North Pacific Ocean's ε_{Nd} signature. *Geology* 43, 1035–1038 (2015). <u>doi:10.1130/G37114.1</u>
- 88. D. J. Thomas, R. K. Via, Neogene evolution of atlantic thermohaline circulation: Perspective from Walvis Ridge, southeastern Atlantic Ocean. *Paleoceanography* 22, PA2212 (2007). <u>doi:10.1029/2006PA001297</u>
- 89. A. C. Elmore, A. M. Piotrowski, J. D. Wright, A. E. Scrivner, Testing the extraction of past seawater Nd isotopic composition from North Atlantic deep sea sediments and

foraminifera. *Geochem. Geophys. Geosyst.* **12**, Q09008 (2011). doi:10.1029/2011GC003741

- 90. G. Charbonnier, E. Pucéat, G. Bayon, D. Desmares, G. Dera, C. Durlet, J.-F. Deconinck, F. Amédro, A. T. Gourlan, P. Pellenard, B. Bomou, Reconstruction of the Nd isotope composition of seawater on epicontinental seas: Testing the potential of Fe–Mn oxyhydroxide coatings on foraminifera tests for deep-time investigations. *Geochim. Cosmochim. Acta* **99**, 39–56 (2012). doi:10.1016/j.gca.2012.09.012
- 91. R. Schlitzer, Ocean data view (2014); http://odv.awi.de.