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Text S1  

 

Introduction  

The supplementary text below describes details of the two-dimensional model used in 
the paper. 

 

Text S1. 

In Section 3 we provided an overview of the residual-mean model, which is sketched in 

Figure 4. This Appendix provides additional details that are not strictly necessary for the 

interpretation of our results, but are included in the interest of clarity and reproducibility. 

 In the ocean interior, three physical processes modify all zonally averaged tracer 

distributions: advection by the ocean circulation, mixing along isopycnal surfaces by 

mesoscale eddy stirring, and mixing across isopycnal surfaces by small-scale mixing 
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processes. This combination of effects is summarized by the following conservation equation 

for some property  [Plumb and Ferrari, 2005; Lund et al., 2011] 

 f t + J ytrc,f( ) =Ñ× k isoÑ//f( )+Ñ× kdiaÑf( )+F . (S1)  

Here the overbar  denotes an average in time and longitude, so all quantities are functions 

of the Cartesian latitude yand depth z. For convenience we align y= 0 with 45oS and 

z= 0  
with the ocean surface. The Jacobian J(ytrc,f) = utrc ×Ñf  describes advection by the 

tracer streamfunction ytrc(y,z) . The isopycnal diffusivity k iso  quantifies stirring by mesoscale 

eddies along isopycnal surfaces, where Ñ//f  denotes the gradient of f  parallel to the local 

isopycnal slope. The isopycnal diffusivity k iso  should not be confused with K, which is the 

buoyancy diffusivity that describes the slumping of isopycnals and the release of available 

potential energy by eddies. Isopycnal diffusion does not mix density because there is no 

density gradient along isopycnals. The diapycnal diffusivity kdia  quantifies small-scale mixing 

across isopycnals, due, for example, to breaking of internal waves. We have agglomerated any 

additional sources and sinks of the tracer, such as fluxes at the ocean surface, into a forcing 

term F .  

 

 In order to determine the density distribution, and thus the ocean’s isopycnal 

surfaces, we replace the abstract tracer f  with neutral density g  in equation (S1). By 

definition the gradient of g  along mean isopycnal surfaces is zero,Ñ//g = 0 , so (S1) reduces 

to  

 
g t + J ytrc,g( ) = kdiag z( )

z
+

¶G

¶z
. 

(S2)  

Here ¶G /¶z represents sources and sinks of density due to thermodynamic fluxes at the 

ocean surface, and has been written in the form of a vertical divergence of a downward 

density flux G . We have also reduced the diapycnal mixing term to its vertical component, 

which is typically larger than the lateral component by around 6 orders of magnitude. The 

streamfunction ytrc  is related to the surface wind stress and local isopycnal slope via 

equation (5). We obtain steady solutions to (S1) by discretizing the Southern Ocean portion of 
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our model domain on a grid of 50´50
 
points. The depth of the ocean is H = 5000m  and the 

width of the ACC channel is Lchannel = 2500km , so the vertical and horizontal grid spacings 

are Dz =100m  and Dy = 50km  respectively. The northern basin is represented as an 

additional column of grid cells as long as the basin ( Lbasin =10,000km ). The computational 

domain excludes the northern and southern convection regions, which are instead treated as 

boundary conditions as described below. Equation (S1) is then integrated forward in time 

until it reaches steady state, defined as a root-mean-square time derivative smaller than 

10-16 kg m-3 s-1. The numerical approach follows that of [Stewart et al., 2014]. 

 At the ocean bed we require that there be no normal flux of mass or density through 

the solid boundary, setting ytrc = 0  and g z = 0  on z= -H . We similarly insist that there 

should be no mass flux through the ocean surface, ytrc = 0  on z= 0. However we permit 

thermodynamic fluxes through the surface by setting G  on z= 0  as described in Section 3; G  

is set to zero everywhere in the ocean interior.  

 In the AABW convective region -(Lchannel + LAABW) £ y£ -Lchannel  we assume for 

simplicity that strong convection results in vertical isopycnals, in such a way that the surface 

meridional density gradient and deep vertical density gradient are proportional. That is, we 

assume that the densities at the surface and at the edge of the AABW convective region are 

matched via 

 g -Lchannel,z0( ) =g -Lchannel + z0 ×LAABW H , 0( ),  (S3)  

for any depth z0 . This implies that the density gradients are related via 

 H ×g z -Lchannel,z0( ) = LAABW ×g y -Lchannel + z0 ×LAABW H , 0( ).  (S4)  

At the surface we prescribe a fixed flux of the form 

G(y, 0) = Gice ×
exp y+ Lchannel + LAABW( ) / LAABW

éë ùû-1

exp(1)- 2
,
 

(S5)  

which has been constructed such that average density input into the surface of the convective 

region remains equal to Gice . Our results are not sensitive to the exact structure of this 

forcing, but it is important that G
z=0

 should rapidly approach zero at the southern wall 

y= -(Lchannel + LAABW), as otherwise the weak density stratification will produce a spuriously 



 

 

4 

 

strong overturning circulation. Assuming that G = 0  at the base of each vertical isopycnal, 

and neglecting diapycnal mixing, we integrate the steady (g t = 0) form of equation (S2) along 

each isopycnal to obtain a boundary condition for ytrc  at y= -Lchannel , 

ytrc(-Lchannel, z0 ) =
LAABW

Hg z

× G(-Lchannel + z0 ×LAABW H , 0) . 
(S6)  

 We apply an identical procedure to the NADW convective region 

( Lbasin £ y£ Lbasin + LNADW ), except only isopycnals less dense than gNADW
 are matched to the 

surface, i.e. 

 g Lbasin,z0( ) =g Lbasin - z0 ×LNADW H
NADW

, 0( ), z0 ³ -HNADW.  (S7)  

Here HNADW is the depth of the isopycnal g =gNADW
 at y= Lbasin . The density gradients at the 

surface and in the basin are related similarly. We impose a surface density forcing that 

restores the water column above z= -HNADW  towards g =gNADW
 with a timescale TNADW , 

 
G(y, 0) = HNADW ×

gNADW -g(y, 0)

TNADW

.  
(S8)  

Thus the boundary condition for ytrc  at y= Lbasin  may be written as 

ytrc(Lbasin, z0 ) = -
LNADW

g z

×
gNADW -g(Lbasin, z0 )

TNADW

,  
(S9)  

for z0 ³ -HNADW , and ytrc(Lbasin,z0 ) = 0  for z0 £ -HNADW . 

 In the case of radiocarbon concentration, the source/sink term F  in equation (S1) 

encompasses both radioactive decay and restoration by the atmosphere, 

 Ct + J ytrc,C( ) =Ñ× k isoÑ// C( ) + kdiaCz( )
z
- rC+Catm . (S10)  

Here r  is the exponential decay constant for radiocarbon, and is equivalent to a half-life of 

5730 yr. The atmospheric forcing term Catm
 restores C  to prescribed radiocarbon value at 

the ocean surface and in the convective regions, as described in Section 3. We solve (S10) in a 

similar fashion to equation (S2), but for the radiocarbon distribution over the entire ocean, 

including the northern basin and convective regions. For the purpose of this calculation the 

isopycnals are assumed to be flat everywhere in the convective region, because vertical 

isopycnals invalidate the assumption of a small isopycnal slope, and the radiocarbon 
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evolution in these regions is dominated by the rapid restoring to the surface concentration. 

We use the same numerical grid spacing as for (S2), which yields a grid of 255´50  points. 

We impose boundary conditions of zero normal tracer flux at the ocean bed and the northern 

and southern walls, and permit only the atmospheric restoring flux at the ocean surface. The 

numerical approach is qualitatively similar to that of Stewart et al. [2014]: the advection-

diffusion equation (S10) is stepped forward in time using the total variation-diminishing finite 

volume scheme of [Kurganov and Tadmor, 2000].  The computation is halted once the 

solution has reached a steady state, defined as a root-mean-square time derivative smaller 

than 10-13 ‰ s-1. 
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