FN Archimer Export Format PT J TI Viral degradation of marine bacterial exopolysaccharides BT AF Lelchat, Florian Mocaer, P Y Ojima, T Michel, G Sarthou, Geraldine Bucciarelli, Eva Cérantola, S Colliec-Jouault, Sylvia Boisset, Claire Baudoux, A-C AS 1:1;2:2;3:3;4:4;5:5;6:5;7:6;8:7;9:8;10:2; FF 1:;2:;3:;4:;5:;6:;7:;8:PDG-RBE-BRM-LEMMMB;9:;10:; C1 Laboratoire BMM, centre Ifremer de Brest, ZI pointe du diable, 29280 Plouzané, France Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate 041–8611, Japan Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins UMR 8227, Station Biologique de Roscoff, Roscoff, France CNRS, Université de Brest, IRD, Ifremer, UMR 6539/LEMAR/IUEM, Technopôle Brest Iroise, Place Nicolas Copernic, 29280 Plouzané, France Service commun de résonnance magnétique nucléaire, Faculté de science de Brest, Université de Bretagne Occidentale, 6 av. Victor Le Gorgeu, 29238 Brest Cedex 3, France Laboratoire EM3B, Centre Ifremer Atlantique - Rue de l'Ile d'Yeu - 44311 Nantes, France Service commun de chromatographie, CERMAV-CNRS, 601 rue de la chimie, St Martin d'Hère, 38041 Grenoble, France C2 IFREMER, FRANCE UNIV PARIS 06, FRANCE UNIV HOKKAIDO, JAPAN UNIV PARIS 06, FRANCE CNRS, FRANCE UBO, FRANCE IFREMER, FRANCE CNRS, FRANCE SI NANTES SE PDG-RBE-BRM-LEMMMB UM LEMAR IN WOS Ifremer UPR WOS Cotutelle UMR copubli-france copubli-univ-france copubli-int-hors-europe IF 3.675 TC 13 UR https://archimer.ifremer.fr/doc/00499/61062/64512.pdf LA English DT Article DE ;marine phage;EPS;polysaccharidase;DOM;ocean AB The identification of the mechanisms by which marine dissolved organic matter (DOM) is produced and regenerated is critical to develop robust prediction of ocean carbon cycling. Polysaccharides represent one of the main constituents of marine DOM and their degradation is mainly attributed to polysaccharidases derived from bacteria. Here, we report that marine viruses can depolymerize the exopolysaccharides (EPS) excreted by their hosts using 5 bacteriophages that infect the notable EPS producer, Cobetia marina DSMZ 4741. Degradation monitorings as assessed by gel electrophoresis and size exclusion chromatography showed that 4 out of 5 phages carry structural enzymes that depolymerize purified solution of Cobetia marina EPS. The depolymerization patterns suggest that these putative polysaccharidases are constitutive, endo-acting, and functionally diverse. Viral adsorption kinetics indicate that the presence of these enzymes provides a significant advantage for phages to adsorb onto their hosts upon intense EPS production conditions. The experimental demonstration that marine phages can display polysaccharidases active on bacterial EPS lead us to question whether viruses could also contribute to the degradation of marine DOM and modify its bioavailability. Considering the prominence of phages in the ocean, such studies may unveil an important microbial process that affects the marine carbon cycle. PY 2019 PD JUN SO Fems Microbiology Ecology SN 0168-6496 PU Oxford University Press (OUP) VL 95 IS 7 UT 000484391300005 DI 10.1093/femsec/fiz079 ID 61062 ER EF