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Preface 

This thesis, submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree (PhD), 

was performed at the Technical University of Denmark, National Institute of Aquatic Resources (DTU 

Aqua) within the Fish Biology Research Group of the Section for Marine Living Resources. 

Moreover, this PhD fellowship was part of the research and innovation project: Eel Hatchery Technology for 

a Sustainable Aquaculture (EEL-HATCH) coordinated by DTU Aqua and supported financially by 

Innovation Fund Denmark, Grant no.5184-00093B. As such, the research presented in this thesis was 

conducted between 2014 and 2017 at two research facilities of DTU Aqua as an integral part of the EEL-

HATCH project, under the supervision of Jonna Tomkiewicz and Ian A.E. Butts. The first experimental 

series were carried out at Lyksvad Fish Farm in southern Jutland, while the later series took place at the eel 

hatchery built as part of the EEL-HATCH project in Hirtshals, northern Jutland. Here, the integration into a 

multidisciplinary team of researchers and industrial partners has provided the opportunity to conduct 

comprehensive experiments with European eel offspring, at the cutting edge of research towards the 

development of larval culture for this extraordinary species. 

The studies of the thesis focus on the ontogeny and physiology of the early larval stages, ranging from hatch 

to first-feeding, with emphasis on biotic and abiotic factors influencing early life history. Here, sampled 

larvae from dedicated experiments related to temperature, salinity and first-feeding, were the source for 

extensive morphological and molecular analyses. These molecular analyses supporting records on 

development and survival were supervised by José-Luis Zambonino-Infante, David Mazurais and Arianna 

Servilli at the French Research Institute for Exploitation of the Sea (IFREMER), in Plouzane, France and by 

Joanna Miest and Catriona Clemmesen at the Helmholtz Centre for Ocean Research (GEOMAR), in Kiel, 

Germany. 

It has been invaluable to be part of an international team with leading expertize in European eel research, 

also prior to initiating my PhD, where I gained invaluable hands on experience. It was here, the research in 

larval culture became an opportunity as the enhanced assisted methodology developed in the EU-project: 

Reproduction of European Eel: Towards a Self-sustained Aquaculture (PRO-EEL) enabled a stable 

production of viable eggs and regular mass hatch of larvae. This opened an array of unanswered questions 

about physiological requirements and rearing conditions of the unpreceded culture of European eel larvae, 

complicated by the lack of knowledge regarding the early life history stages in nature.  

The aim of this PhD was in this context to fill gaps in knowledge about requirements of early life history 

stages, enhancing survival and leading to first-feeding stages during larviculture of European eel. Altogether, 

this PhD project has provided a unique opportunity to enhance my skills in designing, performing and 

analyzing experimental studies as well as learning the methodology, application and interpretation of 

molecular tools. In conclusion, I am proud to say that my research has contributed to the increased survival 

through the yolksac stage, which now allows hundred thousands of European eel larvae to enter the first-

feeding stage and feeding experiments. 
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English summary 

The research conducted within this PhD project contributes to filling gaps in knowledge about the enigmatic 

life cycle of European eel (Anguilla anguilla) by addressing biotic and abiotic factors influencing early larval 

stages. This involves experimental studies and utilization of state-of-the-art molecular tools elucidating links 

between morphology and molecular mechanisms in the quest to identify suitable rearing and feeding 

conditions for larviculture. As such, this thesis comprises six studies within three main topics: i) temperature, 

ii) salinity and iii) nutrition, influencing larval development and survival.

The first three studies address the influence of temperature on early larval ontogeny. Here, Study 1 

determined the thermal tolerance limits and identified an intermediate thermal environment  for future larval 

culture with efficient growth and low frequency of deformities associated with high expression of growth 

hormone (improved growth) and low expression of heat shock proteins (decreased stress). Moreover, Study 

2 revealed that expression of genes encoding thyroid hormone receptors and deiodinases, associated with the 

mediation of thyroid hormone action, show sensitivity to temperature and are involved in and during early 

larval development. Additionally, Study 3 shed light on the molecular ontogeny of the larval immune system 

under different thermal scenarios and identified an immune-compromised phase during which mortality is 

high and larvae are more vulnerable to pathogen infection. This will have important implications on rearing 

conditions and disease prevention protocols in eel hatcheries but also improve our understanding of ocean 

warming impacts on fish recruitment. Thereafter, experimental work focused on the salinity tolerance of 

these marine larvae. Here, Study 4 clearly demonstrated that culture regimes reducing salinity towards iso-

osmotic conditions facilitated enhanced European eel pre-leptocephalus development and survival revealing 

the existence of underlying, highly sensitive and regulated osmoregulation processes in the early larval stage. 

This novel insight gained by morphologically and molecularly defined physiological thermal and 

osmoregulatory tolerance limits and preferences gradually led to improved protocols for pre-leptocephalus 

larval culture and resulted in significantly increased numbers of healthier and stronger larvae reaching the 

first-feeding stages. Previous to these culture condition improvements, a pilot nutritional trial was performed. 

Here, Study 5 for the first time explored several diets, tested attractants and described behavioral feeding 

patterns of European eel larvae. Finally, with much enhanced numbers of larvae and using the previously 

identified benchmark diet as well as enhanced temperature condition, Study 6 revealed that initiation of 

exogenous feeding in European eel occurs concurrently with the onset of the genetically pre-programmed 

underlying hormonal control of ingestion and the enzymatic regulation of digestion, known to regulate 

physiological functions of feeding. The here gained knowledge, improved the understanding of an 

undisclosed phase of the European eel life cycle, which is the transition from yolk-sac pre-leptocephalus 

larvae to the exogenous feeding leptocephalus stage and constitutes essential information in order to develop 

efficient feeding strategies for future larviculture of this species. 

In conclusion, the conducted research elucidated molecular aspects of important biological processes in order 

to more closely understand the complexity of regulations involved in early European eel ontogeny and 

physiology. The gained knowledge contributes to our understanding of unknown mysterious aspects of the 

European eel life cycle and most importantly provides promising steps for eel aquaculture towards 

completing the life cycle in captivity of this socially and economically important as well as critically 

endangered fish species. 
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Dansk resumé 

Forskningen gennemført i dette PhD-projekt bidrager til at udfylde huller i vores viden om den europæiske 

åls gådefulde livscyklus ved at adressere biotiske og abiotiske faktorer, der påvirker de tidlige larvestadier.  

Den ny viden er opnået gennem kontrollerede forsøg og anvendelsen af moderne molekylære metoder til at 

belyse sammenhængen mellem den morfologiske udvikling og de underliggende mekanismer med henblik 

på at identificere egnede opdrætsforhold i larvekultur. Overordnet omfatter afhandlingen seks studier inden 

for tre hovedemner, nemlig indflydelsen af: i) temperatur, ii) saltholdighed og iii) ernæring på larvernes 

udvikling og overlevelse. 

De første tre studier omhandler temperaturens indflydelse i de tidligste larvestadier. Det indledende studium, 

Studie 1, som fokuserede på larvernes tolerancegrænser over for vandtemperaturen, identificerede et 

temperaturinterval et par grader lavere end det normalt praktiserede som værende det mest gunstige for 

larvekultur. Kendetegnene var en mere effektiv vækst og lavere frekvens af deformiteter forbundet med høj 

ekspression af væksthormon (forbedret vækst) og lav ekspression af ”heat-shock” proteiner (nedsat stress). 

Sammenfaldende viste Studie 2 relateret til skjoldbruskkirtlens funktion herunder stofskifte, at 

ekspressionen af gener, som koder for hormonreceptorer og deiodinaser, er temperaturfølsom, og at begge 

dele er involveret i den tidlige larveudvikling. Resultaterne blev yderligere understøttet af Studie 3, som 

identificerede en temperatursensitiv fase i immunsystemets udvikling, hvor larverne er særligt sårbare over 

for sygdomme og dødeligheden derfor høj. Temperaturregimet kan her vise sig at have stor betydning for 

sygdomsforebyggelse og larveoverlevelse i klækkerier og desuden øge forståelsen af, hvordan øgede 

havtemperaturer kan påvirke fiskelarvers overlevelse i naturen. Det følgende eksperiment, Studie 4, 

fokuserede på tolerancen overfor vandets saltholdighed hos disse marine fiskelarver. Her viste resultaterne, 

at en reduktion af saltholdigheden mod iso-osmotiske tilstande, øgede overlevelsen og nedsatte frekvensen af 

deformiteter hos larverne, og afslørede underliggende, følsomme og fint regulerede 

osmoreguleringsprocesser i det tidlige larvestadium. Den nye indsigt opnået gennem både morfologisk og 

molekylært definerede fysiologiske tolerancegrænser samt præferencer for temperatur og saltholdighed 

resulterede i forbedrede protokoller til kultur af blommesæklarver. Disse resultater har bidraget til en 

signifikant forøgelse af antallet af sunde, stærke larver, der når til det første fødesøgende stadium. Allerede 

tidligt i arbejdet med forbedringer af kulturforholdene blev der udført pilotforsøg med fodring af larver. 

Således gennemførtes i Studie 5 de første dokumenterede forsøg med fodring af larver af europæisk ål og 

deres fourageringsadfærd blev dokumenteret for første gang. Senere i Studie 6 blev flere fodringsforsøg 

gennemført med et højere antal larver på baggrund af det forbedrede temperaturregime og øget vandkvalitet. 

Her anvendtes den bedste diæt fra pilotstudiet. Forsøget identificerede tidspunktet for overgangen fra 

endogen til eksogen fødeoptagelse hos ålelarverne, hvor også den hormonelle kontrol af fødeindtagelse og 

den enzymatiske regulering af fordøjelsen kunne påvises at indtræde. De her opnåede resultater har skabt 

indsigt i en hidtil ukendt fase af den europæiske åls livscyklus, nemlig overgangen fra blommesæklarve til 

bladlarve, hvilket er dér, hvor larverne begynder aktivt at tage føde til sig. Disse resultater vil være 

væsentlige for udviklingen af foder og fodringsstrategier for fremtidens larvekultur af den europæiske ål. 

Tilsammen belyser den gennemførte forskning indflydelsen af biotiske og abiotiske forhold på ålelarvernes 

overlevelse og udvikling, inklusiv molekylære aspekter af vigtige biologiske processer, hvilket bidrager til at 

forstå kompleksiteten i de tidlige larvestadiers ontogeni og fysiologi. Den opnåede viden bidrager til vores 

forståelse af ukendte dele af den europæiske åls livscyklus og er et lovende skridt i retning af at lukke 

livscyklus i akvakultur for denne økonomisk og kulturet værdifulde fisk og samtidig kritisk truede art. 
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1. European eel

1.1. Life cycle 

The mysterious life cycle of the diadromous European eel, Anguilla anguilla, includes oceanic and 

continental phases, but is in its complexity still not fully understood (Fig. 1). It is believed that 

spawning takes place in the 

Sargasso Sea area (Schmidt, 

1923), which is supported by 

the presence of relative newly 

hatched larvae but not by actual 

spawning adults. Once in the 

Sargasso Sea, eels are assumed 

to spawn in late winter and 

spring. Adult eels are further on 

assumed not to leave the 

Sargasso Sea after spawning, 

while their leaf-shaped 

offspring called “leptocephali” 

use prevailing currents on their 

migration back to the 

continental shelf of Europe and 

North Africa. This journey 

takes approximately 200-300 

days. Before entering coastal 

zones, estuaries and rivers, the larvae metamorphose into the transparent juvenile stage called “glass 

eels”. As they further on move into freshwater habitats, they gain pigmentation and transform into 

so called “elvers” and then “yellow eels” (Tesch, 2003).  

Age-at-maturity varies according to latitude, 

ecosystem characteristics, and density-

dependent processes. Males reside in 

freshwater habitats for a period of 6-12 years 

while females linger for 9-18 years. At a still 

uncertain point of their freshwater life, eels 

undergo sexual maturation (silvering). During 

that period, their eyes become bigger, their 

heads broader and the content of body fat 

increases before they turn agastric (cease 

feeding) on their migratory journey towards 

their oceanic spawning areas in the Sargasso 

Sea (FAO 2018).  

Figure 1: European eel life cycle with known and unknown 

parts in nature and culture. Adopted from www.pro-eel.eu 

Figure 2: European eel eggs have never been encountered  

in nature and are thus only known from in-vitro experiments. 

Photo: Sune R. Sørensen 
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1.2. Spawning habitat 

Regarding the exact spawning location for European eel, some question marks still remain, as the 

earliest life stages of this species have still not been encountered in nature (Fig. 2). However, based 

on the spatio-temporal distribution of larvae of different sizes, Johannes Schmidt was able to 

delimit their spawning location to the western Atlantic Ocean (Sargasso Sea), which was further 

confirmed by the so far smallest European eel pre-leptocephalus larvae captured at depths between 

50 and 350 m (Castonguay and McCleave, 1987; Schoth and Tesch, 1984).  

 

Figure 3: Collection locations of different size classes of Anguilla anguilla leptocephali (A–J) in the North Atlantic and 

Mediterranean Sea (black triangles). The spatial density of the number of larvae caught in each area is represented by 

yellow and orange (highest density) contour shading. Adopted from Miller et al., 2015. 

Slightly older European eel leptocephalus larvae are found to be present in the upper 100 m layer at 

night and migrate to greater depths with lower light intensity during daytime (Castonguay and 

McCleave, 1987; Schoth and Tesch, 1984). Deeper distributions of later developmental stages (60-

85 mm) of European eel leptocephali have also been reported, i.e. at depths of 300-650 m during 

day (Tesch, 1980). Summarizing the past oceanic larval eel research, a schematic of the spatio-size 

distribution of European eel offspring encountered in the Atlantic Ocean (Fig. 3), demonstrates the 

eastward spreading as validated by the progressive size distribution (Miller et al., 2015).  
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1.3. Natural recruitment 

Today, the European eel stock is considered outside of safe biological limits and as current fisheries 

are unsustainable, they are still listed as “critically endangered” by the IUCN Red List (Jacoby and 

Gollock, 2014). Additionally, the diminished natural stock leads to a reduced reproductive potential. 

Unfortunately, there has been a continuous decline of eel recruitment since the 1950s and marked 

decadal reductions in glass eel recruitment since the early 1980s. The annual recruitment of glass 

eel to European waters in 2017 remained low, at 1.6% of the 1960–1979 level in the “North Sea” 

series and 8.7% in the “Elsewhere Europe” series, while the annual recruitment of young yellow eel 

to European waters was 24% of the 1960–1979 level (Fig. 4). As those recruitment indices are still 

well below the 1960–1979 reference levels, there is no change in the perception of the stock status 

(ICES, WGEEL 2017). On top of that, they are fished throughout all life stages, including glass 

eels, yellow eels and migrating silver eels, which makes them particularly vulnerable considering 

that they reproduce only once during their lifetime. 

Several causes are believed to have contributed to the decline of the eel stock including 

anthropogenic stressors such as overfishing, pollution, habitat degradation, connectivity barriers 

(e.g. hydropower plants), man-introduced parasites and diseases, as well as environmental factors 

such as ongoing oceanic and climatic changes (Knights 2003, Friedland et al., 2007; Bonhommeau 

et al., 2008; Van den Thillart et al 2009; Gutiérrez-Estrada and Pulido-Calvo 2015).  

Additionally, as all eel stocks are declining, but the market demand is constantly increasing, an 

illegal European glass eel fishery has evolved to “feed” the thriving illegal trade against the ongoing 

export ban. Unfortunately, this “eel-mafia” has a turnover of more than 400 million Euro by 

smuggling glass eels, which is comparably profitable to illegal gun and drug trafficking (Arapovic 

and Pfeil, 2017). Probably, this is one of the most serious pressures driving the European eel 

decline. 

Figure 4: Left panel: Geomatric mean of estimated (GLM) European glass eel recruitment for the continental “North 

Sea” and “Elsewhere Europe” series. The “North Sea” series comprises data from Norway, Sweden, Germany, 

Denmark, the Netherlands, and Belgium. The “Elsewhere” series comprises data from UK, Ireland, France, Spain, 

Portugal, and Italy. Right panel: GLM of European yellow eel recruitment trends. Adopted from ICES WGEEL 2017. 
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1.4. Aquaculture 

European eel is a targeted, high-value species for aquaculture, but eel farming is still a capture-

based industry that relies totally on wild-caught glass eels, which are transferred into on-growing 

facilities and fed until reaching marketable sizes. Unfortunately though, as mentioned above, the 

natural populations and their reproductive potential have declined to a historical minimum, mainly 

due to climatic and anthropogenic pressures during the different phases of the eel life cycle (ICES, 

WGEEL 2017). Thus, similar to the glass eel recruitment pattern, the commercial glass eel fishery 

landings due to both lower stock abundance but also fishing regulations have declined to a 

diminishing level (Fig. 5), which subsequently led to the collapse of the European eel aquaculture 

industry, reaching a level of almost no commercial importance. 

Figure 5: Commercial European glass eel fishery landings by country (reported). Adopted from ICES WGEEL 2017. 
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Consequently, European eel aquaculture production, which actually increased until the end of the 

1990s, clearly started to decline since the mid 2000s from 8000-9000 tons to approximately 5000-

6000 tons today (Fig. 6). In this context, the present critically low stock abundance of European 

eels, challenges the sustainability of the eel aquaculture industry and especially the associated 

unsustainable legal and in particular illegal fishing processes, urging the need to further develop and 

establish captive breeding techniques for this species. As such, advanced research towards assisted 

reproduction and subsequent early life history rearing conditions, is on-going to provide 

consecutive promising steps towards a sustainable aquaculture of this commercially important and 

critically endangered fish species. 

Figure 6: European eel aquaculture production (reported) by country since 1984. Adopted from ICES WGEEL 2017. 
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1.5. Progress in breeding  

Eels do not reproduce naturally in captivity due to complex hormonal control mechanisms that 

relate to their long migration patterns to native oceanic spawning areas (Vidal et al., 2004). Such 

maturational barriers can be overcome through hormonally assisted reproduction, which led to the 

first report of European eel offspring obtained from artificially matured fish, more than 30 years ago 

(Bezdenezhnykh et al., 1983). Since then, eel research has gained scientific inquiry, especially 

regarding assisted reproduction, with similar results being reported almost two decades later 

(Pedersen et al., 2004; Palstra et al., 2005), though with still limited success.  

Starting in 2010, the international and multidisciplinary research project “Reproduction of 

European eel: towards a self-sustained aquaculture” (PRO-EEL), coordinated by DTU Aqua and 

financially supported by the European Commission's 7th Framework Program under Theme 2 

"Food, Agriculture and Fisheries, and Biotechnology", developed standardized protocols for 

captive European eel reproduction and thus moved the field from individual efforts of reproductive 

failure towards stable production of healthy gametes and viable offspring (Tomkiewicz, 2012; 

www.pro-eel.eu). Within this framework, standardized assisted reproductive techniques were 

developed including hormonal induction of gametogenesis, gamete handling procedures, sperm to 

egg ratios and in vitro fertilization processes, following stripped spawning methodologies (Sørensen 

et al., 2013; Butts et al., 2014), which in combination led to high fertilization success. 

 

Figure 7: European eel hatchery built via the EEL-HATCH project in Hirtshals, northern Jutland, Denmark. 

Additionally, first protocols were defined for embryonic and larval culture, where biophysical 

factors such as light regimes (Politis et al., 2014), microbial control (Sørensen et al., 2014), 

salinity/salt composition (Sørensen et al., 2016a) as well as systems and techniques for embryo 

incubation and larval rearing were addressed. This led to the first description of the early ontogeny 

of European eel (Sørensen et al., 2016b), however, with negligible survival to the feeding stage.  

The research has continued in the Danish innovation project “Eel Hatchery Technology for a 

Sustainable Aquaculture” (EEL-HATCH; www.eel-hatch.dk). Here the European eel breeding 

technology has taken a further promising step through the establishment of a top modern eel 

hatchery (Fig. 7), which was built as part of the EEL-HATCH project, forming the basis for 

promising next steps especially regarding larval culture of this species.  
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1.6. Early life history 

Similarly to all species new to aquaculture, the main obstacles during early life history that needed 

to be addressed were to explore suitable rearing conditions but also to identify potential feeding 

regimes. The choice of both, rearing conditions and potential food items used in aquaculture for a 

particular species is commonly based on the ambient conditions and food availability in their 

natural environment or based on experimental findings. However, in the case of European eel, the 

natural environmental regimes of embryos and earliest (pre-leptocephalus) larval stages remain 

unclear, as they have not been encountered in nature. Thus, research needed to focus on captive 

produced offspring and laboratory studies to overcome current bottlenecks and gain knowledge 

about the species early life biology. 

The development of artificially produced 

eggs and embryos of European eel at a 

temperature of 20°C and salinity of 36 

psu (which was considered state-of-the-

art at initiation of this PhD project), has 

now been described by Sørensen et al., 

2016b and is illustrated in Fig. 8. Here, 

it is clear that the spherical positive 

buoyant eggs contain a characteristic 

large amount of smaller oil vesicles that 

slowly fuse together to form a large oil 

droplet, while the chorion separates from 

the plasma membrane to create the 

perivitelline space around the cytoplasm 

(Fig. 8A-E). At ~1 hour post fertilization 

(hpf) it is possible to observe the first 

cell cleavages (Fig. 8C), while the 16-

cell stage is reached within ~4 hpf (Fig. 

8E). After the blastula stage follows the 

formation of a germring at ~13 hpf, 

marking the onset of gastrulation (Fig. 

8G). After ~15 hpf, the gastrula 

comprised ~50% of the yolk, i.e. 1/2 

epiboly (Fig. 8H), while first somites 

became visible at ~24 hpf (Fig. 8I). At ~32 hpf, the embryo evolves two noticeable eye capsules 

and several somites (Fig. 8J). Thereafter, the tail bud is forming, the yolk sac becomes ellipsoid and 

hatching occurs at ~48 hpf (Fig. 8L). 

Figure 8: Embryonic development of European eel at 20°C.

Adopted from Sørensen et al., 2016b. 
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Correspondingly, larval development throughout the yolk sac stage, at the same conditions as 

previously mentioned, is illustrated in Fig. 9. At hatch, European eel larvae seem relatively 

undeveloped with a rather prominent large yolk-sac and oil droplet, enabling the positive larval 

buoyancy (Fig. 9A). Thereafter, larvae utilize their energy reserves to grow in length and develop 

optical capsules, a visible hindbrain and pericardium as well as a wide primordial fin with a well-

defined, rounded and pigmented tail (Fig. 9B). Moreover, the oral opening was first visually 

evident as a small channel posterior to the eyes and underwent pronounced changes towards 5 dph 

(Fig. 9C). At ~8 dph, the eyes started to pigment, the upper and lower jaws developed and early 

stages of teeth appeared (Fig. 9D). The angle between the head and trunk increased to enable the 

upper and lower jaws pointing forward, finally resulting in the formation of the feeding apparatus of 

the first-feeding European eel larvae with the characteristic, protruding teeth. All yolk reserves were 

gone at ~14 dph with no evident morphological change beyond this point (Fig. 9E). 

Thus, a gap in knowledge regarding the European eel embryonic and larval stages (still 

undiscovered in nature) has been filled (Sørensen et al., 2016b), providing the basis for the larval 

research and technology development within EEL-HATCH and thus also this PhD project. Here, 

the goal was to identify rearing conditions optimizing larval survival and welfare with emphasis on 

biotic and abiotic factors influencing early life history but also to explore potential first-feeding 

regimes. These studies have naturally been inspired by insights regarding the ontogeny and 

physiology of Japanese eel early larval stages (e.g. Ahn et al., 2012; Okamura et al., 2016), as 

research and hatchery technology development for this species is by far more advanced (Tanaka, 

2015) and even supplemented by new insights gained from nature as well as the identification of 

their natural habitat (e.g. Tsukamoto et al., 2011). As the present work is pioneering in its field, 

detailed morphological analyses and molecular tools were applied to gain state-of-the-art insight.  

Figure 9: European eel pre-leptocephalus larval development at 20°C from hatch 

until 14 days post hatch (dph). Modified from Sørensen et al., 2016b. 
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2. Molecular tools 

This PhD project utilized the advancement and availability of molecular tools to complement 

morphological findings in the quest to identify suitable rearing and feeding conditions during 

European eel early life history rearing. As such, the here conducted research elucidated aspects of 

processes taking place during eel larval culture in order to more closely understand the complexity 

of regulations involved in early ontogenesis. 

Today, rapidly advancing, increasingly accessible and economically affordable molecular methods 

and tools are revolutionizing research, especially when genetics intersect other life sciences. Thus, it 

is increasingly common to study genetic processes such as gene structure and function as well as 

variation or distribution but also what is referred to as “nature vs. nurture”, where an organismal 

development and behavior is intrinsically-genetically pre-programmed and/or influenced by 

extrinsic factors (Moore, 2003).  

The increasing feasibility to sequence complete genomes has facilitated an increasing amount of 

genomic studies providing unprecedented insights for some model species, which further enabled 

investigations on several more non-model species. Over the last decade, increased scientific inquiry 

has focused on developing and applying genomic tools to better understand underlying mechanisms 

of physiology during ontogenetic development in fishes and to explore the impact of environmental 

or nutritional factors even during the most delicate periods in early life history (reviewed in 

Mazurais et al., 2011). In the case of the critically endangered European eel, the genome was 

recently sequenced and assembled (Henkel et al., 2012; Jansen et al., 2017), offering new 

perspectives for eel research in order to identify actors involved in different biological processes, 

cellular components and molecular functions that are of importance in this species.  

It is widely accepted that regulation of gene expression is a fundamental tool to study mechanisms 

underlying the complex processes of organogenesis, as well as the maturation of the main functions 

during an organism’s development. Thus, this PhD utilized the benefits offered by state-of-the-art 

molecular tools such as the Fluidigm Biomark Dynamic Array technology, which allows expression 

analysis of multiple genes on multiple samples.  

More comprehensive insight and understanding regarding early larval development, from a 

morphological and a complementary molecular point of view, is of major importance for future 

sustainable aquaculture of economically important fish species, where it is necessary to better 

define rearing and feeding conditions. As such, in order to molecularly understand phenotypic 

sensitivity to extrinsic environmental factors (such as temperature and salinity) as well as essential 

functionality of processes relating to feeding, this PhD followed expression of targeted genes 

controlling the underlying mechanisms during the larval yolk-sac stages and the transition from 

endogenous to exogenous feeding in European eel. 
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3. Objectives

The aim of this PhD thesis is to fill 

the gaps in knowledge about the 

early ontogeny and physiology of 

European eel larvae with emphasis 

on biotic and abiotic factors 

influencing early life stages in 

order to improve rearing 

conditions that would lead to 

increasing amounts of first-feeding 

larvae and enable successful 

transition to exogenous feeding 

during European eel larviculture 

(Fig. 10). Hence, the main 

objectives of this PhD project were 

to identify optima and tolerance 

limits for temperature and salinity as well as requirements related to feeding initiation in larval 

culture using molecular tools to link morphological observations to the underlying mechanisms.  

Temperature (Studies 1-3) 

The first experiment addressed 

adequate temperature regimes for 

larval culture. As such, the 

temperatures occurring at different 

depths in the assumed spawning 

area of the Sargasso Sea were 

experimentally resembled in order 

to indicate the possible thermal 

tolerance range and limits for 

development and growth of 

European eel offspring (Fig. 11). 

This information was used to 

define five different thermal 

regimes within the experimental 

set-up, forming the basis of three 

different studies. Here, Study 1 

aimed at identifying the optimal 

thermal range for healthy 

development by following temperature-dependent morphology and the expression patterns of genes 

relating to stress response as well as growth and development throughout early larval ontogeny. In a 

Figure 10: PhD schematic overview: biotic and abiotic factors

influencing European eel early life history.  

Figure 11: Schematic of the thermal range occurring between the 

Sargasso Sea surface and 600m depth, representing the temperature 

regime used in our experiment. 
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similar context, Study 2 specifically followed the expression of genes relating to the thyroid 

hormone signaling pathway that is known to regulate growth, development, and metabolism in 

vertebrates and to elucidate the sensitivity of this mechanism to temperature. Furthermore, Study 3 

shed light onto the molecular ontogeny of the immune system during larval development by 

considering temperature as an immunomodulatory factor, in order to better understand the high 

mortality commonly occurring during early life history as well as the associated vulnerability to 

pathogens and extrinsic environmental factors (such as temperature), which is of importance both 

for aquaculture production and natural recruitment. 

Salinity (Study 4) 

Thereafter, research focused on optimizing the rearing environment during culture conditions by 

identifying the range of tolerated and suited salinities. Thus, it was hypothesized that decreasing 

salinity would enable the reduction of metabolic demands and facilitate efficient use of energy and 

conversion of endogenous resources into somatic development during European eel pre-

leptocephalus larval culture. Inspired by the Japanese eel research, the goal was to ease osmotic 

“stress” by reducing salinity to iso-osmotic levels, aiding an osmotic balance between plasma 

osmolality and the aquatic environment in order to optimize conditions for healthy development and 

enhanced survival of European eel larvae. Again, the goal was to complement morphological 

findings by investigating the interlinked underlying molecular mechanisms. Thus, Study 4 followed 

expression profiles of genes related to processes involved in or affected by osmoregulation, such as 

ion transport, energy metabolism, thyroid metabolism and stress response in order to complement 

morphological aspects such as larval biometry (morphology and growth), deformities and survival. 

Nutrition (Studies 5-6) 

Presently, experience in European eel larviculture is limited and natural feeding regimes of early 

leptocephali still remain enigmatic. Thus, initial tests of potential food items focused on exploring 

what the first-feeding larvae would be interested in. Here, Study 5 was an early pilot study aiming 

at determining whether specific dietary regimes, chemo-attractants, and environmental light 

conditions impact the incidence of first-feeding, gut fullness and behavior in European eel pre-

leptocephalus larvae reared in captivity. Leaps later, Study 6 aimed at molecularly identifying the 

“first-feeding window” as well as exploring how nutritional supplementation (green-water) prior to 

first-feeding and the actual ingestion of food affect larval morphological development. This study 

included analyses of the hormonal and enzymatic regulation of feeding by following the expression 

of genes relating to appetite, food intake, digestion, energy metabolism as well as growth and 

thyroid metabolism. In addition, the larval nutritional status was assessed via individual nucleic acid 

analysis during the transition from endogenous towards and throughout exogenous feeding in 

European eel larvae. 
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4. Filling gaps in knowledge

Study 1 

Temperature effects on gene expression and morphological development 

of European eel, Anguilla anguilla larvae 

This study identified the thermal tolerance range as well as limits and preferences for optimized 

development and growth of artificially produced European eel offspring.  

Temperature is known to be of major importance for optimization of rearing conditions in 

aquaculture, as it controls fundamental biochemical processes, thereby influencing developmental 

rates and survival of fish larvae (O’Connor et al., 2007). In the closely related Japanese eel, early 

ontogeny was found to be strongly influenced by temperature, with optimum thermal conditions 

(~25°C) similar to those found in their recently identified natural spawning area (Tsukamoto et al., 

2011; Ahn et al., 2012). In this regard, European eel larvae are believed to initiate their migration 

journey from the Sargasso Sea, a water mass characterized by a rather constant salinity of 36.5 psu, 

a seasonal thermocline (~18°C) at a depth of ~300 m and a warm water (20-28°C) upper layer zone 

(Worthington 1959; Castonguay and McCleave 1987). As such, the experimental design of this 

study addressed a thermal range, approximately representing the temperatures occurring between 

the Sargasso Sea surface and 600m depth (Fig. 11). For a simplified schematic of the experimental 

set-up please see Fig. 12.  

Temperature was found to 

influence all traits investigated, 

providing important insights 

on thermal phenotypic 

sensitivity and the underlying 

gene expression of the 

molecular mechanisms relating 

to stress response [heat shock 

protein (hsp)] as well as 

growth and development 

[growth hormone (gh) and 

insulin-like growth factor (igf)] 

in European eel larvae. 

Moreover, we observed a 

reduced larval stage duration at 

higher temperatures due to 

accelerated development, 

where the higher the 

temperature, the earlier the 

expression response of any specific targeted gene. Larvae generally developed and grew throughout 

ontogeny until the first-feeding stage by utilizing their yolk reserves in all temperature treatments, 

Figure 12: Simplified schematic of the experimental set-up. 

Embryos and larvae, from each parental cross, were reared in experimental 

flasks containing antibiotics (in thermal controlling incubators) at five 

temperatures (16, 18, 20, 22 and 24 ± 0.1°C). 
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except at 24°C which was found to be the deleterious upper thermal limit. The thermal tolerance 

limits identified in this study might not only advance the rearing conditions for future culture of 

European eel larvae but possibly also contribute to the understanding for further hypotheses 

regarding the natural spawning conditions and location. As such, this study suggests that the habitat 

(or niche) of the earliest life stages of European eel in nature might be the characteristic “18°C” 

ocean layer of the Sargasso Sea. However, extrapolation of lab work to the field should always be 

approached carefully. Thus, the mystery of the exact location of European eel early life stages and 

their preferred conditions in nature still remain an enigma. Additionally, the results clearly showed 

that increasing temperature had a deleterious impact on European eel embryonic and larval survival, 

further supporting the recent hypotheses, that rising temperatures in the Sargasso Sea might show 

negative effects on eel recruitment. 

To summarize, from an aquaculture perspective this study determined the thermal tolerance limits 

and identified a more optimal intermediate thermal environment, with efficient growth and fewer 

deformities as well as high growth hormone (improved growth) and low heat shock protein 

(decreased stress) expression, for future rearing of early life history stages of European eel. In 

conclusion, understanding the biological responses, limits and adaptabilities or preferences to 

extrinsic environmental factors, such as temperature, provides enhanced knowledge for the 

optimization of rearing techniques of this socially and economically important species, as well as 

insights into its ecology. 
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Study 2 

Temperature induced variation in gene expression of thyroid hormone receptors and 

deiodinases of European eel (Anguilla anguilla) larvae 

This study enhanced our knowledge regarding the underlying thyroid hormone (TH) signaling 

pathway, which is a molecular mechanism controlling European eel early life development.  

Generally, THs are key regulators of growth, development, and metabolism in vertebrates (Power et 

al., 2001; Warner and Mittag, 2012; Tata, 2006), while increasing evidence suggests that they play 

important roles during early life development and metamorphosis in fish (Marchand et al., 2004; 

Walpita et al., 2007; Infante et al., 2008; Campinho et al., 2010). TH is produced in the thyroid 

gland (or thyroid follicles) mainly as T4 (thyroxine), which is then metabolized by deiodinase 

(DIO) enzymes in peripheral tissues, whereas their action is mostly exerted by binding to a specific 

nuclear thyroid hormone receptor (THR). The Japanese conger eel was previously chosen as model 

species to investigate the TH role on development and metamorphosis of Anguilliformes 

(Kawakami et al., 2003). Thereafter, an investigation of thrs showed differentially regulated gene 

expression during development and metamorphosis in Japanese eel (Kawakami et al., 2013). 

Thus, it was of importance to further elucidate the thyroid hormone signaling pathway during the 

most sensitive period of anguillid early life history, but especially during the still mysterious early 

life history of European eel. In this study, we i) cloned and characterized thr sequences, ii) 

investigated the expression pattern of the different subtypes of thrs and dios, and iii) studied how 

temperature affects the expression of those genes in artificially produced early life history stages of 

European eel, reared in different thermal regimes (16, 18, 20 and 22°C) from hatch until first-

feeding. 

First, this study identified two isoforms of thra (thraA and thraB) and two isoforms of thrb (thrbA 

and thrbB) which showed high similarity to other mammalian, bird, amphibian or fish species, but 

with highest similarity to the closely related Japanese eel. Moreover, we generally observed that the 

warmer the temperature the earlier the expression response of a specific target gene. More 

specifically, in real time, the expression profiles appeared very similar and only shifted with 

temperature, while in developmental time, expression of all genes differed across selected 

developmental stages, such as hatching, during teeth formation or at first-feeding. Within the 

thermal tolerance limits, we commonly observed elevated expression of all deiodinases (dio1, dio2 

and dio3) towards and within the first-feeding window, which probably corresponds to a timing of 

refinement for organogenesis (e.g. brain, liver, gastro-intestinal tract, etc.) and/or specific functional 

tissue (e.g. teeth, eyes, etc.), in order to ensure optimal transition from endogenous to exogenous 

feeding.  

In conclusion, all genes investigated in this study, involved in the mediation of TH action, were 

significantly affected (in real and/or developmental time) by larval age, temperature, and/or their 

interaction. Thus, we demonstrate that thrs and dios show sensitivity to temperature and are 

involved in and during early life development of European eel. 
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Study 3 

Larval Fish Immunity at Variable Temperatures 

This study shed light on the molecular ontogeny of the larval immune system under different 

thermal scenarios and linked immune gene expression to commonly observed mortality during 

European eel early life history.  

In almost all fish species natural mortality is highest during early life history, where subtle 

differences in survivorship can cause large variability in offspring production (Houde, 2008). This 

is especially important for species that spawn (or can be artificially matured) only once in a 

lifetime, such as the European eel, as survival during early-life represents a substantial component 

of variation in lifetime fitness. An increased understanding of the physical and biological factors 

that influence mortality rates during these ‘critical’ developmental stages can enable aquaculture 

hatchery production, enhance recruitment predictions for fisheries and aid in the conservation of 

this critically endangered species (Jacoby and Gollock, 2014).  

Teleost fish were the first phylogenetic group of organisms to develop an immune system that 

possess both the innate and adaptive arm of the immune response, characteristic to higher 

vertebrates (Uribe et al., 2011). However, evidence has accumulated that newly hatched fish larvae 

are particularly sensitive to pathogens as their immune system is not fully developed during the first 

weeks of life, during which they solely rely on the innate arm of the immune system, whilst 

exposure to pathogens intensifies due to hatching, mouth opening, and first-feeding (Magnadóttir et 

al., 2004; Vadstein et al., 2013; Ferraresso et al., 2016). Knowledge of the development of the 

immune system is hence needed to design preventative methods against pathogen associated losses 

in aquaculture hatcheries and to better understand immune responses in variable aquatic 

ecosystems. 

Moreover, temperature is a fundamental modulator 

of the immune system of fish (Bowden, 2008) and 

has been shown to affect immunity during fish early 

life history (Dios et al., 2010). The consideration of 

temperature as an immunomodulatory factor is 

therefore not only important in the development of 

hatchery technology in order to optimize eel rearing 

protocols, but also in the light of environmental 

changes in the natural habitat of the early life history 

stages of this species, where ocean warming may 

influence the recruitment of the critically endangered 

European eel (Friedland et al., 2007; Bonhommeau 

et al., 2008).  

As such, in this study we explored the molecular 

ontogeny of both the innate and the adaptive immune 

response during early European eel larval 

Figure 13: Schematic overview of the targeted genes 

associated to the innate and adaptive arm of the 

immune system in European eel larvae. 
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development (Fig. 13) and investigated the interaction of immune response related gene expression 

with temperature during early life history. Larvae were reared at four temperatures, spanning their 

thermal tolerance range (16, 18, 20, 22°C) and expression patterns of 11 immune genes were 

analyzed throughout development, from hatch until reaching the first-feeding stage. At the larvae’s 

optimum temperature (18°C), which was revealed by Study 1, the pattern of immune gene 

expression revealed an immunocompromised phase between hatch and teeth-development (0-8 

dph), caused by a lag period between initial protection and development of inherent immune 

competence. Additionally, at the lower end of the thermal spectrum (16°C) immune competency 

appeared reduced, whilst close to the upper thermal limit (22°C) larvae showed signs of thermal 

stress.  

In conclusion, this study highlighted the influence of immune gene expression on larval survival in 

European eel, where we identified an immunocompromised phase during which mortality is high 

and larvae are more vulnerable to pathogen infection. We are confident that future research will 

identify this as a more general effect in marine fish larvae. In addition, we were able to demonstrate 

the influence of temperature on larval immune gene expression close to their upper and lower 

thermal limit. These findings have important implications on rearing conditions and disease 

prevention protocols (e.g. timing of vaccination, immunostimulation treatments) of European eel in 

culture and on our understanding of ocean warming impacts on fish recruitment. 
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Study 4 

Salinity reduction benefits European eel larvae:  

Insights at the morphological and molecular level 

This study identified optimized rearing conditions towards an iso-osmotic environment that enables 

the reduction of metabolic demands, while facilitating the efficient conversion of endogenous 

energy supplies into somatic growth during European eel pre-leptocephalus larval culture.  

Most fish species are hyper-osmotic in freshwater, where plasma osmolality is higher than the 

environment and hypo-osmotic in seawater, where plasma osmolality is lower than the environment 

(Marshall and Grosell, 2005). Thus, in freshwater they need to actively take up ions to counteract 

the diffusive ion loss and osmotic water gain, while in seawater they need to maintain osmotic 

balance through a desalting process to counteract osmotic water loss (Evans, 2008). Eels are 

euryhaline species that have adapted to cope with both, hyper- and hypo-osmotic environments, 

likely due to regular salinity changes in their habitats and migrations between freshwater and 

marine environments at different developmental stages within their life cycle (Tesch, 2003). Eel 

offspring naturally occur in a hypo-osmotic environment in the ocean (Castonguay and McCleave, 

1987), but interestingly, it was shown that reducing salinity during early life history rearing under 

culture conditions, results in better growth and survival of Japanese eel larvae (Okamura et al., 

2009). 

As such, this study 

investigated how different 

salinity reduction 

scenarios (Fig. 14) affect 

European eel larval 

biometry (such as 

morphology and growth), 

deformities and survival. 

Moreover, this study took 

advantage of the 

European eel genome that 

was recently sequenced 

and assembled, offering 

new perspectives for eel 

research regarding the 

molecular biology of this 

species. Thus, we 

followed expression profiles of genes related to processes involved in or affected by 

osmoregulation, such as ion and water transport [Na
+
K

+
2Cl

-
 cotransporters (nkcc), aquaporins

(aqp)], energy metabolism [mitochondrial ATP Synthase F0 subunit 6 (atp6), cytochrome C 

oxidase 1 (cox1)], thyroid metabolism [thyroid hormone receptors (thr), deiodinases (dio)] and 

stress response [heat shock proteins (hsp)].  

Age in days post hatch (dph) 

Reduction 0 1 2 3 4 5 6 7 8 9 10 11 12 

dph psu day
-1

 Salinity (psu) 

Control 36 

0 

1  35 34 33 32 31 30 29 28 27 26 25 24 23

2  34 32 30 28 26 24 22 20 18 16 

4  32 28 24 20 16

3 

1  36 35 34 33 32 31 30 29 28 27 26 

2 36 34 32 30 28 26 24 22 20 18 16

4 36 32 28 24 20 16 

Figure 14: Overview of seven different salinity treatments. Larvae were reared 

at 36 psu (control) and in six further scenarios, where salinity was reduced on 0 or 3 

days post hatch and at rates of 1, 2 or 4 psu/day towards iso-osmotic conditions. 
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When reducing salinity towards iso-osmotic conditions, results showed an improved growth and an 

amazing 4-fold increase in survival, while eel larvae were able to keep energy metabolism related 

gene expression (atp6, cox1) at stable levels. As such, when reducing salinity, an energy surplus 

associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), 

likely facilitated the observed increased survival, improved biometry and enhanced growth 

efficiency. Additionally, the salinity reduction decreased the amount of severe deformities such as 

spinal curvature and emaciation but on the other hand induced an edematous state of the larval 

heart, resulting in the most balanced survival/deformity ratio when salinity was decreased on 3 dph 

and at 2 psu/day.  

In conclusion, this study clearly showed that salinity reduction regimes towards iso-osmotic 

conditions facilitated the European eel pre-leptocephalus development and revealed the existence of 

highly sensitive and regulated osmoregulation processes at such early life stage of this species. 

Hence, the overall knowledge gained from this study adds to our understanding of underlying 

biological and physiological mechanisms during early life history of European eel and provides a 

promising step in the strive for sustainable aquaculture of this species. 
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Study 5 

First-feeding by European eel larvae: A step towards closing the life cycle in captivity 

This study identified benchmark diets, optimized feeding conditions and described behavioral 

feeding patterns never before observed in first-feeding European eel.  

Even though breeding European eel in captivity is a complex task, recent advances in assisted 

reproduction and culturing techniques have allowed mass production of high-quality yolk-sac (pre-

leptocephalus) larvae (Tomkiewicz, 2012; Butts et al., 2014; Politis et al., 2014; Sørensen et al., 

2016a,b), expanding the focus of experimental research to include larval performance in first-

feeding trials. When initiating first-feeding, fish larvae detect prey via a wide range of chemical 

(olfaction and taste), visual and physical (mechanical) stimuli (Rønnestad et al., 2013). For instance, 

natural or synthetic chemo-tactic stimulants attract larvae from a distance, foster the appropriate 

orientation, and promote the initiation of prey capture and ingestion (Kamstra and Heinsbroek, 

1991; Reig et al., 2003; Barroso et al., 2013). In the case of Japanese eel, larvae are attracted to and 

successfully feed on a slurry diet based on shark egg yolk (Tanaka et al., 2003), hen egg yolk or 

exoskeleton-free Antarctic krill (Okamura et al., 2013), or a protein hydrolysate-based diet (Masuda 

et al., 2016). Additionally, a minute illoricate rotifer (Proales similis) was suggested as an 

alternative diet closer to the natural larval trophic levels (Wullur et al., 2013). Unfortunately, 

suitable start feeds for cultured larval European eel were not previously identified, while larval-prey 

interactions in nature are still not completely clear (Riemann et al., 2010).  

Thus, this field warranted immediate investigation, where this study tested specifically tailored diets 

(with and without natural chemo-attractants), under light and no-light conditions, for initiation of 

larval ingestion rate, gut fullness, and behavioral patterns.  

Results showed up to 50% of cultured larvae ingesting a diet composed of enriched rotifers, 

concentrated and emulsified into a paste (Fig. 15), with or without natural feeding stimulants. 

Moreover, we show that 

first-feeding eel larvae are 

able to execute a complex 

goal-oriented motor 

response, where we 

observed highly distinctive 

modes of swimming from 

short-term bouts, slow 

steady-state cruising to 

quick lunges for either prey 

attacks or spontaneous 

escape behaviors. Overall, 

swimming activity increased 

over the duration of the 

experiment, co-varied with Figure 15: Manufacturing enriched rotifer paste 
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the frequency of attacks and increased in the presence of live rotifers (Fig. 16) or chemo-attractants, 

probably by increasing the awareness of 

food availability. We also detected 

improved ingestion at higher light 

intensities, suggesting that eel larvae are 

visual feeders and probably explaining the 

large eye globules. However, the observed 

chemo-attraction and successful food 

intake with and without light, indicates 

that this species is able besides using 

visual cues, to also utilize other stimuli 

(olfaction and taste) to detect prey.  

In conclusion, this study documented the first evidence of first-feeding European eel larvae reared 

in captivity, moving this field one step closer towards understanding an undisclosed phase in the 

European eel life cycle, which is the transition from newly hatched endogenous feeding pre-

leptocephalus larvae to the exogenous leptocephalus stage. Together, this work provided benchmark 

diets and conditions for future feeding and growth trials. 

Figure 16: Schematic of European eel larvae attacking a rotifer. 
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Study 6 

Nutritional condition and molecular ontogeny of first-feeding European eel larvae 

This study shed light on the species specific molecular ingestion and digestion potential and timing 

in order to understand the distinct nutritional predisposition and the capacity for adaptation towards 

utilizing dietary components.  

Establishment of culture techniques throughout the larval stage until metamorphosis is still 

challenged by lack of insights especially regarding dietary requirements for the unique pre-

leptocephalus larvae. The nutritional requirements of fish larvae are species specific and even differ 

across developmental stages within a species, mainly due to the major morphological and 

physiological changes during ontogeny (Zambonino-Infante and Cahu, 2001). Several scientists 

have focused on identifying natural larval eel feeding resources, but despite the increasing insight 

the natural first-feeding regimes of pre-leptocephali still remain an enigma. Increased scientific 

inquiry has also been subjected towards identifying potential first-feeding diets for laboratory reared 

eel larvae in aquaculture where the first exogenously feeding (Japanese) eel larvae was reported two 

decades ago (Tanaka et al., 1995). Unfortunately, identifying suitable feeds for larval European eel 

has been rather stagnant for several decades and only recently (in Study 5) it was documented that 

artificially produced A. anguilla pre-leptocephali successfully ingested a diet based on rotifers 

(Brachionus plicatilis) with or without natural chemo-attractants. 

Since European eel research succeeded in producing larvae which are able to exogenously feed, the 

opportunity has emerged to elaborate our knowledge on the nutritional condition of individual 

larvae via nucleic acid (RNA/DNA) content analysis (Clemmesen, 1993) and to examine key 

physiological mechanisms regulating feeding, digestion and growth. As such, we here reared 

European eel larvae with or without the presence of algae (Nannochloropsis, Pavlova and 

Tetraselmis) from 0 to 14 dph and with or without the presence of food (rotifer paste) from 15 dph 

and onwards. For a simplified schematic of the experimental set-up please see Fig. 17.  

Figure 17: Schematic of experimental set-up. Artificially produced European eel larval morphological and molecular 

performance was compared under clear or green-water conditions during endogenous feeding (0-14 days post hatch) 

and under feeding or non-feeding conditions during exogenous feeding (15 days post hatch and onwards). 
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We then measured larval biometrics, quantified individual larval nucleic acid contents and followed 

mRNA expression patterns of selected genes relating to some of the most important mechanisms 

during early life history and transition from endogenous to exogenous feeding in European eel 

larvae. The up-regulated expression of genes encoding appetite stimulators (ghrelin) and inhibitors 

(cholecystokinin) on 12 dph, indicated the beginning of the first-feeding window, but no significant 

benefit of algal presence (green-water) was observed. Moreover, mRNA expression patterns of 

selected genes encoding some of the most important digestive enzymes relating to protein (trypsin), 

lipid (triclyceride lipase) and carbohydrate (amylase) hydrolysis revealed the essential digestive 

ontogenetical processes occurring from 14 to 20 dph. On 15 dph, eel larvae were first fed a paste 

consisting of enriched rotifers (as described in Study 5) and on 16 dph, a molecular response to 

initiation of exogenous feeding was observed in the expression pattern of genes relating to energy 

metabolism, food intake, growth and thyroid metabolism. Moreover, a significantly higher RNA 

content in feeding compared to non-feeding larvae was observed, which clearly indicates increased 

metabolic activity associated to protein synthesis. Additionally, an increased DNA content in 

feeding compared to non-feeding larvae was observed, which in combination with the increased 

amount of RNA and greater body area observed, reflected a higher growth pattern in feeding larvae. 

However, RNA:DNA ratios still decreased from 12 dph onwards (irrespective of initiation of 

feeding), indicating a generally low larval nutritional condition, probably leading to the unavoidable 

“point-of-no-return” and subsequent irreversible mortality due to unsuccessful utilization of 

exogenous feeding.  

In conclusion, the here applied nutritional regime facilitated a short-term benefit, where feeding 

European eel larvae were able to sustain growth and better condition than their non-feeding 

conspecifics. Moreover, our study revealed that the success of exogenous feeding in European eel 

larvae, occurs concurrently with the onset of a broad array of genetically pre-programmed 

underlying molecular factors, which are known to regulate physiological functions of feeding. Thus, 

the knowledge gained constitutes essential information in order to develop efficient feeding 

strategies for European eel larvae and will hopefully provide a promising step towards sustainable 

aquaculture of this species. 

26



5. Conclusion and future perspectives

Not too long ago larviculture of European eel was considered almost impossible. However, the 

recent advances in assisted reproduction have enabled European eel captive breeding, with 

consecutive promising steps towards increased viable offspring production and first attempts to 

culture larvae. Taking larval culture one step further, this PhD within the EEL-HATCH project has 

explored unknown territories within European eel research by morphologically and molecularly 

defining physiological thermal and osmoregulatory tolerance limits and preferences, leading to the 

identification of improved conditions for early life rearing and resulting in increased amounts of 

stronger larvae reaching the first-feeding stages. This enabled emerging feeding trials, which 

resulted in documented first evidence of first-feeding European eel larvae reared in captivity and 

thus moved eel research one step closer towards understanding the transition from newly hatched 

endogenous feeding pre-leptocephalus larvae to the exogenous feeding leptocephalus stage, which 

is an undisclosed phase of the European eel life cycle in nature.  

Temperature 

The research conducted within this PhD project, outlined the thermal tolerance limits for European 

eel early life history, providing new knowledge for optimized rearing conditions in eel hatcheries 

but may also contribute to further hypotheses regarding the natural spawning conditions and 

location. As such, the new insight provided may inspire the planning of new sampling locations 

during future Sargasso Sea eel cruises. Here, a temperature of 24°C was found to be the deleterious 

upper thermal limit, indicating that the upper surface layer of the Sargasso Sea would be too warm 

for development of the earliest eel stages, while the optimum temperature of 18°C suggests a deeper 

environmental niche as probably previously anticipated. However, extrapolation of lab work to 

nature should always be approached carefully, especially considering the fact that eel eggs and 

embryos are positively buoyant and that eel larvae may vertically migrate already at an early stage 

in a dynamic oceanic environment, meaning that they may encounter different thermal regimes at 

daily or even hourly intervals. Moreover, the suggested optimum thermal range most probably 

represents the favorable conditions for the stenothermal development of the embryonic stages and 

thus the thermal preferences for later European eel larval stages should be addressed in order to 

precisely define optimized future larviculture procedures. Furthermore, future investigations should 

address temperature as a modulatory factor during induction of gametogenesis but also document 

the transgenerational thermal plasticity of offspring which will be influenced by the environmental 

experience of the parental generation. 

Salinity 

Thereafter, this PhD morphologically and molecularly elucidated osmoregulation related processes 

and identified an optimized rearing environment for European eel pre-leptocephalus larvae by 

decreasing salinity towards iso-osmotic conditions. However, we also demonstrated that reducing 

salinity was a tradeoff process, which majorly improved survival and growth but also induced an 

edematous state of the larval heart. Hence, future research needs to address the persistency of the 
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edematous state of the larval heart and if or how it represents an obstacle in further larval 

development. Moreover, future rearing units and protocols need to be modified in order to facilitate 

the gradual salinity change, but it would also be beneficial to identify methodological alternatives 

that facilitate the decreased physiological demands and thus the increased survival and growth 

potential, but at the same time eliminate morphological deformities that hinder early life 

development. 

Nutrition 

Furthermore, within the studies of this PhD we did not observe any significant benefit of “green-

water” during European eel pre-leptocephalus rearing, neither morphologically nor molecularly, 

despite that it was proven to be beneficial during comparable developmental stages in other fish 

species (Reitan et al., 1997; Cahu et al., 1998; Lazo et al., 2000). This could potentially be due to 

the fact that the frozen algae species used in this study do not represent the appropriate choice for 

triggering the desired effect of earlier maturation in digestive functionality. However, besides 

providing a direct nutritional supply and an indirect stimulation of appetite or digestive function, the 

presence of live algae can have a probiotic effect, influencing the bacterial community of the 

rearing water and thus, the establishment of an early gut microbial flora in fish larvae (Vadstein, 

1993; Skjermo and Vadstein, 1993). A similar effect has been observed in the case of dietary 

addition of lactic acid bacteria, which benefitted fish larvae by facilitating increased larval growth 

and decreased developmental deformities during early ontogeny of sea bass, Dicentrarchus labrax 

(Lamari et al., 2013). Moreover, application of nutritional supplements such as probiotics, have 

received increasing attention in aquaculture, as it has been suggested that they show a protective 

action on the intestinal mucosal cells, stimulating the innate immune response and thus causing an 

elevated state of immuno-readiness in fish such as tilapia, Oreochromis niloticus (Standen et al., 

2013). As such, we strongly encourage future investigations to address the potential of nutritional 

supplementation on influencing the bacterial flora of the water and the microbial gut colonization, 

in order to facilitate an earlier and improved larval digestion potential as well as increased 

development and growth also in European eel.  

Now that European eel larvae are ingesting feed in captivity, the next step will be to establish a 

dietary composition and regime that ensures high growth rates and survival, which will resolve one 

of the major ‘bottlenecks’ in the process of establishing on-growing larval culture throughout the 

leptocephalus stage and thus reaching the phase of transformation to glass eels. To achieve this, a 

series of studies should be conducted to enhance knowledge on dietary requirements of European 

eel larvae. This includes a thorough examination of the ontogenetic development of the digestive 

tract morphology and a comprehensive analysis of pancreatic and intestinal enzymatic activity, as 

well as their corresponding gene expression. The capacity of larvae to digest and absorb various 

nutrients should also be investigated via a technique called “force-feeding”, whereby in vivo studies 

target digestibility and assimilation of key nutrients using radiolabeled dietary nutrients. Based on 

attained insights, an assortment of feeds (formulated or live) could be manufactured to ensure 

adequate nutrition throughout the larval stage.  
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Molecular tools 

Last but not least, this PhD took advantage of the available European eel genome which was 

recently sequenced and assembled. However, the fragmented nature of the current eel genome 

assembly does not presently allow taking full advantage of the genomic and transcriptomic 

possibilities. Thus, it will be of great advantage if future research would focus on providing a 

complete overview of the European eel genome, enabling more possibilities for genomic and 

transcriptomic studies, which will provide a more detailed understanding of molecular processes 

underlying biological functions in this species. Considering the already available tools and the 

amazingly fast pace of progression within this sector, this should not be a real hurdle. Moreover, 

this PhD provided important insights into molecular processes during early life history of European 

eel by using molecular tools, but it can often be difficult to disentangle complex interactions. 

Despite the increased understanding gained by the findings of this PhD, there are still plenty more 

exciting possibilities for future research based on application of available tools but also rapidly 

improving new methods. The continuous technological advancements especially regarding 

development of bio-informatics and molecular tools are increasingly enabling more detailed insight 

into underlying molecular mechanisms of biological processes and expand the scientific questions 

that research is and will be able to address, especially when genetics are coupled to traditional 

disciplines. We are confident that even though the world of genetics has already transformed as fast 

as no research sector before, the opportunities have only started to unfold. 

In conclusion, all the above mentioned exciting future research should be within our grasp and 

together will provide invaluable new information regarding the species biology and ecology, that 

can probably contribute to solving the mystery of the European eel spawning location but most 

importantly will move the entire eel aquaculture research field closer towards completing the life 

cycle in captivity of this socially and economically important as well as critically endangered fish 

species. 
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Abstract

Temperature is important for optimization of rearing conditions in aquaculture, especially

during the critical early life history stages of fish. Here, we experimentally investigated the

impact of temperature (16, 18, 20, 22 and 24˚C) on thermally induced phenotypic variability,

from larval hatch to first-feeding, and the linked expression of targeted genes [heat shock

proteins (hsp), growth hormone (gh) and insulin-like growth factors (igf)] associated to larval

performance of European eel, Anguilla anguilla. Temperature effects on larval morphology

and gene expression were investigated throughout early larval development (in real time

from 0 to 18 days post hatch) and at specific developmental stages (hatch, jaw/teeth

formation, and first-feeding). Results showed that hatch success, yolk utilization efficiency,

survival, deformities, yolk utilization, and growth rates were all significantly affected by tem-

perature. In real time, increasing temperature from 16 to 22˚C accelerated larval develop-

ment, while larval gene expression patterns (hsp70, hsp90, gh and igf-1) were delayed at

cold temperatures (16˚C) or accelerated at warm temperatures (20–22˚C). All targeted

genes (hsp70, hsp90, gh, igf-1, igf-2a, igf-2b) were differentially expressed during larval

development. Moreover, expression of gh was highest at 16˚C during the jaw/teeth forma-

tion, and the first-feeding developmental stages, while expression of hsp90 was highest at

22˚C, suggesting thermal stress. Furthermore, 24˚C was shown to be deleterious (resulting

in 100% mortality), while 16˚C and 22˚C (~50 and 90% deformities respectively) represent

the lower and upper thermal tolerance limits. In conclusion, the high survival, lowest inci-

dence of deformities at hatch, high yolk utilization efficiency, high gh and low hsp expres-

sion, suggest 18˚C as the optimal temperature for offspring of European eel. Furthermore,

our results suggest that the still enigmatic early life history stages of European eel may

inhabit the deeper layer of the Sargasso Sea and indicate vulnerability of this critically

endangered species to increasing ocean temperature.
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Introduction

European eel (Anguilla anguilla) aquaculture is capture-based, relying on wild-caught juvenile

glass eels entering coastal waters, which are farmed until marketable sizes. However, histori-

cally low stock levels and failing recruitment [1] render this practice unsustainable and there-

fore establishment of breeding technology and larvi-culture is required for future aquaculture

of this critically endangered species [2]. By, modifying the hormonal treatments from Japanese

eel (Anguilla japonica) protocols, recent advances in assisted reproduction of European eels

have led to a stable production of eggs and larvae, forming the basis of development of larval

culture technology and first-feeding protocols [3]. In order to establish another promising step

towards sustainable aquaculture of this species, it is necessary to identify optimal rearing con-

ditions for early life history (ELH) stages.

The choice of rearing conditions used in aquaculture for a particular species is commonly

based on either ambient conditions in their natural environment or experimental findings. In

the case of European eel, the natural environmental regimes of embryos and the earliest larval

stages (pre-leptocephalus) remain unclear. The spawning area of this species has been delim-

ited to the western Atlantic Ocean (Sargasso Sea) and validated by the occurrence of the so far

earliest larval stages found in nature [4–6]. Thus, eel larvae are believed to initiate their migra-

tion journey from the Sargasso Sea, a water mass characterized by a rather constant salinity of

36.5 ppt, a seasonal thermocline (~18˚C) at a depth of 200–300 m and a warm water (20–

28˚C) upper layer zone [6, 7]. Thereafter, towards the European continent, glass eels inhabit

temperate regions of a wide range of latitudes and longitudes with temperatures spanning

between 2 and 28˚C [8, 9].

In the past decades, there has been an increasing interest in eel research, especially concern-

ing assisted reproduction and subsequent ELH rearing conditions in aquaculture. Thus, breed-

ing protocols using assisted reproduction were developed for the Japanese eel in the 1970s

[10], leading to the first glass eel production in recent years [11]. Since then, several studies

have focused on optimizing rearing conditions of Japanese eel larvae, including the identifica-

tion of salinity regimes or thermal tolerance ranges and limits during ELH stages [12–15]. In

more detail, it was shown that a 50% reduction of the original seawater salinity resulted in

increased offspring growth and survival performance [12]. Additionally, early ontogeny was

found to be also influenced by temperature, showing suboptimal performance towards colder

and warmer temperature limits (16–31˚C), with optimum thermal conditions (~25˚C) similar

to those found in the recently identified natural spawning area of the Japanese eel [15, 16].

Moreover, induced maturation, in vitro fertilization, and early development of the American

eel (Anguilla rostrata) have been reported, with larvae surviving up to 6 days post-hatch (dph)

when reared at 20˚C [17]. Furthermore, eel hybrids have gained attention as an alternative for

the difficult assisted reproduction practices in aquaculture. Hybrids between A. anguilla and

A. rostrata occur naturally since they share spawning grounds [18], though hybrids between

male A. anguilla and female A. japonica have also been experimentally produced and their

endogenously feeding larvae developed for 9 dph at 21–22˚C [19]. Captive breeding has also

been attempted with the long-finned (A. dieffenbachii) and short-finned (A. australis) eels.

Though, successful hatching has only been reported for A. australis or the A. australis × A. dief-
fenbachii hybrid, under a thermal regime of 18.2–22.7˚C [20]. Moreover, production of hybrid

larvae from male A. anguilla and female A. australis and their survival for up to 5 dph was

reported when fertilized and reared at 20–21˚C [21]. Nevertheless, the thermal tolerance

ranges of all the above species remain to be further investigated.

Identifying the optimal thermal conditions for rearing of eel ELH stages and establishing

hatchery practice will benefit the future aquaculture industry, commonly targeting high
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production efficiency where high survival and growth potential are fundamental to a cost-

effective production. Relatively small changes in rates of growth and mortality during embryo-

genesis and/or larval ontogeny can significantly influence reproductive success [22] and thus

production efficiency in aquaculture. Temperature controls fundamental biochemical pro-

cesses, thereby influencing developmental rates and survival of marine fish larvae [23]. Espe-

cially during early development, teleost offspring can be stenothermal and be profoundly

affected by even minor temperature changes [24, 25]. Moreover, their ELH stages are influ-

enced physiologically by extrinsic factors such as temperature and their interaction with

intrinsic properties endowed to them by their parents [24, 26].

Today molecular methods and tools are increasingly accessible and economically affordable.

Whole species genomes are publically available, including the European eel genome, which was

recently sequenced and assembled [27–28]. This offers new perspectives for eel research, such

as using RNA sequencing to identify actors involved in different biological processes, cellular

components and molecular functions that are of importance in this species [29]. As such, in

order to molecularly understand phenotypic sensitivity of ELH stages to extrinsic environmen-

tal factors (such as temperature), it is now possible to follow expression of targeted genes con-

trolling the development of this fish species [30, 31]. For instance, heat shock proteins (HSP)

play a fundamental role in the regulation of normal protein synthesis within the cell and are

critical to the folding and assembly of other cellular proteins [30]. As such, it is hypothesized

that an up-regulated expression of fish larval hsp’s, would be associated with vulnerability to

thermal injury, as the hsp response is a cellular mechanism activated to prevent cell damage

caused by thermal stress [32]. Moreover, fish communicate with their physiologic environment,

by using the somatotropic axis, a mechanism combining growth hormones (GH) and the

closely connected and regulated by GH, insulin-like growth factors (IGF), that are involved in

most physiological processes including metabolism and growth [31]. Here, it is hypothesized

that the activation of the GH/IGF system triggering cell proliferation and DNA synthesis, could

be stimulated by temperature and the up-regulated expression response would be associated

among others with improved growth, metabolism and development [31, 33].

In this context, we experimentally investigated the impact of temperature on European eel

larvae from hatching to first-feeding, through an integrative morphological and molecular

approach. Thus, the objectives of this study were i) to identify the thermal tolerance range

and limits for development and growth of European eel larvae, and ii) to elucidate thermally

induced phenotypical changes and the interlinked gene expression of genes (hsp’s, gh and igf ’s)
involved in molecular mechanisms commonly associated to fish early life development.

Materials and methods

Ethics statement

All fish were handled in accordance with the European Union regulations concerning the pro-

tection of experimental animals (Dir 86/609/EEC). Eel experimental protocols were approved by

the Animal Experiments Inspectorate (AEI), Danish Ministry of Food, Agriculture and Fisheries

(permit number: 2012-15-2934-00458). Briefly, adult eels were anesthetized using ethyl p-amino-

benzoate (benzocaine) before tagging and handling. Endogenously feeding larvae of European

eel were anesthetized prior to handling and euthanized prior to sampling by using tricaine

methanesulfonate (MS-222). All efforts were made to minimize animal handling and stress.

Broodstock management and gamete production

Female silver eels were obtained from a freshwater lake, Vandet, Jutland, Denmark. Male eels

were obtained from a Danish commercial eel farm (Stensgård Eel Farm A/S). Experimental
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maturations were conducted at a DTU Aqua research facility at Lyksvad Fishfarm, Vamdrup,

Denmark, where eels were housed in 300 L tanks equipped with a recirculation system [34].

Eels were maintained under low intensity light (~20 lux), 12 h day/12 h night photoperiod,

salinity of ~36 ppt, and temperature of 20˚C. Acclimatization took place over 10 days. As eels

naturally undergo a fasting period from the onset of the pre-pubertal silvering stage, they were

not fed during treatment. Prior to experimentation, eels were anaesthetized (ethyl p-amino-

benzoate, 20 mg L-1; Sigma-Aldrich, Missouri, USA) and tagged with a passive integrated tran-

sponder. Females used for experiments (n = 4) had a mean (± SEM) standard length and body

weight of 65 ± 4 cm and 486 ± 90 g, respectively. To induce vitellogenesis females received

weekly injections of salmon pituitary extract (Argent Chemical Laboratories, Washington,

USA) at 18.75 mg kg-1 body weight [11, 34]. To stimulate follicular maturation and induce

ovulation, females received 17α,20ß-dihydroxy-4-pregnen-3-one (Sigma-Aldrich, Missouri,

USA) at 2 mg kg-1 body weight [35] and were strip-spawned within the subsequent 12–14 h.

Male eels (n = 11) had a mean (± SEM) standard length and body weight of 40 ± 3 cm and

135 ± 25 g, respectively. Males received weekly injections of human chorionic gonadotropin

(Sigma-Aldrich, Missouri, USA) at 150 IU per fish [34]. Prior to fertilization, an additional

injection was given and milt was collected by strip-spawning ~12 h after administration of hor-

mone. Milt samples were pipetted into a P1 immobilizing medium [36] and only males with

sperm motility of category IV (75–90%) were used for fertilization within 4 h of collection

[37]. Only floating viable eggs/embryos were further used for experimentation.

Experimental conditions

The experiment was repeated 4 times, within the same spawning season (2015), each time

using a different parental cross. Eggs from each female were “crossed” with a sperm pool of

several males to experimentally create 4 parental crosses. Eggs from each female were stripped

into dry 36 × 30 × 7 cm plastic containers and gametes were swirled together while 0.2 μm fil-

tered UV sterilized seawater was added for a gamete contact time of 5 min [37]. Seawater was

obtained from the North Sea (~32.5 ppt) and temperature was adjusted to 20˚C (± 0.1˚C)

while salinity was adjusted to 36 (± 0.1) ppt using Red Sea Salt (Red Sea Europe, Verneuil-sur-

Avre, France) as previously defined [37, 38]. Egg density was determined by counting 3 × 0.1

mL subsamples of the floating layer. Within 30 min post fertilization, ~500 floating viable

eggs/embryos per 100 mL, with a mean size (± SD) of 1.5 ± 0.1 mm (measured from images

taken at 2 hpf), were distributed in replicated 600 mL flasks [182.5 cm2 sterile tissue culture

flasks with plug seal caps (VWR1)] dedicated to larval sampling for morphology (3 replicates)

and molecular analysis (2 replicates). Additionally, ~500 floating viable eggs/embryos per 100

mL were distributed in replicated (3×) 200 mL flasks (75 cm2 non-pyrogenic and non-cyto-

toxic flasks with plug seal caps, Sarstedt, Inc.) dedicated to sampling for hatch success and

deformities at hatch. Seawater from the North Sea (0.2 μm filtered and UV sterilized), was

adjusted to 36 (± 0.1) ppt (as above) and supplemented with rifampicin and ampicillin (each

50 mg L-1, Sigma-Aldrich, Missouri, USA) to increase survival as previously defined [39].

Embryos and larvae, from each parental cross, were reared in thermal controlling incubators

(MIR-154 Incubator, Panasonic Europe B.V.) at five temperatures (16, 18, 20, 22 and 24˚C ±
0.1˚C). All experimental units were acclimatized to the treatment temperature within 1 h and

salinity was kept at 36 (± 1) ppt. Temperature and salinity conditions of treatments were cho-

sen to closely resemble the environmental conditions encountered at different depths of the

assumed spawning areas in the Sargasso Sea [6]. Rearing of embryos and larvae took place in

darkness while handling and sampling under low intensity (< 2.2 μmol m-2 s-1) light condi-

tions as previously defined [40].
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Data collection

Larval development and gene expression were followed from hatch until the corresponding

first-feeding stage in each temperature treatment. The first-feeding stage, as previously defined

[3], was set as the time point when eye pigmentation, mouth and jaw formation was com-

pleted. Endogenously feeding larvae of European eel were anesthetized using tricaine metha-

nesulfonate (MS-222) prior to digital imaging and euthanized post-sampling by using an MS-

222 overdose. All images were taken using a digital camera (Digital Sight DS-Fi1, Nikon Cor-

poration, Japan) attached to an objective microscope (Eclipse 55i, Nikon Corporation, Japan).

NIS-Elements D analysis software (Version 3.2) was used to analyze the images of eggs,

embryos, and larvae (Nikon Corporation, Japan).

Hatch success and deformities. Once hatching was completed, embryos and larvae

within each experimental unit, dedicated to analysis of hatch success and deformities (× 3 rep-

licates × 4 parental crosses) from each temperature treatment were digitally imaged for later

classification. Embryos that were oversized, dark, discolored or exhibited abnormities in the

cytoplasm were considered dead. Hatching success was then expressed as the total number of

larvae divided by the total number of eggs. Larvae with abnormal and/or malformed head,

body, yolk-sac or tail regions were classified as deformed.

Biometry. For analysis of larval morphology, ~15 larvae (× 3 replicates × 4 parental

crosses) from each temperature were randomly sampled at hatch and every second day post-

hatch. Larvae were digitally imaged for later analyses, where total length (from the tip of the

snout to the posterior end of the caudal fin) and total yolk-sac area were measured from each

larva. Larval growth and yolk utilization (YU) were measured from the change in length and

yolk area from hatching until first-feeding. Yolk utilization efficiency (YUE) was measured by

dividing the increase in length from hatching until first-feeding by the corresponding decrease

in yolk area.

Molecular analyses. For molecular analysis, ~30 larvae (× 2 replicates × 4 parental

crosses) from each temperature (16, 18, 20 and 22˚C) were randomly sampled at hatch and

every second day post-hatch until the first-feeding stage. Those larvae were not observed

under the microscope (to avoid any influence on gene expression) but were immediately

euthanized using MS-222, rinsed with deionized water, preserved in a RNA Stabilization

Reagent and kept at -20˚C following the procedure suggested by the supplier (Qiagen, Hilden,

Germany).

For total RNA extraction, the larval pool (~30 larvae) of each replicate was homogenized in

800 μl Tri-Reagent (Sigma-Aldrich, Missouri, USA). After obtaining the aqueous phase by

incubation in 160 μl chloroform, RNA was extracted using the InviTrap1 Spin tissue RNA

MiniKit (STRATEC Biomedical AG, Berlin-Buch, Germany) following the manufacturer’s

instructions. RNA concentration (764 ± 60 ng μl-1) and purity (260/280 = 2.12 ± 0.16, 230/

260 = 2.16 ± 0.16) were determined by spectrophotometry using Nanodrop ND-1000 (Peqlab,

Germany). From the resulting total RNA, 680 ng were transcribed using the Quanta qScript

cDNA Synthesis Kit (Promega, Germany) according to the manufacturer’s instructions, in-

cluding an additional gDNA wipe out step prior to transcription [Quanta PerfeCta DNase I

Kit (Promega, Germany)].

The ef1a, 18s, 40s genes were chosen as housekeeping genes since qBase+ software revealed

that these mRNA levels were stable throughout analyzed samples (M< 0.4); M gives the

gene stability and M< 0.5 is typical for stably expressed reference genes [41]. The expression

levels of target (gh, igf-1, igf-2a, igf-2b,hsp70, hsp90) and reference (ef1a, 18s, 40s) genes

were determined by quantitative real-time PCR (qRT-PCR), using specific primers. Primers

were designed using primer 3 software v 0.4.0 (http://frodo.wi.mit.edu/primer3/) based on
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predicted or cloned cDNA sequences available on Genbank databases (Table 1). Predicted

cDNA sequences for gh, igf-2a, igf-2b and 18s genes were deduced from genomic DNA

sequences originated from the European eel genome [27]. All primers were designed for an

amplification size ranging from 75 to 200 nucleotides.

Expression of genes in each larval sample (2 biological replicates) were analysed in technical

triplicates of each primer using the qPCR BiomarkTM HD system (Fluidigm) based on 96.96

dynamic arrays (GE chips) as previously described [42]. In brief, a pre-amplification step was

performed with a 500 nM primer pool of all primers in TaqMan-PreAmp Master Mix (Applied

Biosystems) and 1.3 μl cDNA per sample at 10 min at 95˚C; 14 cycles: 15 s at 95˚C and 4 min

at 60˚C. Obtained PCR products were diluted 1:10 with low EDTA-TE buffer. The pre-ampli-

fied product was loaded onto the chip with SSofast-EvaGreen Supermix low Rox (Bio Rad)

and DNA-Binding Dye Sample Loading Reagent (Fluidigm). Primers were loaded onto the

chip at a concentration of 50 μM. The chip was run according to the Fluidigm 96.96 PCR pro-

tocol with a Tm of 60˚C. The relative quantity of target gene transcripts was normalized and

measured using the ΔΔ Ct method [43]. Coefficient of variation (CV) of triplicates was calcu-

lated and checked to be< 0.04 [41]. If CV was found to be> 0.04, triplicates were checked for

outliers and if possible duplicate measurements were used. If the use of duplicates was not pos-

sible (CV> 0.04) the whole data point was omitted from the analysis. In this automated analy-

sis, malfunctions on the chip and/or unsuccessful RNA extractions can result in expression

failures, as was the case in the Day 14 sample of 18˚C in this study. Since qBase+ software

revealed that ef1a, 18s and 40s mRNA levels were stable throughout the analyzed samples

(M< 0.4), those genes were chosen as housekeeping genes.

Statistical analyses

All data were analyzed using SAS statistical software (version 9.1; SAS Institute Inc., Cary,

North Carolina). Residuals were tested for normality using the Shapiro–Wilk test and

Table 1. Sequences of European eel (Anguilla anguilla) primers used for amplification of genes by qRT-PCR. Primers were designed from predicted

or cloned cDNA sequences available in Genbank nucleotide and WGS databases. The table lists accession number and corresponding database of target

gene sequences.

Full name Abbreviation Databases Accession Numbers Primer sequence (5’_3’) (F: Forward; R: Reverse)

Heat Shock Protein 70 hsp70 GenBank AZBK01685255 F: TCAACCCAGATGAAGCAGTG

R: GCAGCAGATCCTGAACATTG

Heat Shock Protein 90 hsp90 GenBank AZBK01838994 F: ACCATTGCCAAGTCAGGAAC

R: ACTGCTCATCGTCATTGTGC

Growth Hormone gh GenBank WGS AZBK01601863 F: TGAACAAGGGCATCAATGAA

R: CGGAGCTTTCTCACATCCTC

Insulin-like Growth Factor-1 igf-1 GenBank Nucleotide EU018410.1 F: TTCCTCTTAGCTGGGCTTTG

R: AGCACCAGAGAGAGGGTGTG

Insulin-like Growth Factor-2-1 igf-2a GenBank WGS AZBK01717674 F: ACAACGGATATGGAGGACCA

R: GGAAGTGGGCATCTTTCTGA

Insulin-like Growth Factor-2-2 igf-2b GenBank WGS AZBK01622663 F: AAAGCTTTGGGACAGCTTCA

R: CGCAGCTGTGTACGTGAAAT

Elongation Factor 1-alpha ef1a GenBank Nucleotide EU407824.1 F: CTGAAGCCTGGTATGGTGGT

R: CATGGTGCATTTCCACAGAC

Ribosomal 18S RNA 18s GenBank WGS AZBK01681648 F: AGAGCAGGGGAACTGACTGA

R: ACCTGGCTGTATTTGCCATC

Ribosomal 40S RNA 40s GenBank TSA GBXM01005349.1 F: TGACCGATGATGAGGTTGAG

R: GTTTGTTGTCCAGACCGTTG

https://doi.org/10.1371/journal.pone.0182726.t001
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homogeneity of variances was tested using a plot of residuals versus fit values (PROC GLOT,

SAS Institute 2003). Data were log10 or arcsine square-root-transformed when data deviated

from normality and/or homoscedasticity [44].

Larval hatch success, survival, deformities, growth rate, yolk utilization, and yolk utili-

zation efficiency. The effect of temperature on larval hatch success, survival, deformities,

growth rate, yolk utilization, and yolk utilization efficiency was determined using a series of

one-way ANOVA models, where parental cross was considered a random factor (SAS PROC

MIXED; SAS Institute 2003). Tukey’s post-hoc analyses were used to compare least-squares

means between treatments.

Larval morphology and molecular analyses. Statistical models were used to investigate

temperature effects on larval morphology and gene expression throughout early larval devel-

opment (Ages 0 to 18 dph) and at specific developmental stages (Stages 1–3). Across the differ-

ent temperature treatments, Stage 1 represents the day of hatch, Stage 2 represents the timing

of jaw/teeth formation and Stage 3 represents the first-feeding stages. Together this allowed us

to decipher changes in temperature at standardized and real-time developmental intervals.

To examine the effect of temperature on larval morphology and gene expression through-

out early development, we used two statistical approaches. In the first approach, we analyzed

the data using a series of repeated measures mixed-model ANOVAs (PROC MIXED; SAS

Institute 2003). Models contained temperature (16, 18, 20, 22 and 24˚C) and age (0 to 18 dph)

or stage (1, 2 and 3) main effects as well as the temperature × age (or stage) interaction.

Akaike’s (AIC) and Bayesian (BIC) information criteria were used to assess which covariance

structure (compound symmetry, autoregressive order, or unstructured) was most appropriate

[45]. Temperature and age (or stage) were considered fixed, whereas parental cross was con-

sidered random. Tukey’s post-hoc analyses were used to compare least-squares means between

treatments. If a significant temperature × age (or stage) interaction was detected, the model

was decomposed into a series of reduced ANOVA models to determine the effect of tempera-

ture for each age (or stage) and of age (or stage) for each temperature. This was the case for

length, yolk area, gh, igf-1,hsp70 and hsp90. The reduced models involved only preplanned

comparisons and did not include repeated use of the same data, so a-level corrections for a

posteriori comparisons were not necessary.

In the second approach, we examined variation in larval morphology and gene expression,

throughout development at each temperature, by fitting either linear, quadratic, cubic or expo-

nential equations to the data (PROC REG; SAS Institute 2003). This allowed us to create pre-

dictive models to explore the shape of developmental variation for each temperature. Linear,

quadratic, cubic and exponential equations were chosen a-priori to fit the data based on the

available literature [46, 47]. Final equation selection (linear, quadratic, cubic or exponential)

was based on an F-statistic: d.f.j × (R2
j−R2

i) / (1 –R2
j), where: R2

i = the R2 for the i-th order,

R2
j = the R2 for the next higher order, d.f.j = the degrees of freedom for the higher-order equa-

tion with j degrees of freedom in the numerator and d.f.j = n − j −1 degrees of freedom in the

denominator [47]. Graphs and regressions were prepared in SigmaPlot (Version 13.0).

Results

Larval development, hatch success, survival and deformities

Generally, development was delayed when embryos and larvae were reared in cold tempera-

tures while accelerated in warm temperatures (Fig 1). Developmental rates were similar across

all parental crosses investigated and larvae reached the first-feeding stages within 8 days or 232

hours post-fertilization (hpf) at 22˚C compared to 10 days (288 hpf) at 20˚C, 12 days (344 hpf)

at 18˚C or 16 days (456 hpf) at 16˚C. Larval hatch success (Fig 2A) did not differ between 16,
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18 and 20˚C but significantly decreased at 22˚C (P < 0.0001), while only two (in total) larvae

hatched at 24˚C, but they died shortly after hatch (100% mortality). Larval survival, in terms of

longevity (Fig 2B), was lowest at 22˚C (4 ± 2 dph) and highest at 18˚C (14 ± 2 dph). Tempera-

ture had a significant influence on the incidence of larval deformities at hatch (P < 0.0001),

where larvae reared at 18˚C showed significantly less deformities (24 ± 6%), compared to 16˚C

(48 ± 6%), 20˚C (44 ± 6%) or 22˚C (90 ± 6%) (Fig 2C).

Larval growth, yolk utilization and yolk utilization efficiency

Temperature had a significant influence (P < 0.0001) on larval growth rate. Here, larval

growth increased with increasing temperature from 0.27 ± 0.02 at 16˚C to 0.41 ± 0.02 mm d-1

at 22˚C (Fig 2D). Similarly, temperature had a significant impact (P < 0.0001) on YU, which

increased with increasing temperature, from 0.04 ± 0.003 mm2 d-1 at 16˚C to 0.08 ± 0.003

mm2 d-1 at 22˚C (Fig 2E). Temperature did not significantly influence YUE which decreased

with increasing temperature, from 0.66 ± 0.02 mm2 d-1 at 16˚C and 18˚C to 0.62 ± 0.02 mm2 d-1

at 22˚C (Fig 2F).

Larval length

Significant differences in length between temperatures occurred at all developmental stages

investigated (P< 0.0001), where larvae reared at 22˚C were smaller compared to all the other

temperature treatments (Fig 3A). Larvae reared at 16, 18 and 20˚C did not differ in length in

Stage 3 (first-feeding), though significant differences occurred at the earlier developmental

Stages (1 and 2). In real time, we observed a temperature × age interaction (P < 0.0001), thus

the model was decomposed into a series of reduced ANOVA models to determine the effect of

temperature for each age (Fig 3B) and of age for each temperature (Fig 3C–3F). Significant dif-

ferences in length among temperatures occurred throughout development on 0, 2, 4, 6, 8, 10,

12 and 14 dph (P < 0.003). Typically, larvae reared in the colder (16˚C) and warmer (22˚C)

Fig 1. Timing of morphological features during development of larval European eel (Anguilla anguilla). Larval age presented in hours post-

fertilization (hpf) and days post-hatch (dph) for five rearing temperature regimes. Across the different temperature treatments, Stage 1 represents

the day of hatch, Stage 2 represents the timing of jaw/teeth formation, while Stage 3 represents the first-feeding stages.

https://doi.org/10.1371/journal.pone.0182726.g001
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thermal treatments were significantly smaller than larvae reared in the intermediate tempera-

tures of 18 and 20˚C. Larvae reared at 16˚C grew to sizes similar to larvae reared at 18˚C or

20˚C (14–18 dph). Within each temperature, larval age significantly influenced length when

larvae were reared at 16, 18, 20 and 22˚C (P< 0.0001). Relationships between age and larval

length can be explained by exponential regressions (B-E) at 16˚C [y = 6.85 � exp(-exp(-(x +

0.63) / 3.54)), R2 = 0.99], 18˚C [y = 7.24 � exp(-exp(-(x + 0.45) / 2.94)), R2 = 0.99], 20˚C [y =

7.23 � exp(-exp(-(x + 0.53) / 2.79)), R2 = 0.99] and 22˚C [y = 6.19 � exp(-exp(-(x + 0.22) / 1.74)),

R2 = 0.98].

Fig 2. Effect of rearing temperature on larval European eel (Anguilla anguilla) (A) hatch success, (B) survival, (C) deformities at hatch, (D) growth rate,

(E) yolk utilization and (F) yolk utilization efficiency. Values represent means (± SEM) among four crosses at each temperature. Means were contrasted

using the Tukey-Kramer method and treatments with the same letters are not significantly different (P > 0.05).

https://doi.org/10.1371/journal.pone.0182726.g002

Temperature effects on European eel larvae

PLOS ONE | https://doi.org/10.1371/journal.pone.0182726 August 14, 2017 9 / 23

https://doi.org/10.1371/journal.pone.0182726.g002
https://doi.org/10.1371/journal.pone.0182726


Larval yolk area

In developmental time (Fig 3G), significant differences in yolk area among temperatures

occurred at all developmental stages investigated (P< 0.008). Larvae reared at 22˚C had most

yolk reserves on Stage 2 but least yolk reserves on Stage 1 (hatch) or Stage 3 (first-feeding)

compared to the other temperature treatments. Larvae reared at 16, 18 and 20˚C did not differ

in yolk area on Stage 1, though significant differences occurred at the later developmental

Fig 3. Effect of rearing temperature on larval European eel (Anguilla anguilla) length (A) or yolk area (G) at specific developmental Stages (1, 2 and 3)

and length (B) or yolk area (H) in real time, as well as effect of age on length (C-F) or yolk area (I-L) at each temperature. Exponential regressions explain the

relationship between age and length (C-F; P < 0.025, R2 > 0.98) as well as between age and yolk area (I-L; P < 0.006, R2 = 0.99) at all temperatures. Values

represent means (± SEM) among four crosses at each temperature. Treatments with the same letters are not significantly different (P > 0.05).

https://doi.org/10.1371/journal.pone.0182726.g003
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Stages (2 and 3) investigated. In real time, yolk area was significantly affected by the tempera-

ture × age interaction (P< 0.0001) so the model was again decomposed to determine the effect

of temperature for each age (Fig 3H) and of age for each temperature (Fig 3I–3L). Significant

differences in yolk area among temperatures occurred throughout development on 0, 2, 4, 6, 8,

10, 12, 14, 16 and 18 dph (P< 0.002). The warmer the rearing temperature, the faster the YU

and less yolk reserves were left for larvae to utilize. Within each temperature, larval age signifi-

cantly influenced yolk area when larvae were reared in 16, 18, 20 and 22˚C (P< 0.0001). Rela-

tionships between age and yolk-sac area can be explained by exponential regressions (G-J) at

16˚C [y = 0.07 + 0.74 � exp(-exp(-(x—6.60) / - 3.71)), R2 = 0.99], 18˚C [y = 0.08 + 0.74 � exp

(-exp(-(x– 5.36) / - 2.82)), R2 = 0.99], 20˚C [y = 0.05 + 0.89 � exp(-exp(-(x—3.85) / - 3.43)), R2 =

0.99] and 22˚C [y = 0.02 + 0.66 � exp(-exp(-(x—3.97) / - 1.94)), R2 = 0.99].

Molecular analyses

Gene expression of selected genes was compared across temperature treatments in real time

and at specific developmental stages (developmental time). In real time, the expression of tar-

get genes was affected by both larval age and temperature (see specific genes below). Even

though the expression profiles appeared very similar in real time and only shifted with temper-

ature, in developmental time, differences occurred across developmental stages and among

temperatures (see specific genes below).

Heat shock proteins. In developmental time, expression of hsp70 significantly (P = 0.015)

increased on Stage 3 (first-feeding) but did not significantly differ across temperatures (P =

0.066; Fig 4A and 4B). In real time, gene expression of hsp70 was significantly affected by the

temperature × age interaction (P = 0.0001; Fig 4C). Therefore, the model was, as above, de-

composed. Significant differences in gene expression of hsp70 between temperatures occurred

on 6 and 8 dph (P< 0.010). Expression levels of hsp70 increased up to 5-fold at the colder

(16˚C) and 4-fold at the warmer (22˚C) suboptimal thermal limit, while expression levels at 18

and 20˚C remained lower than in the other temperatures throughout ontogenetic develop-

ment. Larval age significantly influenced gene expression of hsp70 when larvae were reared at

16, 18 and 20˚C (P< 0.003; Fig 4D–4G) and the relationships between age and hsp70 expres-

sion were best explained by quadratic parabola regressions (D, G) at 16˚C (y = 1.81–0.33 x

+ 0.03 x2, R2 = 0.88) and 22˚C (y = 2.06–0.56 x + 0.09 x2, R2 = 0.99) and by cubic sigmoidal

regressions (E-F) at 18˚C (y = 0.93–0.22 x + 0.05 x2 - 0.002 x3, R2 = 0.89) and 20˚C (y = 1.21–

0.30 x + 0.06 x2 - 0.002 x3, R2 = 0.78).

In developmental time, expression of hsp90 significantly increased on Stage 1 (hatch),

decreased on Stage 2 and increased again on Stage 3 (first-feeding) (P< 0.0001; Fig 4H).

Moreover, hsp90 expression was significantly lower at 18 and 20˚C, elevated at colder and

warmer temperatures and peaked at 22˚C (P< 0.03; Fig 4I). In real time, gene expression of

hsp90 was significantly affected by the temperature × age interaction (P< 0.0001) and again

the model was as previously decomposed. Significant differences in gene expression of hsp90
among temperatures occurred throughout development on 4, 6, 8, 10 and 12 dph (P< 0.02;

Fig 4J). Expression levels of hsp90 increased up to 3-fold at 16, 20 and 22˚C, while expression

levels at 18˚C remained (similarly to hsp70) lower than for the other temperatures throughout

development. Larval age influenced gene expression of hsp90 when larvae were reared in 16,

18, 20 and 22˚C (P< 0.010; Fig 4K–4N) and relationships between developmental age and

hsp90 expression were best explained by quadratic parabola regressions at 16˚C (y = 1.35–0.32

x + 0.02 x2, R2 = 0.91) and 22˚C (y = 1.93–0.69 x + 0.10 x2, R2 = 0.93) and by cubic sigmoidal

regressions at 18˚C (y = 1.18–0.49 x + 0.08 x2 - 0.003 x3, R2 = 0.85) and 20˚C (y = 1.57–0.86 x

+ 0.16 x2 - 0.01 x3, R2 = 0.85).
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Growth hormone and insulin-like growth factors. In developmental time, significant

differences among temperatures occurred at Stage 2 and 3, where larvae reared at the colder

thermal limit (16˚C), expressed higher levels of gh compared to the warmer temperatures (P<

0.006; Fig 5A). In real time, gene expression of gh was significantly affected by the tempera-

ture × age interaction (P< 0.0001). Thus, the model was decomposed. Significant differences

in gene expression of gh among temperatures occurred throughout development on 2, 6, 8, 10,

Fig 4. Effect of rearing temperature on larval European eel (Anguilla anguilla) gene expression of hsp70 (A-B) or hsp90 (H-I) at specific

developmental Stages (1, 2 and 3) and hsp70 (C) or hsp90 (J) in real time, as well as effect of age on hsp70 (D-G) or hsp90 expression (K-N) at each

temperature. Relationships between age and hsp70 expression can be explained by quadratic regressions at 16 or 22˚C and by cubic regressions at 18 or

20˚C (P < 0.03, R2 > 0.78). Relationships between age and hsp90 expression can be explained by quadratic regressions at 16 or 22˚C and by cubic

regressions at 18 or 20˚C (P < 0.001, R2 > 0.85). Data points with an asterisk (*) were not included in the statistical model due to insufficient sample size.

Values represent means (±SEM) among four crosses at each temperature and treatments with the same letters are not significantly different (P > 0.05).

https://doi.org/10.1371/journal.pone.0182726.g004
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12 and 14 dph (P < 0.03; Fig 5B). Expression levels of gh increased up to 1000-fold at 22˚C,

2000-fold at 16˚C and more than 3000-fold at 18 and 20˚C. Larval age significantly influenced

gene expression of gh at all temperatures (P< 0.0001; Fig 5C–5F). Here, relationships between

developmental age and gh expression were best explained by cubic sigmoidal regressions at

16˚C (y = 36.21–5.24 x—6.49 x2 + 0.72 x3, R2 = 0.82), 18˚C (y = 40.99–23.52 x—3.18 x2 + 0.75

Fig 5. Effect of rearing temperature on larval European eel (Anguilla anguilla) gene expression of gh (A) or igf-1 (G-H) at specific developmental

Stages (1, 2 and 3) and gh (B) or igf-1 (I) in real time, as well as effect of age on gh (C-F) or igf-1 expression (J-M) at each temperature. Relationships

between age and gh expression can be explained by cubic sigmoidal regressions at all temperatures (P < 0.0001, R2 > 0.82). The relationship between age

and igf-1 expression can be explained by cubic sigmoidal regressions at 16 or 18˚C and by linear regressions at 20 or 22˚C (P < 0.002, R2 > 0.64). Data

points with an asterisk (*) were not included in the statistical model due to insufficient sample size. Values represent means (± SEM) among four crosses at

each temperature and treatments with the same letters are not significantly different (P > 0.05).

https://doi.org/10.1371/journal.pone.0182726.g005
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x3, R2 = 0.86), 20˚C (y = - 14.29 + 79.62 x—33.28 x2 + 3.29 x3, R2 = 0.99) and 22˚C (y = 4.02 +

147.59 x—81.17 x2 + 9.89 x3, R2 = 0.99).

In developmental time, expression of igf-1 significantly increased with developmental stage

(P< 0.0001; Fig 5G) but did not significantly differ across temperatures (P = 0.081; Fig 5H).

In real time, gene expression of igf-1was affected by the temperature × age interaction (P =

0.001), thus the model was again decomposed. Differences in gene expression of igf-1 among

temperatures occurred during early development on 4 and 6 dph (P < 0.001; Fig 5I). Expres-

sion levels of igf-1 increased up to 40-fold at 16˚C and 30-fold at 22˚C, indicating the colder

and warmer suboptimal thermal limits respectively. Larval age significantly influenced gene

expression of igf-1when larvae were reared in 16, 18, 20 and 22˚C (P < 0.002; Fig 5J–5M).

Here, the relationships between developmental age and igf-1 expression were best explained by

cubic regressions at 16˚C (y = 4.18–5.53 x + 1.11 x2 - 0.04 x3, R2 = 0.82) or 18˚C (y = 0.19–1.39

x + 0.65 x2 - 0.03 x3, R2 = 0.82) and by linear regressions at 20˚C (y = - 0.92 + 1.79 x, R2 = 0.84)

or 22˚C (y = 2.45 + 4.14 x, R2 = 0.64).

In developmental time, expression of igf-2a significantly decreased with developmental

stage (P = 0.020; Fig 6A) but did not significantly differ across temperatures (P = 0.061; Fig

6B). In real time, gene expression of igf-2awas significantly affected by temperature (P =

0.007) and larval age (P< 0.0001), though no significant temperature × age interaction (P =

0.1288) was detected. Gene expression of igf-2a significantly increased at 22˚C (Fig 6C) and

significantly decreased throughout ontogeny with increasing larval age (Fig 6D). The relation-

ships between developmental age and igf-2a expression were best explained by linear regres-

sions (Fig 6F–6H) at 18˚C (y = 0.73–0.02 x, R2 = 0.74), 20˚C (y = 0.66–0.02 x, R2 = 0.65) and

22˚C (y = 1.28–0.11 x, R2 = 0.61), while no significant relationship between developmental age

and igf-2a expression was detected at 16˚C (Fig 6E).

In developmental time, expression of igf-2b significantly increased with developmental

stage (P < 0.0001; Fig 6A) but did not significantly differ across temperatures (P = 0.658; Fig

6I–6J). In real time, gene expression of igf-2b was significantly affected by temperature (P<

0.001) and larval age (P< 0.0001), while no interaction was detected between temperature and

age (P = 0.112). Gene expression of igf-2b significantly increased at 22˚C (Fig 6K) and signifi-

cantly increased throughout ontogeny with increasing larval age (Fig 6L). The relationships

between developmental age and igf-2b expression were best explained by a quadratic regres-

sion at 16˚C (y = 0.76–0.02 x + 0.01 x2, R2 = 0.95) and by cubic regressions at 18˚C (y = 0.73–

0.17 x + 0.07 x2 - 0.003 x3, R2 = 0.84) or 20˚C (y = 1.51–0.63 x + 0.14 x2 - 0.01 x3, R2 = 0.91),

while no significant relationship between developmental age and igf-22 expression was

detected at 22˚C (Fig 6M–6P).

Discussion

This study identified the thermal tolerance range and limits of European eel early life history

and elucidated thermally induced phenotypical changes as well as changes in the interlinked

expression of genes associated to early development in fish. Temperature influenced all traits

investigated. Larvae generally developed and grew throughout ontogeny until the first-feeding

stages by utilizing their yolk reserves in all temperature treatments, except at 24˚C which was

found to be the deleterious upper thermal limit. Generally, increasing temperature caused

acceleration in development and the higher the temperature, the earlier the expression re-

sponse of any specific targeted gene. In more detail, larval yolk utilization and growth rates

increased, while yolk utilization efficiency decreased with increasing temperature. Further-

more, temperature influenced hatch success, time to hatch, deformities at hatch, larval survival

and expression of targeted genes relating to larval development (gh and igf) and stress (hsp).
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Here, the expression of targeted genes was affected by larval age/stage and temperature, as well

as their interaction when compared in both, real or relative time.

Larval morphology

We observed a reduced larval stage duration with increasing temperature, where larvae

reached the feeding stages within 8 days at 22˚C compared to 16 days at 16˚C; resulting in 50%

Fig 6. Effect of rearing temperature on larval European eel (Anguilla anguilla) expression of igf-2a (A-B) or igf-2b (I-J) at specific developmental

Stages (1, 2 and 3) and igf-2a (C-D) or igf-2b (K-L) in real time, as well as effect of developmental age on igf-2a (C-F) or on igf-2b (I-L) expression at each

temperature. Relationships between developmental age and igf-2a expression can be explained by linear regressions at 18, 20 and 22˚C (P < 0.025, R2 >
0.61; Fig F-H). Relationships between developmental age and igf-2b expression can be explained by a quadratic parabola regression (M) at 16˚C and by

cubic sigmoidal regressions (N-O) at 18˚C and 20˚C (P < 0.0001, R2 > 0.84; Fig 6I–6K). Values represent means (± SEM) among four crosses at each

temperature and treatments with the same letters are not significantly different (P > 0.05).

https://doi.org/10.1371/journal.pone.0182726.g006
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faster development. A similar reduced stage duration with increasing temperature during

ELH, has been previously shown in other important fish species such as haddock (Melano-
grammus aeglefinus) [48], brown trout (Salmo trutta) [49], Atlantic and Baltic cod, Gadus mor-
hua [50–52], Northern rock sole, Lepidopsetta polyxystra [53] and Atlantic herring, Clupea
harengus [54]. Generally and within the thermal tolerance window, larval stage duration is

reduced at higher temperatures due to faster growth [53, 54]. However, unfavorable thermal

conditions close to the thermal tolerance limits are known to cause less efficient yolk utiliza-

tion and reduced growth [25]. This phenomenon was also observed in this study, further vali-

dating the fact that increased temperature, especially towards unfavorable limits, results in less

efficient conversion of yolk into somatic tissue. Moreover, we observed the lowest yolk utiliza-

tion efficiency, combined with the most deformities at hatch when reared at 22˚C, pointing

out an upper thermal plasticity limit. Limited thermal plasticity has been correlated with the

inability to effectively make physiological adjustments to achieve homeostasis under elevated

temperatures, resulting in chronic thermal stress of delta smelt, Hypomesus transpacificus [55].

Moreover, no larvae survived at 24˚C, representing a deleterious upper thermal limit, while

larval deformities at hatch increased at 16˚C, representing a colder thermal tolerance limit dur-

ing early development of European eel.

The rearing temperature (20–21˚C) used in most current protocols for hatchery production

of A. anguilla larvae [3, 40], is similar to what is being used to produce hybrid larvae from male

A. anguilla and female A. australis [21]. Hybrid larvae between male A. anguilla and female A.

japonica have also been experimentally produced and reared at 21–22˚C [19], while the closely

related A. rostrata larvae have been reared at 20˚C after assisted reproduction [17]. Moreover,

an attempt to rear A. australis or A. australis × A. dieffenbachii hybrid larvae was undertaken at

a thermal regime of 18.2–22.7˚C [20]. The thermal regimes for all the above mentioned eel spe-

cies and their hybrid combinations seem to be rather concurrent with the thermal tolerance

range identified in this study (16–22˚C). Though, we here revealed a thermal optimum of

18˚C, corresponding to the lowest incidence of larval deformities at hatch, highest larval sur-

vival and highest yolk utilization efficiency. This finding provides important information

towards improving the conditions for larval rearing and production success of this species in

aquaculture. Furthermore, the only eel species with a successfully closed life cycle in captivity

is A. japonica, where hatchery produced larvae are reared at 25˚C [15]. This thermal optimum

is far above the temperatures used for all the other eel species mentioned above, including this

study, though it seems to be close to the thermal regime of the recently identified natural

spawning area of this species [16].

Gene expression

In the present study, we observed an increased expression of hsp70 and hsp90 with increasing

age and stage, while expression levels increased towards both, colder (16˚C) and warmer

(22˚C) thermal limits. The expression of hsp has previously been linked to phenotypic varia-

tion (deformities) of green sturgeon (Acipenser medirostris) larvae in response to thermal

stress, pointing out the importance of this cellular mechanism associating HSPs with the

organism’s thermal vulnerability [32]. Similarly, individual gene expression of specific molecu-

lar chaperones such as hsp70 and hsp47 was up-regulated in response to thermal stress, while

others such as hsp90 remained at constitutive levels across all treatments in larval delta smelt

[55]. Therefore, our findings support the fact that HSP’s are linked to phenotypic variation in

the response and vulnerability of larvae to thermal stress. Furthermore, HSP function and

response to stress is now recognized to be universal to all cells and not restricted to heat stress

[30]. Nutritional status, for instance, can further affect HSP responses to thermal stress and it
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has previously been shown that hsp expression can be related to feed deprivation in larval fish

[56]. Generally, expression levels of both hsp’s investigated in this study peaked around the

first-feeding stages, potentially representing a combined effect of thermal stress and develop-

mental preparation towards exogenous feeding. Thus, it would be interesting to further inves-

tigate this phenomenon in the future, by comparing phenotypic and molecular differences

between exogenously first-feeding and starving larvae. Moreover, it would be of interest to

investigate expression levels of hsp’s when larvae are reared under different conditions and not

in experimental flasks or chambers. Nevertheless though, expression levels of both genes at

18–20˚C remained lower compared to expression at the other temperatures during larval

development, which in combination with occurrence of the lowest number of deformities

most probably represents a more optimal thermal environment for rearing European eel

offspring.

The expression of gh, one of the somatotropic axis actor genes, was in this study shown to

be influenced by temperature during larval (pre-leptocephalus) development of European eel.

It has previously been observed in fish, that GHs are involved in most physiological processes

such as metabolism, and growth [31] and that they can be temperature sensitive [57]. In our

study, gh was up-regulated and expression peaked at 18–20˚C, probably representing the most

optimal environment for larval growth. Moreover, we observed an increase in gh expression

with larval developmental age, though we did not determine the location of gh regulation.

Expression of gh has been shown to be regulated in the liver of juveniles and adults, or in the

brain of larval stages of gilthead sea bream, Sparus aurata [58]. Similarly, expression of gh was

relatively weak during milkfish (Chanos chanos) embryogenesis and hatching but increased

during larval development starting on day 2 post hatch, implying an endogenous production

by the larval pituitary gland and coinciding with the period of accelerated larval growth [59].

The timing of ontogeny and functionality of the European eel pituitary gland has not been

completely documented yet, but an immunohistochemical study in this species suggests that

the majority of pituitary cells differentiate before metamorphosis to the glass eel stage, presum-

ably during the leptocephalus stages [60]. However, the first immunohistochemical GH signal

in the ricefield eel, Monopterus albus, has been recently detected as early as 3 dph [61]. Most

likely, the sharp increase of gh expression observed in our study corresponds to the timing of

pituitary GH secreting cells functionality. Although it needs to be further documented by

immunohistological data, our results would indicate the presence of GH secreting cells during

European eel early life ontogeny, much earlier than previously anticipated; an increased

expression was already observed at 4–6 dph. That would also be in accordance with the results

of a study of the closely related Japanese eel, where the gh transcripts and the production of

GH protein were detected at 6 dph (when reared at 23˚C), suggesting an important role of GH

in larval growth and survival before the leptocephalus stage [62].

IGFs, the other group of acting genes in the somatotropic axis and thus closely connected

and regulated by GH, are known to be stimulated by temperature and associated among others

with growth, metabolism and development [31]. In our study, we observed an increased

expression of igf-1 and igf-2bwith increasing larval age/stage at all temperatures investigated,

signifying the involvement of the somatotropic axis genes during larval development of Euro-

pean eel. Furthermore, transcripts for igf ’shave been detected throughout development in

unfertilized eggs, embryos, and larvae of several other fish species such as Senegalese sole

(Solea senegalensis), zebrafish (Danio rerio), sea bass (Dicentrarchus labrax), gilthead seabream

(Sparus aurata) and rabbitfish (Siganus guttatus), suggesting that they can be products of

maternal as well as embryonic genomes and that igf-1 and igf-2may thus regulate early devel-

opment of teleosts [63–66]. Similarly, in a recent study correlating gene expression to healthy

embryonic development and hatch success in European eel, it was shown that expression levels
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of igf-2 increased during embryogenesis until larval hatching [67]. Interestingly, in our study,

we observed an increased expression of igf-2a and igf-2b at hatch, strengthening the theory of

the involvement of igf ’sduring the hatching process of European eel.

Perspective

From an aquaculture perspective, this study determined the thermal tolerance limits and identi-

fied a more optimal intermediate thermal environment (18–20˚C), with efficient growth and

fewer deformities, for future rearing of ELH stages of European eel. The next step would be to

further optimize other environmental rearing conditions, such as salinity regime (similar to that

used in Japanese eel culture) and combine this information with our existing knowledge (light

and temperature). Together, these enhanced rearing conditions will provide a promising step

towards the sustainable culture of this species. So far, the intermediate thermal optimum, identi-

fied here, is colder than the optimal thermal rearing conditions (25˚C) of the closely related

Japanese eel [15]. Currently, the Japanese eel is the only eel species with a closed life cycle in cap-

tivity and the experimentally identified optimum thermal conditions are found to be similar to

those encountered in their recently identified natural spawning area [15, 16]. In this regard, a

recent study has shown that inducing vitellogenesis at 15˚C and final maturation at 18˚C, results

in higher reproductive performance of European eel [68]. These results indicate that European

eel reproductive maturation might occur in the deeper and colder layer while gamete develop-

ment in a slightly warmer layer of the Sargasso Sea. Thus, the thermal tolerance limits identified

in this study might not only advance the rearing conditions for future culture of European eel

larvae but possibly also contribute to the understanding for further hypotheses regarding the

natural spawning conditions and location. As such, the results of this study suggest that the hab-

itat (or niche) of the earliest life stages of European eel in nature might be the characteristic

“18˚C” ocean layer of the Sargasso Sea [7]. However, extrapolation of lab work to the field

should always be approached carefully. Thus, the mystery of the exact location of European eel

early life stages and their preferred conditions in nature still remains an enigma. However, we

clearly show that increasing temperature had a deleterious impact on European eel embryonic

and larval development and survival. Thus, our results support the recent hypotheses, that rising

temperatures in the Sargasso Sea (linked to factors such as North Atlantic Oscillation and food

availability) might show negative effects on eel recruitment [69–71].

Conclusion

In conclusion, this study provides important insights on phenotypic sensitivity to temperature

and the underlying gene expression of the associated molecular mechanisms in European eel lar-

vae. Temperature was found to influence all traits investigated, resulting in reduced larval stage

duration at higher temperatures due to accelerated development, but with decreasing yolk utili-

zation efficiency. The highest larval survival, combined with the lowest incidence of larval defor-

mities at hatch and the highest yolk utilization efficiency that occurred when reared at 18˚C, as

well as the correspondence with a high gh and low hsp expression, indicate a more optimal envi-

ronment for early life development and rearing. Understanding the biological responses, limits

and adaptabilities or preferences to extrinsic environmental factors, such as temperature, pro-

vides enhanced knowledge for the optimization of rearing techniques of a socially and economi-

cally important species such as European eel, as well as insights into its ecology.
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a b s t r a c t

Thyroid hormones (THs) are key regulators of growth, development, and metabolism in vertebrates and
influence early life development of fish. TH is produced in the thyroid gland (or thyroid follicles) mainly
as T4 (thyroxine), which is metabolized to T3 (3,5,30-triiodothyronine) and T2 (3,5-diiodothyronine) by
deiodinase (DIO) enzymes in peripheral tissues. The action of these hormones is mostly exerted by bind-
ing to a specific nuclear thyroid hormone receptor (THR). In this study, we i) cloned and characterized thr
sequences, ii) investigated the expression pattern of the different subtypes of thrs and dios, and iii) stud-
ied how temperature affects the expression of those genes in artificially produced early life history stages
of European eel (Anguilla anguilla), reared in different thermal regimes (16, 18, 20 and 22 �C) from hatch
until first-feeding. We identified 2 subtypes of thr (thra and thrb) with 2 isoforms each (thraA, thraB,
thrbA, thrbB) and 3 subtypes of deiodinases (dio1, dio2, dio3). All thr genes identified showed high simi-
larity to the closely related Japanese eel (Anguilla japonica). We found that all genes investigated in this
study were affected by larval age (in real time or at specific developmental stages), temperature, and/or
their interaction. More specifically, the warmer the temperature the earlier the expression response of a
specific target gene. In real time, the expression profiles appeared very similar and only shifted with tem-
perature. In developmental time, gene expression of all genes differed across selected developmental
stages, such as at hatch, during teeth formation or at first-feeding. Thus, we demonstrate that thrs and
dios show sensitivity to temperature and are involved in and during early life development of
European eel.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

The European eel (Anguilla anguilla) has been subjected to
extensive scientific inquiry due to its enigmatic natural ecology
(Van Ginneken and Maes, 2005; Miller et al., 2015; Righton et al.,
2016), the critically endangered status of the population (Jacoby
and Gollock, 2014), and the ongoing natural and anthropogenic
pressures on the already historically low stock (Friedland et al.,
2007; Bonhommeau et al., 2008; Geeraerts and Belpaire, 2010;
ICES, 2015). As such, researchers are now employing technological
means to circumvent the European eel decline and are striving to
establish a sustainable aquaculture. Unfortunately, the aquaculture
industry for European eel has been drastically reduced (ICES, 2015)

due to the fact that it is capture-based, relying on wild-caught off-
spring (juvenile glass eels), which are unsustainably farmed until
marketable size. The earliest life stages of European eel have not
been encountered in nature, thus research needs to focus on labo-
ratory studies to overcome current bottlenecks and gain knowl-
edge about the species physiology and ecology. With recent
advances in assisted reproduction (Butts et al., 2014; Müller
et al., 2016; da Silva et al., 2016) and larval culture of European
eel (Politis et al., 2014a; Sørensen et al., 2016; Butts et al., 2016)
this is now possible and warrants further investigation. In addition,
the European eel genome has recently been sequenced (Henkel
et al., 2012), which offers new and emerging perspectives for fun-
damental molecular studies in eel biology (Rozenfeld et al., 2016).

In order to close the life cycle in captivity, similar bottlenecks
needed to be overcome regarding the closely related Japanese eel
(Anguilla japonica), which was accomplished in recent years
(Masuda et al., 2012; Tanaka, 2015). Extensive efforts have been
devoted to reach breakthrough achievements, forming the baseline
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knowledge for eel research (Tanaka et al., 2001, 2003). Subse-
quently, several studies have focused on assessing the extrinsic
(environmental) and intrinsic (genetic) requirements and prefer-
ences of all life stages in order to identify the most optimal condi-
tions for rearing early life history (ELH) stages of this species
(Yamano et al., 2007; Ahn et al., 2012; Hsu et al., 2015). However,
still there seems to be large variation and differences in larval
growth of artificially and naturally reproducing eels (Miller,
2009). Environmental factors such as temperature have been
shown to drastically influence larval morphology and survival
(Okamura et al., 2007; Ahn et al., 2012). Moreover, it was shown
that the thyroid hormone (TH) pathway may control the early life
development of Japanese eels, similar to Japanese conger eels (Con-
ger myriaster) through thyroid hormone receptors (THR)
(Kawakami et al., 2003; Kawakami et al., 2013). Thus, TH treatment
has been applied to enable synchronizedmetamorphosis leading to
a lower developmental variability (Yamano et al., 2007).

Generally, THs are key regulators of growth, development, and
metabolism in vertebrates (Power et al., 2001, Warner and
Mittag, 2012, Tata, 2006). THs are produced in the thyroid gland
(or thyroid follicles) mainly as T4 (thyroxine), which is metabo-
lized to T3 (3,5,30-triiodothyronine) and T2 (3,5-diiodothyronine)
by deiodinase enzymes (DIO1-3) in peripheral tissues (Kӧhrle,
2000). The action of THs are mostly exerted by binding to specific
nuclear THRs, although a non-genomic pathway has been shown to
mediate TH functions through cellular signal transduction systems
and cell surface receptors (Davis et al., 2008). THRs belong to the
subfamily I of nuclear hormone receptors and share a modular
structure composed of a N-terminal region (termed A/B domain),
a conserved DNA binding domain (DBD or C region), a less con-
served hinge region (D) followed by the ligand binding domain
(LBD or E domain), and the C-terminal region (F region). In mam-
mals, two genes (thra and thrb) generally encode THRa and THRb
(Lazar et al., 1993), whereas several genes encoding THRa and
THRb can be found in fish, due to teleost genome duplication
events (Nelson and Habibi, 2009). For instance, two thra genes
have been described in zebrafish, Danio rerio (Takayama et al.,
2008) and other fish species (Bertrand et al., 2007), while two thrb
have been reported in Japanese conger eel (Kawakami et al., 2003).

Increasing evidence suggests that THs have important roles
during early life development and metamorphosis in fish
(Marchand et al., 2004, Walpita et al., 2007, Infante et al., 2008,
Campinho et al., 2010). The Japanese conger eel (Kawakami et al.,
2003) and the Japanese eel (Kawakami et al., 2013) were previ-
ously chosen as model species to investigate the TH role on devel-
opment and metamorphosis of Anguilliformes. An investigation of
two isoforms of thra (thraA and thraB) and two isoforms of thrb
(thrbA and thrbB) showed differentially regulated gene expression
for all isoforms during development and metamorphosis in Japa-
nese eel (Kawakami et al., 2013). Thyroid hormones induce differ-
ential transactivation activity of the different thr isoforms, and
interestingly, elevated gene expression was observed between
hatching and the transition to exogenous feeding (Kawakami
et al., 2013). Thus, it is of importance to further elucidate the thr
expression profiles during this sensitive period of anguillid ELH,
but especially during the still mysterious ELH of European eel.

The objectives of this study were to i) clone and characterize thr
sequences, ii) follow the expression pattern of thrs and dios, and iii)
investigate how temperature affects the expression of those genes
in artificially produced ELH stages of European eel, reared in differ-
ent thermal regimes from hatch until first-feeding.

2. Materials and methods

All fish were handled in accordance with the European Union
regulations concerning the protection of experimental animals

(Dir 86/609/EEC). Experimental protocols were approved by the
Animal Experiments Inspectorate (AEI), Danish Ministry of Food,
Agriculture and Fisheries (permit number: 2012-15-2934-00458).
Adult eels were anesthetized using ethyl p-aminobenzoate (ben-
zocaine) before tagging and handling. Endogenously feeding lar-
vae of European eel were anesthetized prior to handling and
euthanized prior to sampling by using tricaine methanesulfonate
(MS-222). All efforts were made to minimize animal handling
and stress.

2.1. Broodstock management and gamete production

Female silver eels were wild-caught (lake Vandet, Jutland, Den-
mark), while male eels were farmed (Stensgård Eel Farm A/S). Prior
to experimental maturation, the fish were transported to a DTU
Aqua research facility (Lyksvad Fishfarm, Vamdrup, Denmark),
and housed in 300 L tanks equipped with a recirculation system
(Tomkiewicz, 2012). Eels were maintained under low intensity
light (�20 lux), 12 h day/12 h night photoperiod, salinity of �36
ppt, and temperature of 20 �C. Acclimatization took place over
14 days and the eels were not fed during the entire experimental
period. Furthermore, eels were anaesthetized (ethyl p-
aminobenzoate, 20 mg L�1; Sigma-Aldrich, Missouri, USA) and
tagged with a passive integrated transponder. To induce vitelloge-
nesis females received weekly injections of salmon pituitary
extract (Argent Chemical Laboratories, Washington, USA) at
18.75 mg kg�1 body weight (Kagawa et al., 2005; Tomkiewicz,
2012). To stimulate follicular maturation and induce ovulation,
females received 17a,20b-dihydroxy-4-pregnen-3-one (Sigma-
Aldrich, Missouri, USA) at 2 mg kg�1 body weight (Ohta et al.,
1996) and were strip-spawned after 12–14 h. Males received
weekly injections of human chorionic gonadotropin (Sigma-
Aldrich, Missouri, USA) at 150 IU/fish (Tomkiewicz, 2012). Prior
to fertilization, an additional injection was given and milt was col-
lected by strip-spawning �12 h after administration of hormone.
Milt samples were pipetted into a P1 immobilizing medium
(Peñaranda et al., 2010) and only males with sperm motility of cat-
egory IV (75–90%) were used for fertilization, within 4 h of collec-
tion (Butts et al., 2014). Eggs from each female were strip-spawned
and fertilized separately by different sperm pools to create individ-
ual parental crosses. Subsequently, 0.2 lm filtered UV sterilized
North Sea seawater was added for a gamete contact time of 5
min. Seawater was adjusted to 20 �C (±0.1 �C) and 36 (±0.1) ppt
using Red Sea Salt (Red Sea Europe, Verneuil-sur-Avre, France).
Only floating viable eggs/embryos were further used for
experimentation.

2.2. Experimental conditions and design

During the spawning season, 25% of females successfully pro-
duced larvae after assisted reproduction treatments. Females rep-
resented here (n = 4) had a mean (±SEM) standard length and
body weight of 65 ± 4 cm and 486 ± 90 g, respectively, while males
(n = 11) had a mean (±SEM) standard length and body weight of 40
± 3 cm and 135 ± 25 g, respectively. In this study, four individual
parental crosses were used. Egg density for each parental combina-
tion was determined by counting 3 � 0.1 mL subsamples from the
floating layer. Within 30 min post fertilization, �500 floating
viable eggs/embryos per 100 mL, with a mean size (±SD) of 1.5 ±
0.1 mm (at 2 h post fertilization), were distributed in replicated
600 mL flasks [182.5 cm2 sterile tissue culture flasks with plug seal
caps (VWR�)]. Seawater was supplemented with rifampicin and
ampicillin (each 50 mg L�1, Sigma-Aldrich, Missouri, USA), which
previously has been shown to increase survival in a controlled
experimental environment (Sørensen et al., 2014). Embryos and
larvae, from each parental cross, were reared in thermally con-
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trolled incubators (MIR-154 Incubator, Panasonic Europe B.V.) at
five temperatures (16, 18, 20, 22, and 24 �C ± 0.1 �C). All experi-
mental units were acclimatized to the appropriate temperature
regime within 1 h and salinity was kept at 36 ± 1 ppt. Temperature
and salinity conditions were chosen to closely resemble the envi-
ronmental conditions encountered at different depths of the
assumed spawning areas in the Sargasso Sea (Castonguay and
McCleave, 1987). Rearing of embryos and larvae took place in dark-
ness, while handling and sampling was conducted under low
intensity (<2.2 lmol m�2 s�1) light conditions (Politis et al.,
2014a). At hatch and every second day post-hatch until the corre-
sponding first-feeding stage (Fig. 1), �30 larvae from each parental
cross (�4), each temperature (16, 18, 20 and 22 �C), and each repli-
cate (�2) were randomly sampled for later molecular analyses.
Those endogenously feeding larvae were immediately euthanized
using MS-222 (Sigma-Aldrich, Missouri, USA), rinsed with deion-
ized water, preserved in a RNA Stabilization Reagent, and kept at
�20 �C following the procedure suggested by the supplier (Qiagen,
Hilden, Germany). For further details on experimental design, rear-
ing conditions, as well as larval morphology and development see
Politis et al. (2017).

2.3. Data collection

2.3.1. Cloning and molecular characterization
cDNA sequences for thrs were predicted from genomic DNA

sequences originating from the European eel genome assembly
(WGS Project: AZBK01), available in NCBI resources (Henkel
et al., 2012). Briefly, blastn requests were performed from Japanese
eel cDNA thr sequences on the European eel WGS database to iden-
tify genomic contigs, including thr genes. European eel thr cDNA
sequences were then deduced from contigs using GENSCAN
(http://genes.mit.edu/GENSCAN.html) software (Burge et al.,
1997). The predicted transcript sequences for each thr gene were
confirmed by sequencing cDNAs from European eel RNA amplifica-
tion. Cloning was achieved using TOPO TA cloning kit (Invitrogen)
with pCRTMII-TOPO� vector, according to the manufacturer’s
instructions. Primers sequences were as follows:

thraA (F) 50-GGGTCGCTGAGGAGACCT-30,
thraA (R) 50-GGTGCTCAGACGTCCTGGT-30,
thraB (F) 50-GCCCAACGACCCTAACCTAT-30,
thraB (R) 50-GGATAGTAAATCAGGCCCTTAATC-30,
thrbA (F) 50-GACTCCGAGGCCCTAATTCT-30,
thrbA (R) 50-GACTCCGAGGCCCTAATTCT-30,
thrbB (F) 50-GAAGACTGAGCCCTGAGGTG-30,
thrbB (R) 50-TCACATGTACCCGCATTTGT-30.

The cloned cDNA was sequenced with T7 and Sp6 primers by
Beckman Coulter Genomics Inc (United Kindom). European eel
thr cDNA sequences have been deposited to GenBank� with acces-
sion numbers found in Table 1.

2.3.2. Phylogenetic analysis
A phylogenetic tree was constructed using the Neighbor-Joining

method (Saitou and Nei, 1987) with amino acid thr vertebrate
sequences. The evolutionary distances were computed using the
JTT matrix-based method (Jones et al., 1992) and are in the units
of the number of amino acid substitutions per site. All positions
containing gaps and missing data were eliminated. For the analy-
sis, 1000 bootstrap replicates were carried out. Phylogenetic anal-
ysis was conducted in MEGA6 (Tamura et al., 2013). The GenBank
accession numbers of the sequences used can be found in the Sup-
plementary material.

2.3.3. Gene expression
For total RNA extraction, the larval pool (�30 larvae) of each

replicate was homogenized in 800 ml Tri-Reagent (Sigma-Aldrich,
Missouri, USA). After obtaining the aqueous phase by incubation
in 160 ml chloroform, RNA was extracted using the InviTrap� Spin
tissue RNA MiniKit (STRATEC Biomedical AG, Berlin-Buch, Ger-
many) following the manufacturer’s instructions. RNA concentra-
tion and purity were determined by spectrophotometry
(260/280 = 2.12 ± 0.16, 230/260 = 2.16 ± 0.16), using Nanodrop
ND-1000 (Peqlab, Germany). From the resulting total RNA, 680
ng were transcribed using the Quanta qScript cDNA Synthesis Kit
(Promega, Germany), according to the manufacturer’s instructions,
including an additional gDNA wipe out step prior to reverse tran-
scription [Quanta PerfeCta DNase I Kit (Promega, Germany)].

The expression levels of target genes (thyroid hormone recep-
tors: thraA, thraB, thrbA, thrbB and deiodinases: dio1, dio2, dio3)
and reference genes (ef1a, 18 s, 40 s) were determined by quantita-
tive real-time PCR (qRT-PCR) using specific primers. The ef1a, 18 s,
40 s genes were chosen as housekeeping genes since qBase + soft
ware revealed that these mRNA levels were stable throughout ana-
lyzed samples (M < 0.4); M gives the gene stability and M < 0.5 is
typical for stably expressed reference genes (Hellemans et al.,
2007). Using primer 3 software v 0.4.0 (http://frodo.wi.mit.edu/
primer3/) primers were designed i) for thraA, thraB, thrbA and
thrbB based on cloned cDNA sequences, ii) for ef1a and 40 s based
on sequences available in Genbank nucleotide database, and iii) for
dio1, dio3 and 18 s based on sequences available in the European
eel transcriptome EeelBase 2.0 database (http://compgen.bio.
unipd.it/eeelbase/), as indicated in Table 1. To design the primers
of dio2 a European eel predicted cDNA sequence was used and
the size of the amplicon obtained by amplification was checked
(http://www.zfgenomics.com/sub/eel). All primers were designed
for an amplification size ranging from 75 to 200 nucleotides and
the amplicons obtained were of the expected size (Table 1).

Expression of genes in each larval sample (4 parental crosses �
2 replicates � 4 temperatures) were analyzed in technical tripli-
cates using the qPCR BiomarkTM HD system (Fluidigm) based on
96.96 (GE chips) dynamic arrays (Miest et al., 2015). In brief, a
pre-amplification step was performed with a 500 nM primer pool
of all primers in TaqMan-PreAmpMaster Mix (Applied Biosystems)
and 1.3 ml cDNA per sample at 10 min at 95 �C; 14 cycles: 15 s at
95 �C and 4 min at 60 �C. Obtained PCR products were diluted
1:10 with low EDTA-TE buffer. The pre-amplified product was
loaded onto the chip with SSofast-EvaGreen Supermix low Rox
(Bio Rad) and DNA-Binding Dye Sample Loading Reagent (Flu-
idigm). Primers were loaded onto the chip at a concentration of
50 mM. The chip was run according to the Fluidigm 96.96 PCR pro-
tocol with a Tm of 60 �C. The relative quantity of target gene tran-
scripts was normalized against the geometric mean of the three
housekeeping genes and analyzed using the DD Ct method (Livak
and Schmittgen, 2001). Coefficient of variation (CV) of triplicates
was calculated and checked to be <0.04 (Hellemans et al., 2007).
If CV was found to be >0.04, triplicates were checked for outliers
and if possible duplicate measurements were used. If the use of
duplicates was not possible (CV > 0.04) the whole data point was
omitted from the analysis. Moreover, malfunctions on the chip
and/or unsuccessful RNA extractions can result in expression fail-
ures, as was the case for some samples in this study.

2.4. Statistical analyses

All data were analyzed using SAS statistical software (version
9.1; SAS Institute Inc., Cary, North Carolina). Residuals were tested
for normality using the Shapiro–Wilk test and homogeneity of
variances was tested using a plot of residuals versus fit values
(PROC GLOT, SAS Institute 2003). Data were log10 or arcsine
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square-root-transformed when data deviated from normality and/
or homoscedasticity (Zar, 1996).

Statistical models were used to investigate temperature effects
on gene expression throughout early larval development [Ages 0–
18 days post hatch (dph)] and at specific developmental stages
(Stages 1–3). Across the different temperature treatments, Stage
1 represents the day of hatch, Stage 2 represents the timing of
teeth formation, and Stage 3 represents the first-feeding stage
(Fig. 1). Together, this allowed us to decipher changes in tempera-
ture at real-time and standardized developmental intervals.

To examine the effect of temperature on gene expression
throughout early development (real time), we used two statistical
approaches. In the first approach, we analyzed the data using a ser-
ies of mixed-model repeated measures ANOVAs (PROC MIXED; SAS
Institute 2003). Models contained the Temperature (16, 18, 20 and
22 �C) and Age (0–18 dph) main effects as well as the Temperature
� Age interaction. Akaike’s (AIC) and Bayesian (BIC) information
criteria were used to assess which covariance structure (compound
symmetry, autoregressive order, or unstructured) was most appro-
priate (Littell et al., 1996). Temperature and Age were considered
fixed, whereas parental cross was considered random. Tukey’s post
hoc analyses were used to compare least-squares means between

treatments. If a significant Temperature � Age interaction was
detected the model was decomposed into a series of reduced
ANOVA models to determine the effect of Temperature for each
Age and of Age for each Temperature. This was the case for dio3
and thraA. The reduced models involved only preplanned compar-
isons and did not include repeated use of the same data, so a-level
corrections for a posteriori comparisons were not necessary.

In the second approach, we examined variation in gene expres-
sion, throughout development at each temperature, by fitting
either linear, quadratic or cubic equations to the data (PROC
REG; SAS Institute 2003). This allowed us to create predictive mod-
els to explore the shape of variation throughout development for
each temperature. Linear, quadratic and cubic equations were cho-
sen a priori to fit the data based on the available literature (e.g.
McDonald, 2009; Sørensen et al., 2016). Final equation selection
(linear, quadratic or cubic) was based on an F-statistic: d.f.j � (R2

j

� R2
i )/(1 – R2

j ), where: R2
i = the R2 for the i-th order, R2

j = the R2 for
the next higher order, d.f.j = the degrees of freedom for the higher-
order equation with j degrees of freedom in the numerator and d.
f.j = n � j � 1 degrees of freedom in the denominator (McDonald,
2009). Graphs and regressions were prepared in SigmaPlot (Version
13.0).

Fig. 1. Stage specific European eel larval development at 18 �C in days post hatch (DPH) and hours post fertilization (HPF). Stage 1 represents hatching, Stage 2 represents
teeth formation, and Stage 3 represents first-feeding.

Table 1
Sequences of European eel, Anguilla anguilla primers used for amplification of genes by qRT-PCR. Primers were designed from cloned THR cDNA sequences and other sequences
available in GenBank Nucleotide, the European eel transcriptome database (EeelBase 2.0, http://compgen.bio.unipd.it/eeelbase/) or the eel genome website (http://www.
zfgenomics.com/sub/eel). The table lists accession number and corresponding database of target gene sequences.

Full name Abbreviation Databases Accession numbers Primer sequence (50-30)
(F: Forward; R: Reverse)

Deiodinase 1 dio1 EeelBase 2.0 Eeel2-c186 F: AGCTTTGCCAGAACGACTGT
R: TTCCAGAACTCTTCGCACCT

Deiodinase 2 dio2 Eel genome website g12347 F: GAAGAGGAGGATCGCCTACC
R: GCACTCTACCTCCGTCCAAA

Deiodinase 3 dio3 EeelBase 2.0 Eeel-c22164 F: TACGGGGCGTATTTTGAGAG
R: GCTATAACCCTCCGGACCTC

Thyroid Hormone Receptor alpha A thraA GenBank Nucleotide KY082904 F: GCAGTTCAACCTGGACGACT
R: CCTGGCACTTCTCGATCTTC

Thyroid Hormone Receptor alpha B thraB GenBank Nucleotide KY082905 F: GAAGCCTTCAGCGAGTTCAC
R: ACAGCCTTTCAGGAGGATGA

Thyroid Hormone Receptor beta A thrbA GenBank Nucleotide KY082906 F: AGGAACCAATGCCAAGAATG
R: GCCTGTTCTCCTCAATCAGC

Thyroid Hormone Receptor beta B thrbB GenBank Nucleotide KY082907 F: GAAGACTGAGCCCTGAGGTG
R: AGGTAATGCAGCGGTAATGG

Elongation Factor 1-alpha ef1a GenBank Nucleotide EU407824.1 F: CTGAAGCCTGGTATGGTGGT
R: CATGGTGCATTTCCACAGAC

Ribosomal 18S RNA 18 s EeelBase 2.0 eeel2_s7245 F: AGAGCAGGGGAACTGACTGA
R: ACCTGGCTGTATTTGCCATC

Ribosomal 40S RNA 40 s GenBank TSA GBXM01005349.1 F: TGACCGATGATGAGGTTGAG
R: GTTTGTTGTCCAGACCGTTG
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3. Results

3.1. Cloning and molecular characterization

In this study, two forms of THRa (termed aaTHRaA and
aaTHRaB) as well as two forms of THRb (named aaTHRbA and
aaTHRbB) were cloned in European eel larvae. The full CDS (coding
DNA sequence) of the four THRs was sequenced. The nucleotide
sequences of aaTHRaA (GenBank accession number KY082904)
and aaTHRaB (accession number KY082905) are 1375 bp and
1334 bp long, with an open reading frame (ORF) that codes for a
protein of 416 and 435 amino acids respectively, while the nucleo-
tide sequences of aaTHRbA (GenBank accession number
KY082906) and THRbB (GenBank accession number KY082907)
are 1288 bp and 1299 bp long, coding for 396 and 378 amino acid
proteins respectively (see Supplementary material).

3.2. Phylogenetic analysis

The phylogenetic tree constructed by the Neighbor-Joining
method from multiple sequence alignment of thr amino acid
sequences from a range of vertebrates reveals that European eel
thra and thrb, grouped into two clearly separated clades (99 boot-
strap for both clades). In addition, the topology of the phylogenetic
tree showed that European eel thr sequences clustered within the
teleost group and each time the Japanese eel homolog thr sequence
was the evolutionary closest (Fig. 2).

3.3. Gene expression

No larvae survived at 24 �C. Gene expression of selected genes
was compared across the other temperature treatments (16, 18,
20 and 22 �C) in real time and at specific developmental stages
(developmental time). The expression of target genes was
affected in real and/or developmental time by larval age (or
stage), temperature, and/or their interaction (see specific genes
below).

3.3.1. Deiodinases
In developmental time, expression of dio1 significantly (P =

.004) increased on Stage 2 (teeth formation) and 3 (first-feeding),
while no significant (P = .271) effect of Temperature was detected
(Fig. 3A and B). In real time, gene expression of dio1 was signifi-
cantly affected by Temperature (P = .034) and Age (P < .0001),
while no significant Temperature � Age interaction was detected
(P = .903). Gene expression of dio1 significantly increased at 22 �C
(Fig. 3C) and significantly increased throughout ontogeny with
increasing larval Age (Fig. 3D). The relationship between Age and
dio1 expression was best explained by a sigmoidal cubic regression
at 16 �C (Fig. 3E). There were no significant relationships between
Age and dio1 expression (Fig. 3F-H) at the other temperatures.

Similarly, expression of dio2 significantly (P = .008) increased on
Stage 3 (first-feeding), while no significant effect of Temperature
was detected (P = .178; Fig. 3I and J) in developmental time. In real
time, gene expression of dio2 increased throughout ontogeny with
increasing larval Age (P < .0001; Fig. 3L), while no significant Tem-
perature (P = .088; Fig. 3 K) or Temperature � Age interaction (P =
.394) was detected. The relationships between Age and dio2
expression were best explained by sigmoidal cubic regressions at
16 �C, 18 �C and 20 �C (Fig. 3M-O). There was no significant rela-
tionship between Age and dio2 expression at 22 �C (Fig. 3P).

On the other hand, expression of dio3 significantly (P < .0001)
increased on Stage 1 (hatch) and was significantly impacted by
Temperature (P = .014; Fig. 3Q and R) when compared in develop-
mental time, as well as significantly affected by the Temperature

� Age interaction (P < .0001) when compared in real time. Thus,
the model was decomposed into a series of reduced ANOVAmodels
to determine the effect of Temperature for each Age (Fig. 3S) and of
Age for each Temperature (Fig. 3 T-W). Significant differences in
gene expression of dio3 among temperatures occurred throughout
development on 0 (P = .030), 2 (P = .019), 10 (P = .044), 12 (P < .00
01) and 14 dph (P = .006; Fig. 3S). Larval Age significantly influ-
enced gene expression of dio3 when larvae were reared at 16, 18
and 20 �C (P < .0001; Fig. 3 T-V), but not at 22 �C (P = .056; Fig. 3
W). The relationships between Age and dio3 expression can be
explained by quadratic parabola regressions at all temperatures
investigated (Fig. 3 T-W).

3.3.2. Thyroid hormone receptors
In developmental time, expression of thraA significantly (P < .0

001) increased on Stage 2 (teeth formation) and 3 (first-feeding),
while no significant (P = .167) effect of Temperature was detected
(Fig. 4A and B). In real time, gene expression of thraA was signifi-
cantly affected by the Temperature � Age interaction (P = .039).
Thus, the model was as above decomposed into a series of reduced
ANOVA models to determine the effect of Temperature for each
Age (Fig. 4C) and of Age for each Temperature (Fig. 4D-G). Signifi-
cant differences in gene expression of thraA among temperatures
occurred throughout development on 2 (P = .033) and 8 dph (P =
.016; Fig. 4C). Larval Age significantly influenced gene expression
of thraA and relationships between Age and thraA expression can
be explained by linear regressions at 16 �C, 20 �C and 22 �C
(Fig. 4D, F and G), or by a sigmoidal cubic regression at 18 �C
(Fig. 4E).

Similar to thraA, expression of thraB significantly (P < .0001)
increased on Stage 2 (teeth formation) and 3 (first-feeding), while
no significant (P = .267) effected of Temperature was detected
(Fig. 4H and I). In real time, gene expression of thraB was
significantly affected by Temperature (P = .006; Fig. 4 J) and Age
(P < .0001; Fig. 4 K), while no significant Temperature � Age
interaction (P = .147) was detected. Gene expression of thraB
significantly increased at 22 �C (Fig. 4J) and significantly increased
(up to 5-fold) throughout ontogeny with increasing larval Age
(Fig. 4K). The relationships between Age and thraB expression
were best explained by linear regressions at 16 �C, 20 �C and
22 �C (Fig. 4L, N and O), or by a sigmoidal cubic regression at
18 �C (Fig. 4M).

In contrast to all the other thrs, expression of thrbA significantly
(P = .001) decreased from Stage 1 (hatch), while no significant (P =
.098) effect of Temperature was detected (Fig. 5A and B). In real
time, gene expression of thrbA was not significantly affected by
Temperature (P = .342; Fig. 5C) and no Temperature � Age interac-
tion (P = .940) was detected. On the contrary, a significant (P =
.0003) effect of Age was detected (Fig. 5D). The relationships
between Age and thrbA expression were best explained by linear
regressions at 18 �C and 22 �C (Fig. 5F, H). No significant relation-
ships between Age and thrbA expression were detected at 16 and
20 �C (Fig. 5E, G).

Similar to thras, expression of thrbB significantly (P < .0001)
increased on Stage 2 (teeth formation) and 3 (first-feeding), while
no significant (P = .203) effect of Temperature was detected (Fig. 5I
and J). In real time, gene expression of thrbB was significantly
affected by Temperature (P = .012; Fig. 5K) and larval Age (P < .00
01; Fig. 5L), while no significant Temperature � Age interaction
(P = .296) was detected. Gene expression of thrbB significantly
increased at 16 �C and 22 �C (Fig. 5K), while significantly
increased (up to 6-fold) throughout ontogeny with increasing
larval Age (Fig. 5L). The relationships between Age and thrbB
expression were best explained by linear regressions at 16 �C and
22 �C (Fig. 5M, P), or by quadratic parabola regressions at 18 �C
and 20 �C (Fig. 5N, O).
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Fig. 2. Phylogenetic relationships among thyroid hormone receptors (THRs) of four vertebrate classes were inferred using the Neighbor-Joining method. Fish orders are in
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for small and large protein forms. The mention tr indicates sequences of truncated proteins. Partial sequences have been omitted.

S.N. Politis et al. / General and Comparative Endocrinology 259 (2018) 54–65 59



Fig. 3. Effect of temperature on larval European eel, Anguilla anguilla gene expression of dio1 (A and B), dio2 (I and J) or dio3 (Q and R) at specific developmental Stages (1:
hatch, 2: teeth formation and 3: first-feeding) and dio1(C and D), dio2 (K and L) or dio3 (S) in real time, as well as effect of age on dio1 (E-H), dio2 (M-P) or dio3 (T-W)
expression at each temperature. Data points with an asterisk (*) were not included in the statistical model due to insufficient sample size. Values represent means (±SEM)
among 4 crosses at each temperature. Means were contrasted using the Tukey-Kramer method and treatments with the same letters are not significantly different (P > .05).
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4. Discussion

This study aimed at enhancing our knowledge on the molecular
mechanisms controlling European eel early life development. In
fish, it has been suggested that THs play a role during the transi-
tional period towards exogenous feeding and that thr expression
can be affected by food deprivation (Raine et al., 2005). This study
focused solely on the endogenous feeding period, where we inves-
tigated the expression patterns of genes encoding for THRs and
deiodinases from hatching until first-feeding. Generally and within
the thermal tolerance limits of each particular species, increasing
temperature accelerates all biochemical processes, causing a shift
in early fish development (Martell et al., 2005; Politis et al.,
2014b) and gene expression can follow a similar pattern (Politis

et al., 2017). In this study, we observed that the warmer the tem-
perature the earlier the expression response of a specific target
gene. Thus, even though the expression profiles often appeared
very similar and only shifted with temperature (when compared
in real time), they were affected (in real and/or developmental
time) by larval age (or stage), temperature, and/or their interaction.

In more detail, fish ELH has been correlated to thyroid hormone
metabolism, which is under the control of the hypothalamus-
pituitary-thyroid axis, where the thyroid gland is synthesizing TH
(Jarque and Piña, 2014). This is regulated by the thyroid stimulat-
ing hormone (thyrotropin), which is released by the pituitary as a
consequence of the thyrotropin-releasing hormone from the
hypothalamus (MacKenzie et al., 2009). TH is synthesized as a pre-
cursor (T4) with weak bioactivity and can be converted into active

Fig. 4. Effect of temperature on larval European eel, Anguilla anguilla gene expression of thraA (A and B) or thraB (H and I) at specific developmental stages (1: hatch, 2: teeth
formation and 3: first-feeding) and thraA (C) or thraB (J and K) in real time, as well as effect of age on thraA (D-G) or thraB expression (L-O) at each temperature. Data points
with an asterisk (*) were not included in the statistical model due to insufficient sample size. Values represent means (±SEM) among 4 crosses at each temperature. Means
were contrasted using the Tukey-Kramer method and treatments with the same letters are not significantly different (P > .05).
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hormones (T3) or inactive metabolites (reverse-T3 or T2) by three
transmembrane proteins, the iodothyronine deiodinases (DIO1-3),
in peripheral tissues. They selectively remove iodine moieties
towards the active forms through the outer and the inactive forms
through the inner ring deiodination processes (Jarque and Piña,
2014). Here, we inter alia identified and followed the expression
patterns of all three iodothyronine deiodinase genes (dio1-3) dur-
ing early (yolk-sac) larval stages of experimentally reared (from
hatch until first-feeding) European eel. Interestingly, expressions
of dio2 and dio3were elevated at hatch, potentially due to maternal
origin (Castillo et al., 1993; Olsen and Press, 1997; Huttenhuis
et al., 2006; Swain and Nayak, 2009; Lee et al., 2013), or possibly
representing their involvement in specific processes around hatch-
ing. Thus, it would be of interest to follow their expression patterns
(and the consequences of potential variations) also during embryo-

genesis and embryonic development, in order to elucidate their
role during this sensitive life period. Furthermore, the expression
slowly decreased during the first couple of dph until a clear sig-
moidal or exponential increase was observed, respectively. For
dio1, we did not observe a similarly clear pattern in all thermal
regimes.

Deiodination in the peripheral tissues of fish has been linked to
several functional and vital processes, while showing sensitivity to
environmental organic contaminants (Adams et al., 2000; Couderc
et al., 2016), as well as physical environmental factors, such as pH
(Mol et al., 1998), temperature (Adams et al., 2000), salinity
(Orozco et al., 2002), and/or light (Comeau et al., 2000; Wambiji
et al., 2011). Temperature has been shown to influence the outer
and/or the inner ring deiodination of species, such as rainbow
trout, Oncorhynchus mykiss (Johnston and Eales, 1995), blue tilapia,

Fig. 5. Effect of temperature on larval European eel, Anguilla anguilla gene expression of thrbA (A and B) or thrbB (I and J) at specific developmental stages (1: hatch, 2: teeth
formation and 3: first-feeding) and thrbA (C and D) or thrbB (K and L) in real time, as well as effect of age on thrbA (E-H) or thrbB expression (M-P) at each temperature. Values
represent means (±SEM) among 4 crosses at each temperature. Means were contrasted using the Tukey-Kramer method and treatments with the same letters are not
significantly different (P > .05).
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Oreochromis Aureus (Mol et al., 1997), Atlantic cod, Gadus morhua
(Cyr et al., 1998; Comeau et al., 2000), American plaice, Hippoglos-
soides platessoides (Adams et al., 2000) and zebrafish (Little et al.,
2013). In the present study, we experimentally showed that tem-
perature had a significant effect (in real and/or developmental
time) on gene expression related to deiodination activities during
early larval development of European eel. Moreover, we showed
that the expression of all deiodination genes are significantly
affected by the age or stage of eel larvae. Within the thermal toler-
ance limits, we commonly observed elevated expression towards
and within the first-feeding window, which probably corresponds
to a timing of refinement for organogenesis (e.g. brain, liver, gastro
intestinal tract, etc.) and/or specific functional tissue (e.g. teeth,
eyes, etc.), in order to ensure optimal transition from endogenous
to exogenous feeding (Sørensen et al., 2016; Butts et al., 2016).

Thyroid hormones are moreover known to regulate the level of
THRs, which are members of the steroid hormone receptor super-
family (Evans, 1988). Two subtypes, with isoforms within the sub-
types, are found to be products of distinct genes or splice variants
of the same gene (Kawakami et al., 2013). In the present work, we
have identified and cloned the full CDS of two thra (thraA and
thraB) and two thrb (thrbA and thrbB) gene forms in European eel
larvae and followed their expression patterns from hatch to the
first-feeding stage. All four European eel sequences contain the
conserved DBD and LBD domains and two putative zinc fingers,
providing evidence that they should be functional (see Supplemen-
tary material). The phylogenetic tree constructed, using several
THR vertebrate sequences, reveals that European eel thrs are close
to their fish orthologs, showing the highest homology (97–99%)
with Japanese eel sequences (Kawakami et al., 2013). In thraB,
however, an insertion of 22 amino acids was observed at the N-
terminus part (A/B domain), which is missing in the corresponding
Japanese eel sequence.

Similarly, to the genes involved in the deiodination process, thrs
were affected by both, larval age, and temperature. Expression of
thr genes increased during development, usually in a linear or an
exponential fashion, with the exception of thrbA that decreased
during development. Similar to the expression of deiodinases,
expression of thrs was usually high around the first-feeding stages,
probably representing the involvement of the THRs towards and
during the refinement of organogenesis and specific tissue for an
optimal transition to exogenous feeding. Moreover, in real time,
temperature was found to impact the expression pattern of thr
genes. Generally, increasing temperature caused acceleration in
development (Politis et al., 2017) and the warmer the temperature,
the earlier the expression response of a specific target gene, poten-
tially corresponding to the timing of specific ontogenic develop-
ment. Interestingly, the expression of thrbA showed a slight
increase at the first sampling points (hatch), which could theoret-
ically be due to maternal origin (Castillo et al., 1993; Olsen and
Press, 1997; Huttenhuis et al., 2006; Swain and Nayak, 2009; Lee
et al., 2013), while it remained low during the rest of the investi-
gated developmental period. This could imply that thrbA genes
are not involved in ontogenic development of the ELH stages but
potentially gain functionality during the later and/or adult stages
of this species, as it has been presented for the related Japanese
conger eel (Kawakami et al., 2003) and Japanese eel (Kawakami
et al., 2013).

In conclusion, we cloned and characterized thr sequences, fol-
lowed the expression pattern of thrs and dios, and showed that
temperature affected the expression of those genes in artificially
produced ELH stages of European eel, reared in different thermal
regimes from hatch until first-feeding. We identified 2 subtypes
of thr (thra and thrb) with 2 isoforms each (thraA, thraB, thrbA
and thrbB) and 3 subtypes of deiodinases (dio1, dio2 and dio3).
All thr genes identified, show high similarity to other mammalian,

bird, amphibian or fish species, with highest similarity to the clo-
sely related Japanese eel. We can confidently state that all genes
investigated in this study, involved in the mediation of TH action,
were significantly affected (in real and/or developmental time)
by larval age, temperature, and/or their interaction. Finally, we
demonstrate that thrs and dios show sensitivity to temperature
and are involved in and during early life development of European
eel.
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Abstract 

 

Temperature is a major factor that modulates the development of the immune system and its 

reactivity. Limited knowledge exists on the immune system of fish larvae, especially during the 

early life history stages. This study experimentally investigated the molecular ontogeny of the 

immune system and the influence of temperature on this process in European eel, Anguilla anguilla 

larvae. Larvae were reared at four temperatures, spanning their thermal tolerance range (16, 18, 20, 

22°C) and expression patterns of 11 immune genes were analysed throughout development, from 

hatch to 18 days post hatch (dph). At the larvae’s optimum temperature (18°C) the pattern of 

immune gene expression revealed an immunocompromised phase between hatch and teeth-

development (0-8 dph), caused by a lag period between initial protection and development of 

inherent immune competence. Additionally, at the lower end of the thermal spectrum (16°C) 

immune competency appeared reduced, whilst close to the upper thermal limit (22°C) larvae 

showed signs of thermal stress. Thus, protection against pathogens is probably impaired at 

temperatures close to the upper and lower critical thermal limit, impacting survival and productivity 

in hatcheries as well as recruitment in natural environments.  

 

Key words: European eel, Anguilla anguilla, Gene Expression; Aquaculture; Climate Change 
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Introduction 

 

With more than 34,000 species, teleost fish represent the largest class of vertebrates [1]. This 

diversity allowed them to adapt to every aquatic environment. However, in almost all species 

natural mortality is highest during early life and survival rates may be only a few percent [2]. Thus, 

subtle differences in survivorship can cause large differences in annual offspring production [3]. 

This is especially important for species that spawn only once in a lifetime, such as the European eel 

(Anguilla anguilla), as survival during early-life represents a substantial component of variation in 

lifetime fitness. An increased understanding of the physical and biological factors that influence 

mortality rates during these ‘critical’ developmental stages can enable aquaculture hatchery 

production, enhance recruitment predictions for fisheries, and aid in the conservation of this 

critically endangered species [4].  

Teleost fish was the first phylogenetic group of organisms to develop an immune system that 

possesses both the innate and adaptive arm of the immune response, characteristic to higher 

vertebrates [5]. However, evidence has accumulated that newly hatched fish larvae are particularly 

sensitive to pathogens as their immune system is not fully developed during the first weeks of life 

[6]. Marine fish larvae are particularly vulnerable to pathogen-induced mortality as it can take up to 

three months until their immune response is fully functional [7]. During this time, the larvae solely 

rely on the innate arm of the immune system, whilst exposure to pathogens intensifies due to 

hatching, mouth opening, and first-feeding [8]. Knowledge of the development of the immune 

system is hence needed to design preventative methods against pathogen associated losses in 

aquaculture hatcheries and to better understand immune responses in variable aquatic ecosystems.      

During development organisms are influenced by extrinsic (e.g. temperature) or intrinsic 

factors (such as genetic makeup) and their associated interactions [9,10]. Temperature is one of the 

main factors influencing marine ecosystems, as it defines the geographical distribution of 

populations and affects the physiology of individual organisms at all life stages [11]. Furthermore, 

physiological processes, and therefore development and survival, in ectothermic organisms are 

generally controlled by the environmental temperature [12]. Additionally, early life history stages 

are known to be most sensitive to temperature as they have a narrower thermal tolerance window 

than juveniles or adults and are thus more profoundly affected by even minor temperature changes 

and short heatwaves [13].  

 Moreover, temperature is a fundamental modulator of the immune system of fish [14] and 

has been shown to affect immunity during fish early life history [15]. The consideration of 

temperature as an immunomodulatory factor is therefore not only important in the development of 

hatchery technology of the European eel in order to optimise rearing protocols, but also in the light 

of environmental changes in the natural habitat of the early life history stages of this species. Here, 

warming temperatures of the ocean may influence the recruitment of the critically endangered 

European eel [16,17].   

Eels, i.e. Anguilliformes, are basal bony fish (Teleostei) which belong to the ancient 

superorder of Elopomorpha. This superorder is at the phylogenetic basis of Teleostei [18] and 

whilst the immune system of fish is well studied in some model species, very little research has 

been conducted regarding the immune system of Elopomorpha with their unique leptocephalus 
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larvae. The current knowledge of eel immunity has been reviewed by Nielsen and colleagues [19]. 

Research conducted on the immune system of European and Japanese eels (A. japonica) has up to 

date focused on the cellular innate immune response to infections and have rarely involved 

molecular studies [19]. For example, in Japanese eel it has been shown that some immune factors 

(i.e. lectin) are present 8 days post hatch (dph; rearing temperature unknown), whilst the appearance 

of most immune organs occurs later during larval development [20].  

The European eel is a commercially important fish species with a long tradition in European 

fisheries and fish farming. However, up-to-date farming and restocking of European eel relies on 

wild-caught juveniles as the life-cycle has not been closed in captivity. As recruitment and stock 

size of European eel have decreased substantially in the last decades [21], the urge for captive 

production of offspring is ever increasing. It is therefore vital that breeding-technologies and 

hatchery techniques are being established. Recent advances have enabled the stable production of 

eggs and larvae, which allow the development and optimisation of hatchery protocols [22,23]. 

This study aimed to i) shed light on the ontogeny of the immune response during early 

European eel larval development; and ii) investigate the interaction of immune system related gene 

expression with temperature during early life history. These insights may be critical to close the life 

cycle of this commercially important fish species for aquaculture, and to better understand potential 

impacts of ocean warming on early life stages in nature.  

 

Results 

 

Generally, increasing temperature accelerated development, resulting in larvae reaching the 

first-feeding stage in 8 days at 22°C, 10 days at 20°C, 12 days at 18°C, and 16 days at 16°C [24]. 

For details on the observed regressions and Δct-values please refer to Table S2 and S3 in the 

supplementary material. If not otherwise indicated, x-fold values are given as mean ± SEM of all 

temperatures combined.  

Two of the tested genes (complement component c3 and immunoglobulin M (igm)) 

experienced a reduction in expression after stage 1 (hatch; P < 0.0001; Fig. 1 a and i) and a similar 

decreasing effect with age was observed in real time (P < 0.0001; Fig. 1 d and l). Interestingly, the 

other tested component of the complement system, c1qc and the T-cell marker cd3 were not 

detected in the larvae until the end of the experiment. A member of the adaptive immune system 

investigated was major histocompatibility complex II (mhc2) and its expression, being upregulated 

beyond stage 2 (teeth formation; P = 0.001; Fig. 1 q), contrasted that of igm and cd3. Additionally, 

this gene was significantly affected by the rearing temperature since expression increased more than 

2-fold at 16 and 22°C (P = 0.003) compared to the other temperatures (Fig. 1 r). The real-time age 

analysis revealed a significant temperature × age interaction (P = 0.043) leading to a ~13-fold 

increase in expression on 4 and 6 dph and 40-fold on 8 dph at 22°C compared to the colder 

temperatures (all P ≤ 0.01; Fig. 1 s). Furthermore, larval age significantly influenced expression of 

mhc2 when larvae were reared at temperatures ranging from 16 to 20°C (P ≤ 0.01), which led to a 

steady increase in mRNA levels throughout larval development (Fig. 1 t-w). 

As shown in Fig. 1 x, expression of the pathogen recognition receptor tlr2 (toll like receptor 

2) approximately doubled at stage 2 (teeth formation) and tripled at stage 3 (first-feeding) (P < 
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0.0001). Similarly, expression of tlr2 was also significantly affected in real time (P < 0.0001), 

where its expression significantly increased with increasing age from a minimum expression of 0.62 

± 0.09-fold on 2 dph to a maximum expression of 4.34 ± 0.23-fold on 16 dph (Fig. 1aa).  

Interferon regulating factors (irf) 3 and 7 increased by 2 - 3-fold beyond stage 2 (teeth 

formation) (P < 0.0001; Fig. 2 a and i). In real-time, expression of irf3 was significantly affected by 

temperature (P = 0.029) and larval age (P < 0.0001), though no significant temperature × age 

interaction was detected. Gene expression of irf3 was significantly elevated (6.66 ± 0.69-fold) at 

22°C compared to 4.59 ± 0.45-fold at 16°C (Fig. 2 c) and significantly increased throughout 

ontogeny with increasing larval age (Fig. 2 d). Here, expression increased in a linear manner from 

2.24 ± 0.25-fold on 0 dph to reach a maximum of 8.26 ± 0.78-fold on 16 dph. On the contrary, irf7 

was significantly affected by the temperature × age interaction (P = 0.013). Significant differences 

in mRNA levels of irf7 among temperatures occurred on 4 dph (P = 0.045), where expression at 

22°C was about 40% higher than the expression at 16°C (Fig. 2 k). Additionally, irf7 levels steadily 

increased throughout development in all temperatures (16-22°C, P ≤ 0.007, Fig. 2 l-o). 

Moreover, two pro-inflammatory cytokines were investigated. Gene expression of tumor 

necrosis factor α (tnfα) was low (ct > 26) throughout the studied time period and was not affected 

by temperature and larval age (or stage), and no temperature × age (or stage) interaction was 

detected (data not shown). Interleukin 1β (il1β) on the other hand, was only significantly increased 

at stage 3 (first-feeding) (P = 0.033) by approx. 3-fold (Fig. 2 p). The real time analysis however, 

revealed a significant temperature × age interaction (P = 0.003). Significant differences in gene 

expression of il1β among temperatures occurred on 6, 8 and 12 dph (P < 0.02; Fig. 2 r). On 8 dph in 

specific, expression levels of il1β were approximately 6-fold higher at 22°C compared to the other 

temperatures. Additionally, a significant increase in il1β expression with increasing age was 

observed at all rearing temperatures (P ≤ 0.001) except at 20°C (Fig. 2 s-v), probably due to high 

levels of variation between individuals at this temperature.  

In developmental time, the only other gene besides mhc2 affected by temperature was the 

antimicrobial enzyme c-type lysozyme (lysc, Fig. 2 x) and lysc expression steadily increased 

throughout development from hatch to the first-feeding stage (Fig. 2 w). Moreover, in real time the 

22°C treatment caused a strong (300%) upregulation of this gene on 8 dph compared to the other 

temperatures (Fig. 2 y), while the 16°C treatment on the other hand led to a significant lower lysc 

expression on 12 and 14 dph (Fig. 4 y). Additionally, a significant (P ≤ 0.001) increase in lysc 

expression with increasing age was observed at all rearing temperatures (Fig. 2 z-ac). 

 

Discussion 

 

Fish larvae are particularly sensitive to pathogens as their immune system is not fully 

developed [7]. By studying the timing of expression of several immune genes during development 

from hatch to the first-feeding stage, we were able to identify a sensitive period, which is closely 

linked to survival (conceptualized in Fig. 3). This sensitive period is caused by a lag period between 

depletion of initial protection and build-up of the larvae’s inherent immune system. Initial 

protection at hatch was exerted by complement component C3 and immunoglobulin Type M. These 

two factors, which might have been transferred maternally [34–38], work together to facilitate 
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binding of opsonized bacteria to complement receptors on phagocytes [37,39]. During regular 

ontogeny at the larvae’s optimal temperature (18 - 20°C, [24]), c3 and igm were highly expressed at 

hatch. Their depletion was closely linked to the shrinking of the yolk sac area [24] leading to 

baseline levels after approximately 2 dph. A similar pattern had been previously observed in larvae 

of other species [40,41] and could thus indicate a more general pattern in fish larvae. In contrast, the 

other innate and adaptive immune factors tested revealed a slow but steady build-up of protection. 

For most genes tested, expression surpassed initial levels around 4 to 6 dph leaving the larvae in an 

immunocompromised state between approximately 2 and 6 dph. During this period larvae seemed 

to have already been able to recognise bacterial, parasitic, and/or viral pathogens, as this is indicated 

by the presence of mRNA of tlr2, irf3 and irf7 at hatch [42]. Additionally, a study in zebrafish 

showed that tlr2 is already expressed before hatch [43]. Pathogen recognition is an integral part of 

the initiation of an innate and adaptive immune response and they play an important part in the 

immune surveillance throughout the different life stages [6]. Once a pathogen has been detected, it 

can be phagocytosed and eliminated intracellularly. One mechanism involved is the exposure of the 

pathogen to lysozyme. This antibacterial enzyme is one of the maternal immune factors that are 

transferred to the egg and it has been detected in the early life stages (oocytes to larvae) of various 

fish species [44–46]. This, together with the observed tlr2 expression and the presence of skin lectin 

at 8 dph in Japanese eel, as demonstrated by Suzuki and Otake [20], indicates that innate 

antibacterial protection is an integral part in the immunological protection during early larval 

development in eel.  

The innate immune response is conveyed through signalling molecules, such as the cytokines 

TNF-α and IL-1β, which initiate a cell signalling cascade leading to an inflammatory response upon 

pathogen recognition [47]. During eel ontogeny, expression of il1β increased steadily, indicating an 

increase in the potential to mount a pro-inflammatory immune response and also the presence of 

cytokine producing immune cells, such as macrophages. Another indicator for the presence of these 

cells is the increasing expression of mhc2 throughout eel larval development. On the contrary, tnfa 

was not expressed during the first 18 dph. This is very dissimilar to patterns observed in the 

freshwater larvae of brown trout (S. trutta) and rohu (L. rohita) [46,48] and could be due to the 

delayed development of marine fish larvae [7]. Moreover, this is an indicator of an immature 

immune system at this early life stage in A. anguilla. Interestingly, studies of Japanese eel 

demonstrated that whilst igm and T-cell-related lck genes were expressed already 3 days post 

fertilisation, the development of lymphoid tissues were delayed and neither spleen, thymus nor 

lymphocytes were observed in larvae of similar sizes [20,49]. This is in line with the observed 

absence of cd3 expression in the present study and it can therefore be assumed that adaptive 

immune protection is still underdeveloped in very early larval stages (i.e. pre-leptocephalus stage). 

As this would have implications for the use of vaccines during early life stages, further studies are 

needed to link the present findings to the functionality of the adaptive immune system.  

A previous study [26] indicated an S-shaped survival curve in non-feeding European eel 

larvae; i.e. low initial mortality, followed by a steep decline in survival until mortality subsides. 

Similar patterns have also been observed in various fish species such as turbot [29], winter flounder 

[50], Pacific herring [51], and cod [52] larvae. A period of unusually high mortality during fish 

larval development has previously been proposed in “Hjort’s critical period hypothesis”, which 
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directly influences recruitment [53]. Previous studies link this period of high mortality to feeding 

success, size, predation, and life history strategy [53–55]. However, since such critical periods can 

also be observed in culture we hypothesized that they are also linked to pathogen sensitivity and 

that eel larvae are immunocompromised during early development. Our results indicate a sensitive 

phase during which larvae are immunocompromised and hence highly susceptible to pathogens 

(Fig. 3). The same figure also highlights that this sensitive phase closely reflects the survival rates 

of the larvae with an initial protection during the first two days, a steep increase in mortality rates 

until 8 dph, followed by a decelerated decline in survival once immunocompetence increases. The 

onset of the latter seems to coincide with the formation of the teeth. Thus, survival seems to be 

closely linked to immune ontogeny, which is not surprising as it is well established that during 

development innate immunity provides quick protection against the hostile environment [6]. 

Obviously, the study of gene expression can only give an indication of functionality and hence these 

findings should be confirmed in future through studies of immune organ development and pathogen 

challenge experiments. In order to increase survival rates and prevent high and unpredictable 

mortalities in aquaculture settings, it should thus be investigated if and how the onset of the innate 

immune system can be shifted earlier towards the time of hatch. Possible mechanisms would 

include maternal and larval immunostimulation as well as steering larval microbiota [29,56,57].  

Moreover, we expected that environmental factors such as temperature would influence the 

demonstrated development of this essential defence system. Temperature is an important factor 

influencing aquatic life and oviparous fish are directly exposed to it already as gametes. This study 

therefore did not only aim to elucidate some aspects of the European eel’s development of the 

immune system but also how this is influenced by the ambient temperature. Together, this can 

provide insights regarding European eel larval physiology, compulsory to defining optimal rearing 

conditions in culture as well as identifying potential effects of global warming on recruitment in 

nature.  

In the present study, immune gene expression was studied until larvae reached the first-

feeding stage. Temperature influences development and thus the age at which the larvae reach the 

first-feeding stage, i.e. 16 dph at 16°C, 12 dph at 18°C, 10 dph at 20°C and 8 dph at 22°C [24]. At 

the lower end of the thermal spectrum (16°C) immune defences appeared to be impaired as 

development is delayed and immune protein activity is reduced [58]. Generally, the genes 

investigated here, were robust to the environmental temperature but close to the critical thermal 

maximum (CTmax) a stress response was previously detected [24], which could therefore be linked 

to impaired pathogen protection. Moreover, mRNA levels of c3 reflected a temperature dependent 

decrease of yolk-sac area (described in [24]). A temperature effect on initial protection especially 

during temperatures close to the critical thermal maximum (i.e. CTmax ≥ 22°) can therefore not be 

excluded. Additionally, the present study did not investigate temperature effects on embryonic 

development and thus it cannot be excluded that temperature exposure prior to hatch would 

influence initial defence systems. Interestingly c-type lysozyme and mhc2 levels were increased at 

the warmer end of the thermal window. Both genes experienced an overshoot when reaching the 

first feeding stage at 22°C, which is close to the upper thermal limit of these larvae [24]. This 

correlates with an increased expression of heat shock proteins 70 and 90 in the same larvae [24] and 

is an indication of temperature induced cellular stress and an immune response towards damaged 
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cells [59]. Protection against pathogens is thus probably impaired at temperatures close to CTmax, 

which in culture under suboptimal rearing schemes can be crucial to survival while in nature heat 

waves and rising sea surface temperatures could increase larval mortality and hence glass eel 

recruitment. 

In conclusion, our study highlighted the influence of immune gene expression on larval 

survival in European eel. We identified an immunocompromised phase during which mortality is 

high and larvae are more vulnerable to pathogen infection. We are confident that future research 

will identify this as a more general effect in marine fish larvae. In addition, we were able to 

demonstrate the influence of temperature on larval immune gene expression close to their upper and 

lower thermal limit. These findings have important implications on rearing conditions and disease 

prevention protocols (e.g. timing of vaccination, immunostimulation treatments) of A. anguilla in 

culture and on our understanding of ocean warming impacts on recruitment.  

 

Methods 

 

Broodstock management and offspring production 

 

Broodstock management and offspring production have been previously described in more 

detail [24]. Female silver eels were obtained from a freshwater lake, Vandet, Jutland, Denmark. 

Male eels were obtained from Stensgård Eel Farm A/S. Females used for experiments (n = 4) had a 

mean (± SEM) standard length and body weight of 65 ± 4 cm and 486 ± 90 g, respectively. Male 

eels (n = 11) had a mean (± SEM) standard length and body weight of 40 ± 3 cm and 135 ± 25 g, 

respectively.  

 

Ethical approval 

 

The experimental protocol for the study was approved by the Animal Experiments 

Inspectorate, Danish Ministry of Food, Agriculture and Fisheries (J.no. 2012-15-2934-00458). All 

fish were handled in accordance with the European Union regulations concerning the protection of 

experimental animals (Dir 86/609/EEC). 

 

Experimental conditions and sample collection 

 

The experiments took place at a research facility of the Technical University of Denmark in 

Jutland, Denmark. Eggs from each female were “crossed” with a standardized milt pool of several 

males [25] to experimentally create four parental crosses. Within 30 min post fertilization, ~500 

floating viable eggs/embryos per 100 mL, with a mean size (± SD) of 1.5 ± 0.1 mm (n = 4 females), 

were distributed in replicated 600 mL flasks [182.5 cm
2
 sterile tissue culture flasks with plug seal 

caps (VWR
®
)]. Larvae were reared in thermal controlling incubators (MIR-154 Incubator, 

Panasonic Europe B.V.) at five temperatures (16, 18, 20, 22, and 24 ± 0.1°C), with a salinity of 36 

psu. Seawater was 0.2 μm filtered, UV sterilized and supplemented with rifampicin and ampicillin 

(each 50 mg L
-1

, Sigma-Aldrich, Missouri, USA) [26]. Rearing of embryos and larvae took place in 
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darkness, while handling and sampling was performed under low intensity light conditions (< 2.2 

μmol m
-2

 s
-1

) [27]. Salinity levels and the temperature range were chosen to resemble the 

environmental conditions prevailing between 0 and 600 m’s depth in the Sargasso Sea, i.e. the 

assumed spawning area of the European eel.  

For molecular analysis, ~30 larvae (× 2 replicates) from each temperature and parental 

combination were randomly sampled at hatch and every second day post-hatch until the 

corresponding first-feeding stage. As feeding trials were beyond the scope of this study, rearing was 

not conducted beyond these time points. Larvae were euthanized, using an aqueous solution of 

tricaine methane sulphonate (MS-222, Sigma-Aldrich, Germany), rinsed with deionized water, 

preserved in RNA-later (Qiagen, Germany), and kept at -20°C. No larvae hatched at 24°C and 

therefore this treatment was excluded from analysis. 

 

Molecular analyses 

 

This study took advantage of the assembly of the European eel genome [28] and obtained 

sequences were checked for high similarity with other fish species. Primers were designed for real-

time PCR with Primer3plus (http://primer3plus.com/) and immune function of genes was verified. 

Molecular analysis was performed at GEOMAR, Helmholtz Centre for Ocean Research in 

Kiel, Germany. Total RNA was extracted using a combination of Tri-Reagent (Sigma-Aldrich, 

Germany) and the InviTrap
®
 Spin tissue RNA MiniKit (Stratec) following the manufacturer’s 

instructions. RNA concentration was determined by Nanodrop ND-1000 (Peqlab, Germany) and 

normalized to a common concentration of 100 ng µl
-1

 with HPLC water. Consequently, 680 ng 

RNA were transcribed with the Quanta qScript cDNA Synthesis Kit (QuantaBio, Germany) as 

described by the manufacturer including a genomic DNA wipe-out step [Quanta PerfeCta DNase I 

Kit (QuantaBio, Germany)]. Controls for gDNA efficiency were also included and cDNA was 

stored at -20°C until further use. 

From all larval samples (4 crosses × 4 temperatures × 2 replicates), the expression of 15 genes 

(18s, 40s, tubβ, ef1, c3, c1qc, cd3, igm, irf3, irf7, il1β, lysc, mhc2, tnfα, tlr2; Table S1) was analysed 

in technical triplicates using the qPCR BiomarkTM HD system (Fluidigm) based on 96.96 dynamic 

arrays (GE chips), as previously described [29]. Moreover, qBase+ software verified stability of 

housekeeping gene expression throughout analysed samples (M < 0.4; according to [30]). Gene 

expression was normalised (∆Ct) to the geometric mean of the three most stable housekeeping 

genes (18s, 40s, ef1). Housekeeping (HK) gene expression was stable (M < 0.4) throughout the 

experiment (see Fig. S1, supplement) and variance in HK expression was clearly coupled to 

variation in cDNA amount in samples. Analysis of gene expression was carried out according to the 

2
-∆∆Ct

 method, in relation to the 16°C sample of Day 0 from female 1 [31]. This calculation allowed 

us to test for thermally induced effects and impact of larval age in real time and at specific 

developmental stages.   
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Statistical analysis 

 

To compensate for the thermal effect on development, we analysed the influence of 

temperature on gene expression during standardized developmental intervals and during larval 

development in “real time”. Statistical models were used to investigate temperature effects on larval 

morphology and gene expression throughout early larval development (0 to 18 days post hatch 

(dph)) and at specific developmental stages (Stages 1-3). Across the temperature treatments, Stage 1 

represents the day of hatch, Stage 2 represents the timing of teeth formation, and Stage 3 represents 

the first-feeding stages [23].  

To examine the effect of temperature on gene expression in real time, we used two statistical 

approaches. In the first approach, we analysed the data using a series of repeated measures mixed-

model ANOVAs (PROC MIXED; SAS Institute 2003). Models contained the temperature (16, 18, 

20 and 22°C) and age (0 to 18 DPH) or stage (1, 2 and 3) main effects as well as the temperature  

age (or stage) interaction term. Akaike’s (AIC) and Bayesian (BIC) information criteria were used 

to assess which covariance structure (compound symmetry, autoregressive order, or unstructured) 

was most appropriate [32]. Temperature and age (or stage) were considered fixed, whereas parental 

cross was considered random. Tukey’s post-hoc analyses were used to compare means between 

treatments. If a significant temperature  age (or stage) interaction was detected, the model was 

decomposed into a series of reduced ANOVA models to determine the effect of temperature within 

each age (or stage) and of age (or stage) for each temperature on gene expression. This was the case 

for il1β, lysc, irf7, and mhc2. Reduced models involved only pre-planned comparisons and did not 

include repeated use of the same data, so alpha level corrections for a posteriori comparisons were 

not necessary. 

In the second approach, we examined variation in gene expression, throughout development 

at each temperature, by fitting linear, quadratic, or cubic equations (PROC REG; SAS Institute 

2003). This allowed us to create predictive models to explore patterns of variation throughout early 

development at each temperature. Linear, quadratic, or cubic equations were chosen a-priori to fit 

the data [33]. Final equation selection (linear, quadratic, or cubic) was based on an F-statistic: d.f.j × 

(R
2
j − R

2
i)/(1 − R

2
j), where: R

2
i = the R

2
 for the i-th order, R

2
j = the r

2
 for the next higher order, 

d.f.j = the degrees of freedom for the higher-order equation with j degrees of freedom in the 

numerator and d.f.j = n − j −1 degrees of freedom in the denominator [33]. Graphs and regressions 

were prepared in SigmaPlot
®
 (Version 13.0). 
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Fig. 1: Effect of temperature on c3, igm, mhc2, and tlr2 gene expression of European eel 

(Anguilla anguilla) larvae. The effect of temperature on relative expression of c3 (a-h), igm (i-p), 

mhc2 (q-w), and tlr2 (x-ae) was compared in developmental time (at specific developmental stages 

(1-3)) or real time (0 to 18 days post hatch). Stage 1 represents the day of hatch, Stage 2 represents 

the timing of teeth formation, and Stage 3 represents the first-feeding stage. Data points with an 

asterisk (*) were not included in the statistical model. Values represent means (±SEM) among four 

crosses at each temperature and treatments with the same letters are not significantly different (P > 

0.05).   
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Fig. 2: Effect of temperature on irf3, irf7, il1β, and lysc gene expression of European eel 

(Anguilla anguilla) larvae. The effect of temperature on relative expression of irf3 (a-h), irf7 (i-o), 

il1β (p-v), and lysc (w-ac) was compared in developmental time (at specific developmental stages 

(1-3)) or real time (0 to 18 days post hatch). Stage 1 represents the day of hatch, Stage 2 represents 

the timing of teeth formation, and Stage 3 represents the first-feeding stage. Data points with an 

asterisk (*) were not included in the statistical model. Values represent means (±SEM) among four 

crosses at each temperature and treatments with the same letters are not significantly different (P > 

0.05).  
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Fig. 3: Conceptual overview - Immunocompromised window during larval development of 

European eel at 18°C linked to survival. Expression (2
-ΔΔct

) was calculated in relation to the 

lowest mRNA level. For variation see Fig. 1-2. Survival (grey dashed line) is displayed on the right 

axis. For survival: Larvae from 12 parental combinations were stocked at ~150 larvae/L in a 

recirculation aquaculture system equipped with ~45 L aquaria (50 × 30 × 35 cm), UV sterilizer, 

protein skimmer, and biofilter. Larvae were reared at 18-20°C in 36 psu filtered (1-10 µm) North 

Sea seawater supplemented with artificial salt. The number of surviving larvae was estimated per 

aquarium by subjective estimate and recorded.  

93



 

94



 

 

 

 

 

Study 4: 

Salinity reduction benefits European eel larvae:  

Insights at morphological and molecular level  

Politis SN, Mazurais D, Servili A, Zambonino-Infante J-L, Miest JJ, Tomkiewicz J, Butts IAE 

PLoS ONE  

2018 

13(6): e0198294 

95



RESEARCH ARTICLE

Salinity reduction benefits European eel

larvae: Insights at the morphological and

molecular level

Sebastian N. Politis1*, David Mazurais2, Arianna Servili2, Jose-Luis Zambonino-Infante2,

Joanna J. Miest3¤a, Jonna Tomkiewicz1, Ian A. E. Butts1¤b

1 National Institute of Aquatic Resources, Technical University of Denmark, DTU, Lyngby, Denmark,

2 Ifremer, Marine Environmental Science Laboratory UMR 6539, Plouzané, France, 3 Helmholtz Centre for
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Abstract

European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both,

hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a

morphological and molecular point of view on European eel larvae reared from 0 to 12 days

post hatch (dph). Offspring reared in 36 practical salinity units (psu; control), were compared

with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates

of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes

relating to osmoregulation (nkcc2α, nkcc2β, aqp1dup, aqpe), stress response (hsp70,

hsp90), and thyroid metabolism (thrαA, thrαB, thrβB, dio1, dio2, dio3) were differentially

expressed throughout larval development, while nkcc1α, nkcc2β, aqp3, aqp1dup, aqpe,

hsp90, thrαA and dio3 showed lower expression in response to the salinity reduction. More-

over, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at

stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an

energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp

and hsp expression), likely facilitated the observed increased survival, improved biometry

and enhanced growth efficiency. Additionally, the salinity reduction decreased the amount

of severe deformities such as spinal curvature and emaciation but also induced an edema-

tous state of the larval heart, resulting in the most balanced mortality/deformity ratio when

salinity was decreased on 3 dph and at 2 psu/day. However, the persistency of the pericar-

dial edema and if or how it represents an obstacle in further larval development needs to be

further clarified. In conclusion, this study clearly showed that salinity reduction regimes

towards iso-osmotic conditions facilitated the European eel pre-leptocephalus development

and revealed the existence of highly sensitive and regulated osmoregulation processes at

such early life stage of this species.
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Introduction

Eels (Anguilla spp.) are euryhaline species that have adapted to cope with both, hyper- and

hypo-osmotic environments, likely due to regular salinity changes in their habitats (i.e. estuar-

ies) and/or migrations between freshwater and marine environments to complete their life

cycle [1]. Adult eels undertake a downstream (catadromous) reproductive migration towards

oceanic spawning areas, while eel offspring undertake an upstream migration towards estua-

rine or freshwater environments [1]. Unfortunately though, the natural populations and their

reproductive potential have declined to a historical minimum, mainly due to climatic and

anthropogenic pressures during the different phases of the eel life cycle [2]. The most exploited

and negatively impacted populations today are the endangered American (A. rostrata) eel and

Japanese (A. japonica) eel [3–4] as well as the critically endangered European (A. anguilla) eel

[5].

In this context, actions have been taken to circumvent the eel decline, by minimizing fishery

and pollution pressure through restocking and habitat restoration action plans [2]. Addition-

ally, research is being conducted to advance knowledge on assisted reproduction and subse-

quent early life history (ELH) rearing conditions, towards a sustainable aquaculture. After

extensive efforts, breeding protocols using assisted reproductive technologies were developed

for the Japanese eel, leading to the first production of eel leptocephali larvae in captivity [6].

The Japanese eel achievements formed the basis for eel research, which led to the development

of artificial reproductive protocols of the American [7] and European eel [8–10]. Subsequent

work sought to identify optimal environmental rearing conditions throughout the ELH of eels,

such as temperature [11–13], light [14], and salinity [15–16].

Regarding salinity, most fish species are hyper-osmotic in freshwater, where plasma osmo-

lality is higher than the environment and hypo-osmotic in seawater, where plasma osmolality

is lower than the environment [17]. Thus, in freshwater fish need to actively take up ions to

counteract the diffusive ion loss and osmotic water gain, while in seawater they need to main-

tain osmotic balance through a desalting process to counteract osmotic water loss [18]. Eel off-

spring naturally occur in a hypo-osmotic environment in the ocean [19]. Interestingly though,

it was shown that reducing salinity during ELH rearing, results in better growth and survival

of Japanese eel larvae [15]. In some fish species, osmoregulatory organs such as gills or kidneys

are not fully or not at all developed during ELH, thus embryos and early larvae control their

ion balance via chloride cells, commonly located in the yolk sac area and the epithelia covering

the larval body surface [20–21]. Those extra-branchial chloride cells (ionocytes) were also

found to be located in the epithelium of the Japanese eel larval body surface and particularly

abundant in the abdominal region, while forming multicellular complexes and influencing

ionoregulation during ELH [22]. Furthermore, it was discovered that Japanese eel larvae can

drink as early as the day of hatch, revealing that the role of gastro-intestinal osmoregulation

starts earlier than previously anticipated [16, 23, 24]. The role and timing of the intestine and

rectum in controlling ion balance was further confirmed by expression of osmoregulatory

related genes such as Na+ K+ Cl- (nkcc) and Na+ Cl- (ncc) cotransporters in Japanese eel larvae

[16].

Moreover, a recent study, using a transcriptomic (microarray) approach allowed the identi-

fication of a large number of genes involved with or affected by osmoregulatory changes dur-

ing salinity adaptation in the European eel [25]. Furthermore, the European eel genome was

recently sequenced and assembled [26], offering new perspectives for eel research in order to

gain further knowledge regarding the molecular biology of this species. Thus, it is increasingly

possible to follow targeted expression of genes involved in specific molecular mechanisms

such as sodium potassium chloride ion cotransporters, which mediate the electroneutral

Salinity impacts European eel larvae

PLOS ONE | https://doi.org/10.1371/journal.pone.0198294 June 13, 2018 2 / 18

resources. The need to harmonize and standardize

evolving methodologies, and improve transfer from

academia to industry; AQUAGAMETE). Financial

support for Ian A.E. Butts was partially provided by

the Alabama Agricultural Experiment Station and

the Hatch program of the National Institute of Food

and Agriculture, US Department of Agriculture. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0198294


cotransport of Na+, K+ and Cl- and are known to be involved in ion absorption and/or secre-

tion as well as in cell volume homeostasis [27]. An additional mechanism of interest involves

aquaporins, which are membrane proteins, forming pores to selectively facilitate rapid trans-

port and exchange of water molecules in addition to diffusion through the plasma membrane

[28]. Also an important mechanism controlling cellular homeostasis, is the molecular response

to extrinsic (environmental) stressors. Here, heat shock proteins which are produced in all cel-

lular organisms, regulate normal protein synthesis, and play an important role in an organ-

ism’s health as they are expressed in response to stress in order to counteract physiological

injury and reduce trauma [29]. A different molecular mechanism of interest is the thyroid

endocrine system, as it has been shown to be involved in various physiological processes and

contributes to homeostasis regulation [30]. Furthermore, the oxidative phosphorylation

(OXPHOS) pathway represents a mechanism of importance, where genes associated to energy

metabolism are today well known in teleost fishes [31].

In this context, this study investigates how salinity affects European eel larval biometry

(such as morphology and growth), deformities and survival as well as expression profiles of

genes related to processes involved in or affected by osmoregulation, such as ion transport

[Na+K+2Cl- cotransporters (nkcc), aquaporins (aqp)], energy metabolism [mitochondrial ATP

Synthase F0 subunit 6 (atp6), cytochrome C oxidase 1 (cox1)], thyroid metabolism [thyroid

hormone receptors (thr), deiodinases (dio)] and stress response [heat shock proteins (hsp)].

We hypothesized that lower salinity towards a more iso-osmotic environment, already at a

very early stage, would reduce stress and conserve energy due to lower cost for osmoregula-

tion, resulting in higher survival and growth during the ELH stages but also facilitating a

greater larval developmental potential. Thus, the main objective of this study was to determine

the optimal condition for rearing European eel pre-leptocephalus larvae by decreasing salinity

on 0 or 3 days post hatch (dph) and at rates of 1, 2 or 4 psu/day.

Material and methods

Ethics statement

All fish were handled in accordance with the European Union regulations concerning the pro-

tection of experimental animals (Dir 86/609/EEC). Eel experimental protocols were approved by

the Animal Experiments Inspectorate (AEI), Danish Ministry of Food, Agriculture and Fisheries

(permit number: 2015-15-0201-00696). Briefly, adult eels were anesthetized using ethyl p-amino-

benzoate (benzocaine) before tagging and handling. Endogenously feeding larvae of European

eel were anesthetized prior to handling and euthanized prior to sampling by using tricaine

methanesulfonate (MS-222). All efforts were made to minimize animal handling and stress.

Broodstock management

Female broodstock were wild-caught from lake Vandet (Denmark) or Lough Neagh (Ireland),

while all males originated from a commercial eel farm (Stensgård Eel Farm A/S, Denmark).

After collection, broodstock were transferred to an experimental facility of the Technical Uni-

versity of Denmark, where they were maintained in ~1250 L polyethylene tanks equipped with

a closed recirculation system, under a continuous flow rate of ~10–15 L min−1, low intensity

light (~20 lux) and 12 h day/12 h night photoperiod. Acclimatization took place over two

weeks, in order to reach a salinity of 36 psu and temperature of 20˚C. As eels naturally undergo

a fasting period from the onset of the pre-pubertal silvering stage, they were not fed during

this period. Prior to experimentation, the broodstock were anaesthetized (ethyl p-amino-

benzoate, 20 mg L−1; Sigma-Aldrich Chemie, Steinheim, Germany), tagged with a passive inte-

grated transponder, and length and weight recorded.
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Gamete production, experimental design and conditions

To induce vitellogenesis females received weekly injections of salmon pituitary extract at 18.75

mg kg−1 body weight (Argent Chemical Laboratories, Washington, USA) [10, 32]. To stimu-

late follicular maturation and induce ovulation, females received an additional injection of

17α,20ß-dihydroxy-4-pregnen-3-one (Sigma-Aldrich, St. Louis, MO, USA) at 2.0 mg kg−1

body weight [33]. Then, within 12–14 h, eggs were stripped from females. Males received

weekly injections of human chorionic gonadotropin (hCG, Sigma Aldrich Chemie, Steinheim,

Germany) at 150 IU/fish. Prior to fertilization, they were given another injection and milt was

collected ~12 h after administration of hormone. Milt samples were pipetted into an immobi-

lizing medium [34] and used for fertilization within 4 h of collection [35].

The experiment was repeated 3 times, each time using a different experimental cross. Eggs

from each female were “crossed” with a sperm pool of several males to experimentally create

the 3 experimental crosses. Eggs from each female were stripped into dry plastic containers

and gametes were swirled together. Artificial seawater (20˚C and 36 psu) prepared by using

reverse osmosis filtration (Vertex Puratek 100 gpd RO/DI, Vertex Technologies Inc., CA,

USA) and salted with Red Sea Salt (Red Sea, Red Sea International, Eilat, Israel) was added for

a gamete contact time of 5 min [35, 36]. Eggs/embryos were then incubated in 15 L of the

above described artificial seawater (18˚C and 36 psu) [13] and supplemented with rifampicin

and ampicillin (each 50 mg L-1, Sigma-Aldrich, Missouri, USA) until hatch [37].

At hatch, larvae were randomly distributed (~1000 individuals per replicate) into 1 L glass

beakers and reared throughout the endogenous feeding stage, from 0 to 12 dph, with no aera-

tion [38]. Each beaker was filled with 800 mL of artificial seawater (18˚C and 36 psu) and sup-

plemented with antibiotics as previously described [13, 37]. Using a factorial approach, salinity

treatments were step-wise adjusted beginning on 0 or 3 dph and at rates of 1, 2, or 4 psu/day,

in order to reach a more iso-osmotic condition compared to full strength seawater (control),

which was kept at 36 psu. This resulted in overall seven salinity treatments (con, 01, 02, 04, 31,

32 and 34) described in Table 1. All 3 experimental crosses where represented in 3 replicates

for all 7 treatments, resulting in 63 experimental beakers. Each day, 400 mL were removed and

replaced with pre-adjusted artificial seawater, in order to reach the desired salinity of each

treatment, which was measured using a digital portable conductivity meter (WTW ProfiLine

Cond 3110). All treatments underwent the same handling procedures. Rearing of embryos and

larvae took place in darkness, while handling and sampling under low intensity (< 2.2 μmol

m-2 s-1) light conditions [14].

Table 1. European eel (Anguilla anguilla) larvae reared in seven different salinity treatments; at 36 psu (con) and

in six further scenarios, where salinity was reduced on 0 or 3 days post hatch and at rates of 1, 2 or 4 psu/day (01,

02, 04, 31, 32 and 34) towards iso-osmotic conditions.

Age in days post hatch (dph)

Reduction ID 0 1 2 3 4 5 6 7 8 9 10 11 12

dph psu day-1 Salinity (psu)

Control con 36

0 1 01 35 34 33 32 31 30 29 28 27 26 25 24 23

2 02 34 32 30 28 26 24 22 20 18 16

4 04 32 28 24 20 16

3 1 31 36 35 34 33 32 31 30 29 28 27 26

2 32 36 34 32 30 28 26 24 22 20 18 16

4 34 36 32 28 24 20 16

https://doi.org/10.1371/journal.pone.0198294.t001
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Data collection

Larval development (biometry), mortality, and gene expression of selected genes, correspond-

ing to specific molecular mechanisms were followed from hatch and throughout the endoge-

nous feeding stage (2, 4, 6, 8, 10, and 12 dph). All endogenously feeding larvae of European eel

were anesthetized using tricaine methanesulfonate (MS-222; Sigma-Aldrich, Missouri, USA)

prior to digital imaging and euthanized post-sampling by using an MS-222 overdose [13]. All

images were taken using a digital camera (Digital Sight DS-Fi2, Nikon Corporation, Japan)

attached to a zoom stereomicroscope (SMZ1270i, Nikon Corporation, Japan), while NIS-Ele-

ments D analysis software (Version 3.2) was used to analyze the larval images (Nikon Corpora-

tion, Japan).

Mortality and biometry. Every day, dead larvae were counted and removed from all

experimental units. Additionally, all larvae at the end of the experiment as well as of all sam-

pled larvae from each experimental unit were enumerated and recorded. Larval cumulative

mortality was calculated as a percentage from hatch until 12 dph.

For analysis of larval biometry, ~10 larvae from each replicate (3×), cross, and treatment

were randomly sampled at hatch and every second day until 12 dph. Larvae were digitally

imaged (as described above) for later analyses, where total body and oil-drop area were mea-

sured for each larva. Larval growth and oil-drop utilization were measured from the change in

body and oil-drop area, respectively. Growth efficiency was measured by dividing the increase

in body area by the corresponding decrease in oil-drop area. Moreover, larval deformities were

classified according to [39] as spinal curvature, emaciation and pericardial edema (Fig 1).

Fig 1. Visualization of European eel (Anguilla anguilla) larval deformities. Normal (A), spinal curvature (B), emaciation (C), and pericardial

edema (D).

https://doi.org/10.1371/journal.pone.0198294.g001
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Gene expression. For molecular analysis, ~30 larvae from each replicate, experimental

cross, and treatment were randomly sampled at hatch and every second dph until the first-

feeding stage. Those larvae were recorded, euthanized using MS-222, rinsed with deionized

water, preserved in RNAlater Stabilization Reagent and kept at -20˚C following the procedure

suggested by the supplier (Qiagen, Hilden, Germany). RNA was extracted using the NucleoS-

pin1 RNA Kit (Macherey-Nagel, Germany) following the manufacturer’s instructions. RNA

concentration (264 ± 230 ng μl-1) and purity (260/280 = 2.13 ± 0.03, 260/230 = 2.23 ± 0.12)

were determined by spectrophotometry using Nanodrop ND-1000 (Peqlab, Germany) and

normalized to a common concentration of 100 ng μl-1 with HPLC water. From the resulting

total RNA, 680 ng were transcribed using the qScriptTM cDNA Synthesis Kit (Quantabio, Ger-

many) according to the manufacturer’s instructions, including an additional gDNA wipe out

step prior to transcription [PerfeCta1 DNase I Kit (Quantabio, Germany)].

The ef1α and rps18 genes were chosen as housekeeping genes, since qBase+ software

revealed that these mRNA levels were stable throughout analyzed samples (M < 0.4); M gives

the gene stability and M< 0.5 is typical for stably expressed reference genes [40]. The expres-

sion levels of 16 target and 2 reference (ef1α, rps18) genes were determined by quantitative

real-time PCR (RT-qPCR), using specific primers (Table 2). Primers were designed using

primer 3 software v 0.4.0 (http://frodo.wi.mit.edu/primer3/) based on cDNA sequences avail-

able in GenBank Nucleotide, the European eel transcriptome database (EeelBase 2.0, http://

compgen.bio.unipd.it/eeelbase/) or the available European eel genome (https://www.ncbi.nlm.

nih.gov/bioproject/PRJNA73577). All primers were designed for an amplification size ranging

from 75 to 200 nucleotides and optimal Tm of 60˚C.

Expression of genes in each larval sample from 2 randomly selected replicates, from each

parental cross, treatment, and larval age (2, 4, 6, 8, 10 and 12 dph) were analysed in two techni-

cal replicates of each gene using the qPCR BiomarkTM HD system (Fluidigm) based on 96.96

dynamic arrays (GE chips) as previously described [41]. In brief, a pre-amplification step was

performed with a 500 nM primer pool of all primers in TaqMan-PreAmp Master Mix (Applied

Biosystems) and 1.3 μL cDNA per sample for 10 min at 95˚C and then 14 cycles of 15 s at 95˚C

and 4 min at 60˚C. Obtained PCR products were diluted 1:10 with low EDTA-TE buffer. The

pre-amplified product was loaded onto the chip with SSofast-EvaGreen Supermix low Rox

(Bio Rad) and DNA-Binding Dye Sample Loading Reagent (Fluidigm). Primers were loaded

onto the chip at a concentration of 50 μM. The chip was run according to the Fluidigm 96.96

PCR protocol with a Tm of 60˚C. The relative quantity of target gene transcripts was normal-

ized and measured using the ΔΔCt method [42]. Coefficient of variation (CV) of technical rep-

licates was calculated and checked to be< 0.04 [40].

Statistical analyses

All data were analyzed using SAS statistical software (version 9.1; SAS Institute Inc., Cary,

North Carolina). Residuals were tested for normality using the Shapiro-Wilk test and homoge-

neity of variances was tested using a plot of residuals versus fit values (PROC GLOT, SAS Insti-

tute 2003). Data were log10 or arcsine square-root-transformed when data deviated from

normality or homoscedasticity [43]. The effect of salinity on larval deformities, growth rate,

oil-drop utilization, and growth efficiency on 12 dph was determined using a series of one-way

ANOVA models, where experimental cross was considered a random factor (SAS PROC

MIXED; SAS Institute 2003). Tukey’s post-hoc analyses were used to compare least-squares

means between treatments. Furthermore, statistical models were used to investigate salinity

effects on larval body area, mortality and gene expression throughout early larval development

(from 2 to 12 dph). Here, we analyzed the data using a series of repeated measures mixed-
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model ANOVAs (PROC MIXED; SAS Institute 2003). Models contained salinity treatment and

age main effects as well as the treatment × age interaction. Akaike’s (AIC) and Bayesian (BIC)

information criteria were used to assess which covariance structure (compound symmetry,

autoregressive order, or unstructured) was most appropriate [44]. Salinity treatment and age

were considered fixed, whereas parental cross was considered random. Tukey’s post-hoc analy-

ses were used to compare least-squares means between treatments. If a significant salinity × age

interaction was detected, the model was decomposed into a series of reduced ANOVA models

to determine the effect of salinity for each age. This was the case only for thrαA.

Table 2. Sequences of European eel, Anguilla anguilla primers used for amplification of genes by qRT-PCR. Primers were designed based on sequences available on

Genbank databases. The table lists accession number and corresponding database of target gene sequences.

Full name Abbreviation Function Database Accession Number Primer sequence (5’ 3’) (F: Forward; R: Reverse)

Na+K+2Cl- Cotransporter 1α nkcc1α Ion transport GenBank Nucleotide AJ486858 F: CCAAGGCTCAGATCTTCCTG

R: TTTCCGAATGGTAACCGAAG

Na+K+2Cl- Cotransporter 2α nkcc2α Ion transport GenBank Nucleotide AJ564602 F: ACGTGGTTGGGTTTTCAGAG

R: GTGAGATCCCCAAAAGCAAA

Na+K+2Cl- Cotransporter 2β nkcc2β Ion transport GenBank Nucleotide AJ564603 F: AGCCAAAGTGGTGGATGTTC

R: TGTCAGCCTCTCCAGTTCCT

Aquaporin 3 aqp3 Water transport GenBank Nucleotide AJ319533 F: GCTCTCATGGCTTGTTCCTC

R: AAGGTCACAGTGGGGTTCAG

Aquaporin 1 duplicate aqp1dup Water transport GenBank Nucleotide AJ564421 F: GAATTCCTGGCAACCTTTCA

R: CAAGATGACCCAGACCCACT

Aquaporin e aqpe Water transport GenBank Nucleotide AJ784153 F: TGGGCAGCTGACAGTAACAG

R: AATCACCTGGTCCACAAAGC

Heat Shock Protein 70 hsp70 Stress response GenBank

WGS

AZBK01685255 F: TCAACCCAGATGAAGCAGTG

R: GCAGCAGATCCTGAACATTG

Heat Shock Protein 90 hsp90 Stress response GenBank

WGS

AZBK01838994 F: ACCATTGCCAAGTCAGGAAC

R: ACTGCTCATCGTCATTGTGC

ATP Synthase F0 subunit 6 atp6 Energy metabolism GenBank Nucleotide NC_006531 F: GGCCTGCTCCCATACACATT

R: GACTGGTGTTCCTTCTGGCA

Cytochrome C Oxidase 1 cox1 Energy metabolism GenBank Nucleotide NC_006531 F: CTACTCCTCTCCCTGCCAGT

R: CTTCTGGGTGGCCGAAGAAT

Deiodinase 1 dio1 Thyroid metabolism EeelBase 2.0 Eeel2-c186 F: AGCTTTGCCAGAACGACTGT

R: TTCCAGAACTCTTCGCACCT

Deiodinase 2 dio2 Thyroid metabolism Eel genome website g12347 F: GAAGAGGAGGATCGCCTACC

R: GCACTCTACCTCCGTCCAAA

Deiodinase 3 dio3 Thyroid metabolism EeelBase 2.0 Eeel-c22164 F: TACGGGGCGTATTTTGAGAG

R: GCTATAACCCTCCGGACCTC

Thyroid Hormone Receptor α A thrαA Thyroid metabolism GenBank Nucleotide KY082904 F: GCAGTTCAACCTGGACGACT

R: CCTGGCACTTCTCGATCTTC

Thyroid Hormone Receptor α B thrαB Thyroid metabolism GenBank Nucleotide KY082905 F: GAAGCCTTCAGCGAGTTCAC

R: ACAGCCTTTCAGGAGGATGA

Thyroid Hormone Receptor β B thrβB Thyroid metabolism GenBank Nucleotide KY082907 F: GAAGACTGAGCCCTGAGGTG

R: AGGTAATGCAGCGGTAATGG

Elongation Factor 1 α ef1a Housekeeping GenBank Nucleotide EU407824 F: CTGAAGCCTGGTATGGTGGT

R: CATGGTGCATTTCCACAGAC

40S Ribosomal S18 rps18 Housekeeping GenBank TSA GBXM01005349 F: TGACCGATGATGAGGTTGAG

R: GTTTGTTGTCCAGACCGTTG

https://doi.org/10.1371/journal.pone.0198294.t002
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Results

Mortality and biometry

European eel larval mortality (± SEM) until 12 dph, was highest (43 ± 10%) when larvae were

reared at 36 psu (control) and significantly (p< 0.0001) lower in all salinity reduced treat-

ments (Fig 2A). The statistically lowest larval mortality was observed when salinity was initially

reduced on 0 dph and at 2 or 4 psu/day (treatments 02 and 04, respectively) as well as on 3 dph

and at 4 psu/day (treatment 34).

Fig 2. Effect of salinity on European eel (Anguilla anguilla) larval mortality and biometry. Mortality (A), body area (B), growth (C), oil drop utilization (D) and

growth efficiency (E) from 2 to 12 days post hatch (dph) as well as occurrence of larval deformities such as spinal curvature (F), emaciation (G) and pericardial

edema (H) on 12 dph. Values represent means (± SEM) among three crosses at each age and treatment. Different lower case letters represent significant statistical

differences (p< 0.05).

https://doi.org/10.1371/journal.pone.0198294.g002
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Larval body area (±SEM), which increased until 12 dph, was found to be lowest (3.1 ± 0.2

mm2) when larvae were reared at 36 psu (control) and significantly (p< 0.0001) higher in all

salinity reduced treatments (Fig 2B). Larvae developed the highest body area (3.8–4.0 ± 0.2

mm2) when salinity was initially reduced on 0 dph and at 2 or 4 psu/day (treatments 02 and

04, respectively) as well as on 3 dph and at 4 psu/day (treatment 34).

Larval growth (± SEM) throughout the endogenous feeding window was significantly

(p< 0.0001) lower (0.16 ± 0.02 mm2 per day) when larvae were reared at 36 psu (control)

compared to all other treatments (Fig 2C). Highest growth (> 0.24 ± 0.02 mm2/day) occurred

when salinity was reduced on 0 dph and at 2 or 4 psu/day (treatments 02 and 04, respectively),

as well as on 3 dph and at 4 psu/day (treatment 34). Oil drop utilization (± SEM) was signifi-

cantly (p< 0.0001) lower (0.007 ± 0.0006 mm2/day) when salinity was reduced on 0 dph and

at 4 psu/day (treatment 04) compared to all other treatments (Fig 2D). All salinity reduction

treatments resulted in a growth efficiency (± SEM) that was significantly (p< 0.0001) higher

compared to larvae reared at 36 psu (control; 0.72 ± 0.04), while highest growth efficiency

(0.95 ± 0.04) occurred when salinity was reduced on 0 dph and at 4 psu/day (treatment 04;

Fig 2E).

On 12 dph, the occurrence of larvae with spinal curvature (± SEM) were significantly

(p< 0.0001) higher (56 ± 8%) when larvae were reared at 36 psu (control), compared to all

salinity reduction treatments (Fig 2F), while lowest (4 ± 8%) occurrence of larvae with spinal

curvature were detected when salinity was reduced on 0 dph and at 4 psu/day (treatment 04).

Similarly, the occurrence of larvae with emaciation (± SEM) were significantly (p< 0.0001)

higher (81 ± 12%) when larvae were reared at 36 psu (control), compared to all salinity reduc-

tion treatments (Fig 2G), while lowest (6 ± 8%) occurrence of larvae with emaciation were

detected when salinity was reduced on 0 dph and at 4 psu/day (treatment 04). On the contrary,

when salinity was reduced on 0 dph and at 2 or 4 psu/day (treatments 02 and 04, respectively),

as well as on 3 dph and at 4 psu/day (treatment 34), we observed larvae with a significantly

(p< 0.0001) higher (> 73 ± 10%) number of pericardial edema compared to larvae reared at

36 psu (control; Fig 2H).

Gene expression

Osmoregulation. Na+ K+ 2Cl- cotransporter regulation were affected by both larval age

and salinity. Relative expression levels of the genes encoding for nkcc1α were stable (Fig 3A),

while nkcc2α and nkcc2β increased significantly (p< 0.0001) throughout larval development

and peaked at 12 dph (Fig 3C and 3E). Expression of nkcc1α was significantly (p< 0.01)

reduced when salinity was decreased on 0 dph and at 1 or 4 psu/day (treatments 01 and 04,

respectively) as well as on 3 dph and at 4 psu/day (treatment 34; Fig 3B) compared to the 36

psu control. Similarly, expression of nkcc2β was significantly (p< 0.01) higher in the control

group than when salinity was decreased on 0 dph and 4 psu/day (treatment 04; Fig 3F),

while no statistically significant effect of salinity was observed on expression levels of nkcc2α
(Fig 3D).

Moreover, the relative expression of aquaporin 3 (aqp3) was stable (Fig 3G), aqp1dup signif-

icantly (p< 0.0001) decreased (Fig 3I), while aqpe significantly (p< 0.0001) increased

throughout larval development (Fig 3K). Expression of aqp3 was significantly (p = 0.005)

reduced when salinity was decreased on 0 dph and at 4 psu/day (treatment 04; Fig 3H) com-

pared to no reduction (control) or the slowest reduction in treatment 31 (reduction on 3 dph

and at 1 psu/day). Expression of aqp1dup was also significantly (p< 0.002) higher when larvae

were reared at 36 psu (control) compared to when salinity was decreased on 0 dph and at 2 or

4 psu/day (treatments 02 and 04, respectively; Fig 3J). Similarly, the salinity reduction on 0
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dph, irrespective of the reduction rate (treatments 01, 02 and 04; Fig 3L), caused a significant

(p< 0.001) reduction in mRNA levels of the third aquaporin tested (aqpe).

Stress response. The relative expression of heat shock protein 70 (hsp70) significantly

(p< 0.0001) increased throughout development, while hsp90 experienced a significant

(p< 0.0001) decrease from 2 to 6 dph, but increased again beyond that; both reaching a

peak on 12 dph (Fig 3M and 3O). The rate of reduction was the driver setting the expression

pattern for hsp90, since reduction rates of 2 and 4 psu/day let to lowered mRNA levels inde-

pendent of the onset of the treatment (p< 0.001, Fig 3P). The expression response of hsp70

Fig 3. Effect of age and salinity treatment on European eel (Anguilla anguilla) larval relative expression of selected genes. No significant salinity × age interaction

was detected for any gene. As such, over the entire experimental period, the main effects of age and salinity are displayed for genes encoding Na+K+2Cl- cotransporters

(A-F), aquaporins (G-L), and heat shock proteins (M-P). Values represent means (± SEM) among three crosses at each age and treatment. Different lower case letters

represent significant statistical differences (p < 0.05).

https://doi.org/10.1371/journal.pone.0198294.g003
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showed a similar pattern to hsp90; however it was not statistically different among the treat-

ments (Fig 3N).

Thyroid metabolism. A significant (p< 0.001) age × salinity interaction was found for

the relative expression of the thyroid hormone receptor thrαA (Fig 4A), while thrαB and thrβB
were not significantly affected by salinity (Fig 4C and 4E). For the latter two genes, age was the

main factor influencing gene expression. Expression levels of thrαB increased throughout

ontogeny (Fig 4B), while expression of thrβB increased from 2 to 4 dph and remained at steady

levels beyond that (Fig 4D; both p< 0.0001). Moreover, larval age and salinity influenced

Fig 4. Effect of age and salinity treatment on European eel (Anguilla anguilla) larval relative expression of selected genes. For thyroid hormone receptor αA

(thrαA), a significant salinity × age interaction was detected, thus the model was decomposed into a series of reduced ANOVA models to determine the effect of salinity

for each age (A). No significant salinity × age interactions were detected for all other genes. As such, over the entire experimental period, the main effects of age and

salinity are displayed for genes relating to thyroid hormone receptors (B-E), deiodinases (F-K), and energy metabolism (L-O). Values represent means (± SEM) among

three crosses at each age and treatment. Different lower case letters and asterisks represent significant statistical differences (p< 0.05).

https://doi.org/10.1371/journal.pone.0198294.g004
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genes involved in deiodination (dio1-3). Here, expression of dio1 and dio2 increased through-

out ontogeny (Fig 4F and 4H), while expression of dio3 decreased from 2 to 6 dph and

increased again beyond that until 12 dph (Fig 4J; all p< 0.0001). However, dio3 was the only

gene in this functional group that was influenced by salinity, as its expression was reduced

when salinity was decreased on 3 dph and at 2 psu/day (p< 0.02; Fig 4K).

Energy metabolism. Energy metabolism related genes (atp6, cox1) were found to be

steadily expressed within the endogenous feeding period (2 to 12 dph) and at all salinities, with

no significant differences occurring among treatments (Fig 4L–4O).

Discussion

European eel is critically endangered with diminishing glass eel recruitment [2]. Thus, there is

an urgent need to artificially produce offspring and improve survival during ELH of this spe-

cies. Latest efforts have focused on extrinsic (environmental) factors such as light [14] and

temperature [13, 45], while only eggs and embryos have been assessed regarding salinity effects

[36]. In the closely related Japanese eel, a major improvement in larval captive rearing has

been attributed to reduced salinity regimes [15, 46]. Therefore, this study investigated the

effect of salinity on artificially produced European eel larvae (from a morphological and

molecular point of view), to elucidate functionality and timing of osmoregulation related pro-

cesses affecting ELH, in order to ultimately determine optimal conditions for rearing Euro-

pean eel pre-leptocephalus larvae in aquaculture. To accomplish this, we reared offspring

throughout the endogenous feeding window (0–12 dph) and compared larvae reared at 36 psu

(control), which is close to the salinity occurring in the Sargasso Sea [19], with larvae reared

under reduced salinity conditions. Here, salinity was decreased on 0 or 3 dph and at rates of 1,

2 or 4 psu/day, resulting in six different salinity treatments (01, 02, 04, 31, 32 and 34).

Mortality and biometry

Generally, we observed that reducing salinity, especially on 0 dph at 4 psu (fastest reduction)

resulted in reduced mortality, increased body area, higher growth, reduced oil drop utilization

and improved growth efficiency of the European eel larvae. Similar observations have been

reported for Japanese eel, where better larval growth and survival were reported when reared

in 50% reduced salinity [15]. Thereafter, it was shown that reducing seawater salinity (with an

osmolality of ~1050 mOsm kg-1 H2O) to ~50%, facilitated an iso-osmotic environment for eel

larvae with a tissue osmolality of 360 to 540 mOsm kg-1 H2O [23]. Concurrently, it has been

argued that reducing salinity probably increased energy availability due to lower osmoregula-

tory expenses, enabling the survival of weaker larvae, which would not survive in a high salin-

ity environment [46]. Additionally, [47] reported increased spinal deformities at a high salinity

level (42 psu). In our study, we observed the highest incidence of spinal curvature (> 50%) and

emaciation (> 80%) when larvae were reared at 36 psu (control) compared to< 5% and <

10% respectively, when salinity was reduced on 0 dph and at 4 psu/day (treatment 04). How-

ever, it has also been reported that rearing eel larvae at reduced salinity (< 33 psu), causes

other deformities, such as pericardial edema and abnormal lower jaw [47]. The results of our

study are in agreement with those findings, as we also observed an increased number of larvae

with pericardial edema in the salinity reduced treatments. Thus, we demonstrate that reducing

salinity was a tradeoff process, which improved survival and growth but also induced an edem-

atous state of the larval heart. Hence, we consider that reducing salinity on 3 dph and at 2 psu/

day towards iso-osmotic conditions, results in a more balanced mortality/deformity ratio.

However, the persistency of the edematous state of the larval heart and if or how it represents

an obstacle in further larval development needs to be clarified via future investigations.
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Thyroid metabolism

In order to evaluate the underlying molecular backgrounds relating to the observed biometric

changes, we targeted genes involved in the thyroid metabolism, which is directly linked to

growth and development of fish [48]. The importance of the thyroid endocrine system,

especially during metamorphosis, has been documented in the Japanese conger eel, Conger
myriaster [49], while thyroid hormone treatment is applied to coordinate a synchronized

metamorphosis in Japanese eels [50]. Moreover, it was shown that the thyroid hormone path-

way is involved in the early life development of Japanese [51] as well as European eels and that

genes encoding thyroid hormone receptors and deiodinases show sensitivity to extrinsic (envi-

ronmental) stimuli, such as temperature [45]. In the current study we observed that an early

and fast reduction of salinity from 0 dph onwards increased thrαA levels, which is an underly-

ing molecular response that can potentially be correlated to growth efficiency, which was also

highest in this treatment. Moreover, the expression of dio3 was also influenced by the salinity

change, which would be in accordance with previous observations, where the outer ring deio-

dination showed sensitivity to salinity in rainbow trout, Oncorhynchus mykiss [52]. Further-

more, all genes relating to thyroid metabolism, investigated in this study, were affected by

larval age and showed differentially expressed patterns throughout ontogeny, which are in

accordance with previous reported results in European eel larvae [45] and thus further support

the involvement of the thyroid endocrine system during ELH of this species.

Osmoregulation

To further support our findings, we followed the relative expression of genes involved in ion

transport. Here, we targeted the NKCC subfamily of the chloride cation cotransporter gene

family, which mediates the electroneutral cotransport of Na+, K+ and Cl- ions and is known to

be involved in ion absorption and/or secretion as well as in cell volume homeostasis [27]. A

secretory (nkcc1) and an absorptive (nkcc2) subtype (with isoforms for each) have been previ-

ously identified in adult European eel [53]. Of these, the nkcc1α isoform showed a wide range

of tissue distribution, whereas nkcc1β was predominantly expressed in the brain [54]. More-

over, the nkcc2α isoform was rather restricted to renal tissues, whereas the nkcc2β isoform pre-

dominated in the intestine and urinary bladder [55]. In our study, we observed that nkcc1α
and nkcc2β expression decreased with salinity reduction, which indicates a downregulation of

the active Na+, K+, and Cl- transport. As this mechanism requires energy, a lowered transcellu-

lar ion transport can probably lead to reduced cellular energy consumption. Furthermore, the

ionoregulatory ability of the larvae seemed to increase throughout ontogeny (i.e. increased

expression of nkcc2α and nkcc2β), which is probably coupled to the increasing functionality of

the associated tissue (kidney and gut respectively) during organogenesis.

Ionoregulation is tightly coupled to water flow across membranes, where aquaporins form

pores to selectively facilitate rapid transport and exchange of water molecules [28]. In euroha-

line fish, such as the sea-bass (Dicentrarchus labrax), aquaporins facilitate the water uptake in

the intestinal tract and the reabsorption of water in the kidney to counteract dehydration in

response to high salinity [56]. Similarly, in relation to seawater acclimation, branchial aqp3
was downregulated, but intestinal aqp3 was unchanged [57], while renal aqp1, aqp1dup and

aqpe were downregulated [58], but intestinal aqp1 and aqpe were upregulated [59] in European

eel. Probably the high osmotic water loading through the gills and the associated excretion of

large volumes of dilute urine (needed in freshwater) are no longer necessary in a saline envi-

ronment (gill and renal expression downregulation), while on the contrary, the increased

ingestion of seawater and the accompanied transcellular movement of large quantities of salts

in the gastro-intestinal track, require concomitant changes in transcellular water transport
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(intestinal expression upregulation) [60]. In our study we observed a down-regulation of

aqp1dup and the two aquaglyceroporins (aqp3, aqpe) when salinity was reduced early and fast

(from 0 dph and at 4 psu/day), which is an indication that larvae acclimated their hydromin-

eral regulation in response to lower salinity by reducing water retention. However, as gills are

not present and the kidney as well as the intestine are undeveloped and only gain functionality

during this developmental period, the tissue specific functionality of this molecular mecha-

nism in relation to salinity change and the potential sensitivity shift among developmental

stages remain to be clarified.

Stress response

In order to analyze the cellular stress response in European eel larvae we targeted hsp70 and

hsp90, which are expressed (in response to stress) to counteract physiological injury and

reduce trauma [13, 29]. The hsp function, is commonly associated but not restricted to heat

stress and has been recognized to have a more universal role in response to a number of stress-

ors [29]. As such, hsps have been shown to be sensitive to changes in salinity, where lowest lev-

els of hsps were found in Black sea bream (Mylio macrocephalus) reared in an iso-osmotic

salinity and highest levels when reared bellow (hyper-osmotic) or above (hypo-osmotic) the

osmotic homeostasis [61]. A similar response was observed in our current study, where larval

hsp90 levels decreased in the treatments were salinity was reduced in 2 or 4 psu/day compared

to larvae reared in full strength seawater (36 psu). This suggests that eel larvae reared in iso-

osmotic conditions are less stressed probably due to lower energetic costs in maintaining cellu-

lar homeostasis.

Energy metabolism

Thereafter, we evaluated energy levels in European eel larvae in response to environmental

salinity changes by targeting genes involved in the OXPHOS pathway and associated to energy

metabolism in teleost fishes [31]. Here, the expression levels of ATP-synthase and cyto-

chrome-c-oxidase were stable throughout the entire developmental period investigated and

independent of salinity levels, suggesting that energy production was stable across all salinity

treatments. As such, in the light of decreased osmotic demands and stress (i.e. lower hsp, nkcc,

and aqp expression), European eel pre-leptocephalus larvae reared at iso-osmotic salinity con-

ditions seem to have a higher energy availability compared to larvae reared in full strength sea-

water (36 psu), which can then be utilized more efficiently to increase growth and survival.

Conclusion

To summarize, this study morphologically and molecularly elucidated osmoregulation related

processes and together with the consideration of the most balanced mortality/deformity ratio,

we conclude that salinity reduction benefits European eel larvae in terms of lower mortality

and improved growth efficiency, which is likely facilitated by an energy surplus associated to

lower osmoregulation demands. Hence, the overall knowledge gained from this study adds to

our understanding of underlying biological mechanisms during ELH of European eel and pro-

vides a promising step towards optimized rearing conditions for European eel pre-leptocepha-

lus larvae as well as in the strive for sustainable aquaculture of this species. Nevertheless, as the

studied molecular parameters foreshadow an adequate subsequent larval development, likely

due to a global lower osmoregulatory cost, further research is needed in order to verify the

energetic developmental costs in contrasted salinity scenarios and evaluate the long-term mor-

phological, molecular and physiological effects.
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Breeding European eel in captivity is a complex task. However, recent advances in assisted reproduction and cul-
turing techniques now allow mass production of high-quality gametes, embryos, and first-feeding larvae. Here,
three studies were conducted to determine whether dietary regime, chemoattractants, and light intensity have
an impact on the incidence of larval first-feeding, gut fullness, and behavior. Firstly, larvae at 12, 16, and
20 days post-hatch (DPH) were allowed to forage on one of five diets, rotifer paste (RP), RP + cod roe,
RP + octopus juice, RP + live rotifers, or Sargasso Sea plankton for 2 h and afterwards evaluated for presence
or absence of ingested diet. Secondly, light effects on feeding at 15 and 16 DPH were tested, using the following
intensities: High light at 21.5 ± 3.9 μmol m−2 s−1; intermediate at 6.8 ± 1.4 μmol m−2 s−1; low at 0.6 ±
0.2 μmol m−2 s−1; darkness; and a control where no feedwas added in darkness. Lastly, behavioral observations
were recorded on larvae at first-feeding. Results showed no evidence of first-feeding at 12 DPH. At 16 DPH, 23–
50% of larvae had ingested feedwhen offered either RP, RP+ live rotifers, or RP+ cod roe. At 20DPH, the highest
incidence of feedingwas detectedwhen larvaewere fed RP and chemoattractants; 8–30% of larvae ingested feed.
Light had a positive impact on feeding at 15 and 16 DPH, such that incidence of first-feeding and gut fullness in-
creased at the intermediate to high light intensities, where up to 50% of larvae ingested the RPdiet and had 9% gut
fullness. Swimming of larvaewas characterized by bouts produced by undulations of the caudal region, followed
by pauses where larvae remained motionless. Duration of swimming increased from 41 to 218 s at 13–17 DPH,
respectively. Larvae exposed to RP-based diets swam more than the control (no feed). Larval attacks were ob-
served in benthic and pelagic zones of the tank, however were more frequently observed in the benthos. Here,
8–10%, 60–73% and 69–86% of larvaewere observed grazing on RP-based diets at 13, 15 and 17DPH, respectively.
Typically, attacks were associated with S-bend posture and upon initiation of S-bends the larvae remained sta-
tionary before an explosive lunge. At 13–17 DPH, larvae fed the RP-based diets exhibited a higher incidence of
attacks than the control. Together, this work provides benchmark diets and conditions for future feeding and
growth trials.
Statement of relevance: First-feeding by European eel larvae in captivity.

© 2016 Published by Elsevier B.V.

Keywords:
Anguilla anguilla
Aquaculture
Stock enhancement
Larval nutrition
Diet
Light

1. Introduction

European eel, Anguilla anguilla, is categorized as a critically endan-
gered species (IUCN red list; Jacoby and Gollock, 2014) and has increas-
ingly attracted scientific inquiry towards improving our knowledge
relevant to species conservation and sustainable aquaculture. The
spawning area of the European eel was delimited by Schmidt (1922)
through the occurrence of early larval stages in the Sargasso Sea. Since
then, researchers of this catadromous species have focused on solving
themystery of the eel life cycle,wheremost knowledge on reproduction
is based on experimental studies (Palstra and van den Thillart, 2009).
Early attempts reported success at establishingmaturation, fertilization,
as well as hatching embryos under laboratory conditions (Prokhorchik,

1986; Prokhorchik et al., 1987; Pedersen, 2004, Palstra and van den
Thillart, 2009). European eel research has since progressed, enabling a
steady production of “high-quality” gametes, embryos, and yolk-sac
(pre-leptocephalus) larvae (Tomkiewicz, 2012; Mordenti et al., 2013;
Butts et al., 2014, 2015; Sørensen et al., 2016a, 2016b). These advances
have expanded the focus of experimental research to include larval per-
formance in pre-feeding culture (Politis et al., 2014; Bouilliart et al.,
2015; Sørensen et al., 2016b) and emerging first-feeding trials, leading
to leptocephalus stages.

When initiatingfirst-feeding,fish larvae detect prey via awide range
of chemical (olfaction and taste), visual, and mechanical stimuli
(Rønnestad et al., 2013). For instance, natural or synthetic chemotactic
stimulants attract larvae from a distance, foster the appropriate orienta-
tion, and promote the initiation of prey capture and ingestion (Kamstra
and Heinsbroek, 1991; Reig et al., 2003; Barroso et al., 2013). In the case
of Japanese eel, Anguilla japonica, larvae are attracted to and successfully
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feed on a slurry diet based on shark egg yolk (Tanaka et al., 2003), hen
egg yolk or exoskeleton-free Antarctic krill (Okamura et al., 2013). Re-
cently, rearing into glass eels was documented by feeding protein hy-
drolysate-based diets (Masuda et al., 2016), while a minute illoricate
rotifer, Proales similis was tested as an alternative diet closer to natural
larval trophic levels (Hagiwara et al., 2014). Unfortunately, suitable
start feeds for larval European eel in culture have not been identified,
while larval-prey interactions in nature still remain an enigma
(Riemann et al., 2010), thus this areawarrants immediate investigation.

In the Sargasso Sea, eel larvae are assumed to be present in the upper
100m layer at night andmigrate to greater depthswith lower light con-
ditions during daytime (Schoth and Tesch, 1984; Castonguay and
McCleave, 1987). Suchmigration patterns have also been shown for cul-
tivated Japanese eel (Otake et al., 1998). When reared in darkness, lep-
tocephali still distributed near the surface at night and at the bottom
during day, suggesting an endogenous circadian rhythm that may con-
trol the described vertical migration (Yamada et al., 2009). In nature,
aquatic organisms may be exposed to highly variable light conditions,
since several bio-physical factors as well as the water itself can alter
the quantity and quality of incident light (Jerlov, 1968). Light intensity
attenuates rapidly with depth, down to 0.5 lx at 200 m in the clearest
ocean (Helvik and Walther, 1992) and has been shown to have a
major effect on the highly susceptible early life history of fishes (Batty,
1987; Puvanendran and Brown, 1998). In culture, some species develop
better in complete darkness like the Atlantic halibut, Hippoglossus
hippoglossus (Bolla and Holmefjord, 1988) and gilthead sea bream,
Sparus aurata (Sahin et al., 2001), or under constant light like haddock,
Melanogrammus aeglefinus (Downing and Litvak, 1999) and Atlantic
cod, Gadus morhua (Puvanendran and Brown, 2002a). For European
eel, it has recently been shown that early life history stages are affected
by light intensity, quality, and photoperiod, where highest survival to
5 days post-hatch (DPH) was detected under a 12 h light/dark, low in-
tensity, red light photoperiod regime (Politis et al., 2014). This low
light optimum coincides with the ontogeny of the larvae's feeding sys-
tem during this early developmental window; i.e. mouth, pharyngeal
opening, and eye development (Sørensen et al., 2016b).

The objective of this study was to test specifically tailored diets,
under light and no-light conditions, for initiation of larval ingestion
rate, gut fullness, and behavioral patterns. Our hope is that this work
will provide a benchmark diet for further growth trials.

2. Materials and methods

2.1. Broodstock collection and husbandry

FromAug to Nov 2014 (at newmoon), wild-caught female silver eel
broodstock were obtained from a freshwater lake in northern Jutland,
Denmark. Mean (±SEM) length and body weight of the females used
in Studies 1 and 2 (see below) were 67.3 ± 3.5 cm and 521.3 ±
69.7 g, respectively (n = 3). After collection, broodstock were trans-
ferred to an experimental facility of the Technical University of Den-
mark (55.407444 N: 9.403414 E) where they were maintained in
300 L tanks equippedwith a closed recirculation system at amax densi-
ty of 10 females per tank under a continuous saltwater flow rate of 95 to
100 L min−1. Additionally, in Nov 2015, wild-caught female silver eels
(for Study 3 below) were obtained from Lough Neagh, Ireland
(69.5 ± 0.4 cm and 673.0 ± 20.4 g, n = 2). Upon transport, they were
all housed in a series of ~1250 L tanks equippedwith a closed recircula-
tion system. Allmales originated froma commercial eel farm (Stensgård
Eel Farm A/S in Jutland, Denmark). Upon transport they were held in
300 L tanks equipped with a recirculating system at max density of 30
males per tank. Length and bodyweight of themales used in these stud-
ies were 39.6 ± 0.8 cm and 115.9 ± 8.7 g, respectively (n=17). While
in captivity, water temperature of the broodstock was maintained at
~20 °C and adjusted to ~36 psu using commercial sea salt.

Prior to experimentation, the broodstock were anaesthetized (ethyl
p-aminobenzoate, 20 mg L−1; Sigma-Aldrich Chemie, Steinheim, Ger-
many), tagged with a passive integrated transponder, and length and
weight recorded. To induce vitellogenesis females received weekly in-
jections of pituitary extract at 18.75 mg kg−1 body weight (Argent
Chemical Laboratories, Washington, USA; Kagawa et al., 2005;
Tomkiewicz, 2012). To stimulate follicular maturation and induce ovu-
lation, females received an additional injection of 17α,20ß-dihydroxy-
4-pregnen-3-one (Sigma-Aldrich, St. Louis, MO, USA) at 2.0 mg kg−1

body weight (Ohta et al., 1996). Then, within 12–14 h, eggs were
stripped from females. Males received weekly injections of human cho-
rionic gonadotropin (hCG, Sigma Aldrich Chemie, Steinheim, Germany)
at 150 IU permale (Gallego et al., 2012). Prior to fertilization, they were
given another injection and milt was collected ~12 h after administra-
tion of hormone. Milt samples were pipetted into an immobilizing me-
dium (Peñaranda et al., 2010) and used for fertilization within 4 h of
collection.

2.2. Embryonic and larval rearing

For fertilizing and incubating eggs, North Sea natural seawater
(~32.5 psu) was used (Sørensen et al., 2016a). Seawater was filtered
using 0.8–1.0 μm cartridge filters (CUNO 3 M®, St. Paul, MN, USA) and
then adjusted to 36 psu using Red Sea Salt (Red Sea International,
Eilat, Israel).

For each female, dilutedmilt from severalmales was used. Milt dilu-
tion, gamete mixing, and activation were done according to Butts et al.
(2014). After activation, newly fertilized eggs were transferred to 15 L
of freshly filtered seawater (36 psu) for 2 h. Hereafter, only buoyant
eggs were transferred to 60 L black conical flow though incubators
that received filtered seawater at a flow rate of 30 mL min−1. Eggs/em-
bryos were kept in suspension by gentle aeration at 20.0 ± 0.5 °C. Each
incubator was purged regularly to remove dead eggs.

After 45 h of incubation, the aerationwas turned off, and the embry-
os started to initiate hatching. Following hatching, larvae were gently
transferred (using 2–5 L beakers) to a matured water recirculating
aquaculture system (RAS) that was equipped with (i) 4 × 250 L black
larval rearing tanks, two 300 L seawater reservoirs, 0.45 m3 biofilter
filled with RK-bioelements (total biomedia-surface of 337 m2–
0.17 m2 L−1 system water) and a ECO Runner 6000 protein skimmer
(Aqua Medic, Bissendorg, Germany) (for Studies 1 and 2) or (ii)
30 × 50 L glass aquaria, 1800 L seawater reservoir, 600 L sump tank,
two ECO Runner 3700 protein skimmers (Aqua Medic, Bissendorg, Ger-
many) and a 40 W UV lamp (for Study 3). All larvae were reared at
19.0 ± 1.0 °C in 36 psu seawater (as above), under low light conditions
(~0.3 μmol m−2 s−1 lx, Politis et al., 2014), with a constant flow rate of
~100mLmin−1. Stocking density throughout the yolk-sac stagewasbe-
tween 20 and 50 larvae L−1. Each rearing tank was siphoned, on a reg-
ular basis, to remove any bottom debris. Microalgae cells
(Nannochloropsis sp.; 40,000–60,000 cells mL−1 of culture water; Reed
Mariculture Inc., U.S.A.) were provided to the water to establish
“green water” conditions for the duration of the experiment.

2.3. Study 1: effect of diet on ingestion rate

Larvae from 2 females were used to test the effect of diet on inges-
tion rate. In total, five dietswere tested (Table 1). Larvaewere randomly
collected from the RAS system at 12, 16, and 20 DPH using a wide-
mouth pipette (6 mm diameter); red light LED headlamps were used
to assist with larval collection (Politis et al., 2014). Ten larvaewere load-
ed into a series of 1 L glass beakers containing 800mL of filtered 36 psu
seawater (as above). Larvae were maintained inside temperature con-
trolled cabinets (MIR-154, Sanyo, Panasonic Biomedical, Leicestershire,
United Kingdom) at 20.0 ± 0.5 °C, under ~6.0 μmol m−2 s−1 light con-
ditions. Each diet was tested in triplicate. The diets were added directly
to the surface of each tank and they subsequently dispersed in thewater
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column and sank to the bottom (benthic zone) within 60–90 s. Larvae
were given an additional ~1 h acclimation period before each diet was
added. The larvae were allowed to forage on the diets for ~2 h, upon
which time they were removed from the glass beakers with a wide-
mouth pipette and anaesthetized using tricaine methane sulphonate
(MS-222, Sigma-Aldrich Chemie, Steinheim, Germany) at ~250 ppm.
Afterwards, theywere evaluated for the presence or absence of ingested
diet. Images of larvae were then captured using a zoom stereomicro-
scope (SMZ1270i fitted DS-Fi2 Camera Head, Nikon Corporation,
Tokyo, Japan). All images were analyzed for larval standard length
(SL) and measurements were made using NIS-D software (NIS-Ele-
ments D, Nikon Corporation, Tokyo, Japan).

2.4. Study 2: effect of light intensity on the incidence of larval feeding and
gut fullness

Light intensity effects on feeding were tested by applying the same
quantity of rotifer paste (RP) that was found most successful in Study
1 (Table 1), to each of four replicate beakers each containing ten larvae.
Larvae were randomly sampled from two batches of 15 DPH larvae and
allowed to feed for ~2 h. The experiment was repeated the following
day on a new aliquot sample of larvae at 16 DPH. The following five
light intensity treatments were applied: High light at 21.5 ±
3.9 μmol m−2 s−1; intermediate light at 6.8 ± 1.4 μmol m−2 s−1; low
light at 0.6 ± 0.2 μmol m−2 s−1; darkness; and the control where the
larvae received no feed and the trial was conducted in darkness. Light
was applied using a daylight lamp (Falcon Eyes ML-40, 5400-5600K,
Benèl BV in Hoogeveen, The Netherlands) and low light intensities
were obtained by use of a shading garment. Each light intensity treat-
ment was maintained inside temperature controlled cabinets at

20.0 ± 0.5 °C. After feeding, larvae were anaesthetized using MS-222
(as above) and photographed using a stereomicroscope (SMZ1270i
fitted DS-Fi2 Camera Head, Nikon Corporation, Tokyo, Japan). All larvae
were analyzed for SL, total gut area, and food particle(s) area. Gut full-
nesswas also calculated as the area percentage of food particles relative
to total gut area. All measurements were made using NIS-D software
(NIS-Elements D, Nikon Corporation, Tokyo, Japan).

Fig. 1. Effect of dietary regime on incidence of larval feeding in European eel, Anguilla
anguilla at 16 and 20 days post-hatch, with corresponding standard length. Diets with
different letters are significantly different (p b 0.05, least square means, ANOVA). Error
bars represent least square means standard error.

Table 1
Procedures used to manufacture, prepare, store, and deliver feed to first-feeding European eel, Anguilla anguilla larvae.

Feed
source Manufacturing and preparation Storage and use Feeding density

Rotifer
paste

Rotifers (Brachionus plicatilis) were cultured in 200 L tanks on
ORI-ONEa and RotiGrow Plusb, according to company
instructions. Instant algae,c (Nannochloropsis oculata) was
provided daily at 40,000–60,000 cells mL−1. Culture water was
0.2 μm filtered 32 psu seawater at 20 °C. At 100–400 rotifers
mL−1 the cultures were harvested on a 40 μm screen and
homogenized in a glass tube with a rotating pestle at 1200 rpm.d

Homogenized rotifers were centrifuged at 8000 ×g for 5 min to
remove excess fluid.

The precipitate was filled into disposable 1 mL syringes and
frozen at −20 °C prior to use. Frozen rotifer syringes were
thawed ~1 h prior to experimentation and added directly to
feeding tanks.

Tanks received 0.5 mL of
rotifer paste/L of water.

Rotifer
paste +
cod roe

Rotifer paste was prepared, as above. Freshly frozen Atlantic cod,
Gadus morhua roe was thawed and liquids immediately sampled
in Eppendorf tubes.

Cod roe liquid was frozen in tubes at −20 °C. Frozen rotifer
syringes and tubes containing cod roe were thawed ~1 h prior to
experimentation and added directly to feeding tanks.

Tanks received 0.5 mL of
rotifer paste/L and 0.1 mL of
cod roe liquid/L of water.

Rotifer
paste +
octopus
juice

Rotifer paste was prepared, as above. Frozen wild-caught
octopus, Octopus vulgaris was thawed and epidermal tissue parts
grinded. Homogenate was filled in Eppendorf tubes and frozen.

Octopus liquid was frozen in Eppendorf tubes at −20 °C. Frozen
rotifer syringes and tubes containing octopus juice were thawed
~1 h prior to experimentation and added directly to feeding
tanks.

Tanks received 0.5 mL of
rotifer paste/L and 0.1 mL of
octopus juice/L of water.

Rotifer
paste +
live
rotifers

Live rotifers were cultured and paste was prepared, as above. Frozen rotifer syringes were thawed and live rotifers were
harvested ~1 h prior to experimentation and added directly to
feeding tanks.

Tanks received 0.5 mL of
rotifer paste/L and 5
rotifers/mL of water.

Sargasso
Sea
plankton

Sargasso Sea plankton (avg. particle size was 3.35 ± 10.18 mm2,
n = 141 particles) was obtained from 16 March to 5 April 2014,
between the longitudes 50°W and 68°W using a 25 m long
conical net with mesh size of 560 μm and cod-end of 350 μm. The
net was held open by a 3.5 m diameter steel ring. Fishing was
performed using oblique hauls from surface down to 250 m, at a
cruising speed of 2 knots and a total wire pay-out and retrieval
of 55 min and 15 m min−1, respectively.

Plankton samples were frozen at −20 °C immediately after
catch. Frozen plankton was thawed ~1 h prior to
experimentation and added directly to feeding tanks.

Tanks received 0.5 mL of
plankton/L of water.

a ORI-ONE® (Skretting, Stavanger, Norway).
b Rotigrow Plus® (Reed Mariculture Inc., Campbell, CA).
c Nanno 3600 instant algae (Reed Mariculture Inc., Campbell, CA).
d Potter-Elvehjem PTFE 19 mm pestle with clearance of 0.101 mm–0.152 mm (Sigma-Aldrich Chemie, Steinheim, Germany.
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Fig. 2. (A) Illustration of European eel, Anguilla anguilla larvae with 11.6 or 32.9% gut fullness; (B) effect of light intensity on the incidence of larval feeding at 15 and 16 days post-hatch,
with corresponding standard length; (C) effect of light intensity on the percentage of gut fullness at 15 and 16 days post-hatch, with corresponding standard length. Light intensities with
different letters are significantly different (p b 0.05, least square means, ANOVA). Error bars represent least square means standard error.
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2.5. Study 3: behavioral observations

Larvae from 2 females were used for behavioral observations at 13,
15 and 17 DPH. Firstly, larvae were arbitrarily selected from their re-
spective rearing tanks and loaded into a series of 1 L glass beakers and
subjected to high intensity light at 21.5± 3.9 μmolm−2 s−1 (according
to Study 2). Fish were allowed a 3–5-min acclimation period before the
appropriate dietary regime was added (RP, RP+ live rotifers, RP + cod
roe, or an experimental control that received no feed). Larval behavioral
patterns were made by an observer seated quietly at eye level, ~30 cm
in front of the beaker (Puvanendran and Brown, 2002b). Behavioral ob-
servations were conducted on 152 larvae (2 females × 3 dietary
regimes + control × 3 ages × 5–8 larvae) using the focal-animal tech-
nique (Altman, 1974). For each trial, the following modal action pat-
terns were recorded: time spent swimming (forward movement of
larva through water column via tail undulations), pause (larva is mo-
tionless), percentage of time in benthic zone, attack (larva rapidly
moves from stationary position with active jaw movement), and graz-
ing (larva positioned in benthic zone with head submerged in feed par-
ticles). Following each trial, larvae were evaluated for the presence or
absence of ingested diet (as above).

Additionally, feeding associated behavior was filmed using a SLR dig-
ital camera (20.2 megapixel EOS 6D, Canon, Ōta, Tokyo, Japan) equipped
with 100mmL f/2.8macro lens (Canon). Filmingwas done perpendicular
to thewater surface in a culture tank (100 cm×100 cm×2000 cm). Cam-
era settingswere set at 25 frames s−1 at a resolutionof 1980×1080pixels
pixels (1:1 ratio) using high compression (interframe, IPB), auto ISO,
shutter speed of 1/50 s and f5.6. The tank was filled with natural sea
water adjusted to 36 psu. RP was provided to a batch of larvae
at 19 DPH. During feeding, tank surface light was kept at an intensity of
~5 μmol m−2 s−1. Here, we monitored bouts of routine swimming, as
well as S-bends and attacks. Video sequences of larval postures were iso-
lated using Adobe Premier Pro CS5.5, Photoshop CS6 and InDesign CS6
(Adobe Systems Inc. San Jose, CA, USA).

2.6. Statistical analyses

Data were analyzed using SAS statistical analysis software (v.9.1;
SAS Institute Inc., Cary, NC, USA). Residuals were tested for normality
(Shapiro–Wilk test) and homogeneity of variance (plot of residuals vs.
predicted values). Data were arcsin square-root or log10 transformed
when necessary (Zar, 1996). Alpha was set at 0.05. Tukey's honest sig-
nificance test was used to determine which treatment means differed.
For Study 1 and Study 2, ingestion rate and gut fullness data were ana-
lyzed using a series of one-way ANOVA models at each DPH. Here, the
glass beakerwas considered the replicate. For Study 3, time spent swim-
ming, the percentage of time in benthic zone, and frequency of attacks
were analyzed using a series of two-way repeated measures ANOVAs
containing the time (13, 15, and 17 DPH; repeated factor) and dietary
regime main effects, as well as the time × dietary regime interaction.
When interactions were detected or suspected, reduced models were
run separately at each level of time to facilitate their interpretation. Fe-
male was incorporated into the model as a random blocking factor and
an individual larvawas considered the replicate. Values are expressed as
mean ± SEM.

3. Results

3.1. Study 1: effect of diet on ingestion rate

No evidence of first-feeding was observed at 12 DPH. However, at
16 DPH diet composition had a significant impact on larval feeding,
such that larvae fed either RP, RP+ live rotifers, or RP + cod roe exhib-
ited the highest incidence of feeding, where 23–50% of larvae ingested
these diets (Fig. 1). Dietary regime also had an impact on larval first-
feeding at 20 DPH (P b 0.05). Here, diets formulated with RP, and

associated chemotactic stimulants, gave the highest incidence of larval
feeding (3 to 30%; Fig. 1). Larvae did not ingest the Sargasso Sea plank-
ton diet nor were any feeding incidences detected for the control group,
on either sampling day (Fig. 1).

3.2. Study 2: effect of light intensity on the incidence of larval feeding and
gut fullness

For visualization, Fig. 2A depicts larvae with either 11.6 or 32.9% gut
fullness. Lighting conditions had a significant impact on the incidence of
larval first-feeding (Fig. 2B) and gut fullness (Fig. 2C) at 15 and 16 DPH.
More specifically, the incidence of first-feeding and percentage of gut
fullness increased in the intermediate (6.8 ± 1.4 μmol m−2 s−1) and
high (21.5 ± 3.9 μmol m−2 s−1) light intensities (Fig. 2). In the high
light intensity treatment, up to 49.9% of larvae had ingested the RP diet.

3.3. Study 3: effect of diet on larval behavior

Swimming was typically characterized by bouts produced by undu-
lations of the caudal region, followed by pauses where the larvae
remained motionless (Fig. 4A). Time and dietary regime had an impact
on larval swimming (P b 0.05), where the duration of swimming signif-
icantly increased from 41.2 to 218 s at 13 to 17 DPH, respectively (Fig.
3A). Dietary regime also affected total swimming duration, such that
swimming increased when larvae were exposed to RP + live rotifers
or RP+ cod roe, compared to the control (P b 0.05, Fig. 3B). Throughout
the behavioral trials, larvae were typically detected in both benthic and
pelagic zones. The percentage of time spent in the benthic zonewas not
impacted by either time, dietary regime, or the time×dietary regime in-
teraction (P N 0.05).

Larval attacks were also observed in both zones; however, this
modal action pattern was more frequently observed as grazing in the
benthic zone where the majority of feed settled. For instance, 8–10%,
60–73%, and 69–86% of larvae were observed grazing on RP-based
diets at 13, 15, and 17 DPH, respectively. On the contrary, no evidence
of grazing behaviorwas observed for the control. Attackswere primarily
associated with S-bend posture as outlined in Fig. 4A. Upon initiation of
a S-bend the larva remained stationary using frequent caudal beats,
with the posterior portion of their body, before an explosive lunge as vi-
sualized in Fig. 4A. The time × dietary regime interaction had a signifi-
cant impact on the frequency of larval attacks. As a result, reduced
models were run separately at each time to facilitate their interpreta-
tion. From 13 to 17 DPH, larvae fed RP-based diets typically exhibited
a higher incidence of attacks than the control (P b 0.05, Fig. 4B).

At 13 DPH, 10% of larvae ingested the RPdiet, while RP+ live rotifers
or RP+ cod roewas not ingested. At 15 DPH, 27% (RP+ cod roe) to 40%
(RP) of larvae ingested diets, while at 17 DPH, 16% (RP+ live rotifers) to
44% (RP) ingested diets. No evidence of first-feeding was observed for
the control group.

4. Discussion

At present, experience in European eel larviculture is limited. In this
study, we document the first evidence of first-feeding European eel lar-
vae that have been reared in captivity. More specifically, up to 50% of
cultured larvae ingested a diet composed of concentrated RP, with or
without natural feeding stimulants. We also detected improved inges-
tion at higher light intensities. As such, our results move us a step closer
towards understanding an undisclosed phase in the European eel life
cycle; i.e. transition from newly hatched endogenous feeding larvae
(pre-leptocephalus) to the exogenous leptocephalus stage.

In recent time, the life cycle for Japanese eel has been closed in cap-
tivity (Tanaka et al., 2003). In early larval feeding trials, Japanese eel lar-
vae were offered and ingested S-type rotifers, Brachionus rotundiformis
(Tanaka et al., 1995), and it was shown that they are able to absorb ro-
tifer proteins in their intestine (Kurokawa et al., 1995). Since then, more
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Fig. 4. (A) Illustrations of European eel, Anguilla anguilla feeding associated behaviors; (B) effect of feed source on the frequency of larval attacks at 13 to 17 days post-hatch. Feed sources
with different letters are significantly different (p b 0.05, least square means, ANOVA). Error bars represent least square means standard error.

Fig. 3. Impact of larval age (A) and feed source (B) on swimming duration (per 5-min behavior trial) of European eel, Anguilla anguilla larvae. Treatments with different letters are
significantly different (p b 0.05, least square means, ANOVA). Error bars represent least square means standard error.
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successful diets have been developed,where larvae can growon a slurry
diet based on shark egg yolk (Tanaka et al., 2001, 2003; Kagawa et al.,
2005). However, the use of this slurry diet is not sustainable, due to de-
pletion of shark populations (Baumet al., 2003). As such, alternative nu-
tritional sources were tested and results showed that diets composed of
hen egg yolk, exoskeleton-free Antarctic krill (Okamura et al., 2013),
non-living P. similis (Hagiwara et al., 2014) and protein hydrolysate-
based diets (Masuda et al., 2016) were good alternatives to endangered
shark eggs for Japanese eel larvae. In our study, we show that European
eel larvae are able to ingest RP. Thus, moving away from unsustainable
diets, i.e. shark egg paste, to amore suitable start feed, provides a logical
step towards sustainable aquaculture of eels.

Most fish larvae are visual feeders and foraging behavior is tightly
linked to light conditions (Blaxter, 1986). Each species and populations
thereof have adapted to specific conditions of light quantity, quality, and
photoperiodic alterations. For instance, larval haddock had significantly
greater feeding successwhen exposed to blue (470 nm) light and an in-
termediate intensity of 1.8 μmol m−2 s−1 (Downing and Litvak, 2001),
while European sea bass, Dicentrarchus labrax, larvae grew better when
reared under 12:12 h light/dark blue light (Villamizar et al., 2009); con-
ditions most comparable to those of their natural aquatic environment.
Atlantic cod was shown to develop best under constant light conditions
(Puvanendran and Brown, 2002a), though a reduction in light intensity
during the late larval stages seems to enhance feeding efficiency and
growth (Monk et al., 2006). Feeding was significantly reduced at
lower and higher light intensities for haddock larvae (Downing and
Litvak, 2001), while cod larvae continue to actively feed at low intensity
light levels that are close to darkness (Vollset et al., 2011). Similarly, we
observed feed intake of European eel larvae in light but also in darkness,
indicating that this species, besides using visual cues like Japanese eel
(Pedersen et al., 2003),may also be able to use awide range of chemical
(olfaction and taste buds) and mechanical stimuli to detect prey
(reviewed in Rønnestad et al., 2013). Nevertheless, in comparison to lar-
vaekept in thedark, larvaeat the intermediate (6.8±1.4μmolm−2 s−1)
1) to high intensities (21.5 ± 3.9 μmol m−2 s−1) had improved feeding
success. Thus, it appears advantageous to rear European eel larvae, dur-
ing first-feeding, in higher light intensity environments so that prey de-
tection and capture can be optimized during this “critical” window
(Hjort, 1914).

In the present study, larval behavioral patternswere observed from13
to 17 DPH. Here, the goal was not to extrapolate these results to a natural
environment, but to characterize behavioral repertoires that may be fur-
ther used to optimize feeding success for future hatchery production.
Most notably, we observed highly distinctive modes of swimming from
short-term bouts, slow steady-state cruising to quick lunges for either
prey attacks or spontaneous escape behaviors. Overall, swimming activity
increased over the duration of the experiment, co-varied with the fre-
quency of attacks and increased in the presence of RP + live rotifers or
RP + cod roe. Together, this indicates that eel larvae were able to sense
the RP-based diets, especially with added chemoattraction.

The general nature of the attack sequence (see Fig. 4) clearly shows
that first-feeding eel larval are able to execute a complex goal-oriented
motor response (McElligott and O'Malley, 2005). This sequence was
characterized by “classic” modal action patterns (i.e. swim, pause, s-
shape posture, capture, miss, pass) that are typically exhibited by fish
larvae, such as Atlantic cod (Puvanendran and Brown, 1998;
Puvanendran and Brown, 2002b), witch flounder, Glyptocephalus
cynoglossus (Rabe and Brown, 2001), European sea bass (Villamizar et
al., 2011) and zebrafish, Brachydanio rerio (Budick and O'Malley, 2000;
McElligott and O'Malley, 2005). The frequency of attacks increased
from 13 to 15–17 DPH, however ingestion rates declined when the lar-
vae were initially offered the diets at 20 DPH (Fig. 1). Thus, at this later
stage in ontogeny, the larvae likely reached “irreversible starvation” or
the “point of no return” (Blaxter and Hempel, 1963).

The cod roe or octopus juice chemoattractants most probably in-
creased the awareness of food availability, though did not significantly

improve ingestion rate or the frequency of attacks forfirst-feeding Euro-
pean eel. This was surprising, considering that the addition of feeding
stimulants increased feed intake and growth rate of glass eels
(Heinsbroek and Kreuger, 1992) as well as of other fish species
(Kolokovski et al., 1997; Barroso et al., 2013). Overall, prey attacks
were observed throughout the water column, for RP-based diets with
orwithout chemoattractants, and less frequently for the controls.More-
over, grazing behavior was commonly observed in the benthic zone
where the majority of feed settled. Thus, it appears that European eel
larvae, as well as Japanese eel (Tanaka et al., 2001), are able to feed
from the tank substrate. As such, shallower tanks or raceways may in-
crease larval ingestion as well as feed encounter rates.

5. Conclusion and future insights

Now that European eel larvae are ingesting feed in captivity, the next
step will be to establish a dietary composition and regime that ensures
high growth rates and survival. Together, this will resolve one of the
major ‘bottlenecks’ in the process of establishing on-growing larval cul-
ture throughout the leptocephalus stage and thus to reach the phase of
transformation to glass eels. To achieve this, a series of studies should be
conducted to enhance knowledge on dietary requirements of European
eel larvae. This includes a thorough examination of the ontogenic devel-
opment of digestive tract morphology and a comprehensive analysis of
pancreatic and intestinal enzymatic activity, aswell as their correspond-
ing gene expression. The capacity of larvae to digest and absorb various
nutrients should also be investigated via a technique called “force-feed-
ing”, whereby in vivo studies target digestibility and assimilation of key
nutrients using radiolabeled dietary nutrients (Rust et al., 1993). Based
on attained insights, an assortment of feeds (formulated or live) could
be manufactured to ensure adequate nutrition throughout the larval
stage. Together, this will move us closer towards completing the life
cycle in captivity for this endangered and economically important spe-
cies of fish.
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Abstract  
 

Digestive system functionality of fish larvae relies on the onset of genetically pre-programmed and 

extrinsically influenced digestive functions. This study explored how algal supplementation (green-

water) until 14 days post hatch (dph) and the ingestion of food [enriched rotifer (Brachionus 

plicatilis) paste] from 15 dph onwards affects molecular maturation and functionality of European 

eel larval ingestion and digestion mechanisms. For this, we linked larval biometrics to expression of 

genes relating to appetite [ghrelin (ghrl), cholecystokinin (cck)], food intake [proopiomelanocortin 

(pomc)], digestion [trypsin (try), triglyceride lipase (tgl), amylase (amyl)], energy metabolism [ATP 

synthase F0 subunit 6 (atp6), cytochrome-c-oxidase 1 (cox1)], growth [insulin-like growth factor 

(igf1)] and thyroid metabolism [thyroid hormone receptors (thrαA, thrβB)]. Additionally, we 

estimated larval nutritional status via nucleic acid analysis during transition from endogenous and 

throughout the exogenous feeding stage. Results showed appetite stimulators (ghrl) and inhibitors 

(cck) marking the beginning of the first-feeding window on 12 dph, but no benefit of larviculture in 

green-water was observed. Moreover, expression of genes relating to protein (try), lipid (tgl) and 

carbohydrate (amyl) hydrolysis revealed essential digestive processes occurring from 14 to 20 dph. 

On 16 dph, a molecular response to initiation of exogenous feeding was observed in the expression 

patterns of pomc, atp6, cox1, igf1, thrαA and thrβB. Additionally, we detected increased DNA 

contents, which coincided with increased RNA contents and greater body area, reflecting growth in 

feeding compared to non-feeding larvae. Thus, the here applied nutritional regime facilitated a 

short-term benefit, where feeding larvae were able to sustain growth and better condition than their 

non-feeding conspecifics. However, RNA:DNA ratios decreased from 12 dph onwards, indicating a 

generally low larval nutritional condition, probably leading to the point-of-no-return and subsequent 

irreversible mortality due to unsuccessful exogenous feeding. In conclusion, this study molecularly 

identified the first-feeding window in European eel and revealed that exogenous feeding success 

occurs concurrently with the onset of a broad array of enzymes and hormones, which are known to 

regulate molecular processes in feeding physiology. This knowledge constitutes essential 

information to develop efficient larval feeding strategies and will hopefully provide a promising 

step towards sustainable aquaculture of European eel.  

 

Key words: Anguilla anguilla, ingestion, digestion, gene expression, RNA/DNA, aquaculture  
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1. Introduction  
 

Eel (Angilla spp) is a targeted, high-value species for aquaculture in Asia and Europe. 

Unfortunately, eel farming is still a capture-based industry exclusively relying on wild-caught glass 

eels and thus the sustainability of this industry is challenged by the present critically low stock 

abundance of especially European (A. anguilla) eels (ICES 2017). Hence, it is urgently needed to 

further develop and establish captive breeding techniques and technologies for this critically 

endangered diadromous fish species. However, eels do not reproduce naturally in captivity due to 

complex hormonal control mechanisms that relate to their long migration to native oceanic 

spawning areas (Vidal et al., 2004). Such maturational barriers can be overcome through 

hormonally assisted reproduction, which led to the first reports of Japanese eel, A. japonica 

(Yamamoto and Yamauchi 1974) and A. anguilla (Bezdenezhnykh et al., 1983) offspring obtained 

from artificially matured fish, more than 30 years ago. Since then, extensive scientific inquiry has 

moved the field from individual efforts of reproductive failure towards a stable production of 

Japanese eel offspring (Tanaka et al., 2001). Advances in Japanese eel culture have formed the 

baseline for eel research, leading to improved assisted reproduction protocols for European eel 

(Pedersen 2004; Paalstra et al., 2005; Sørensen et al., 2016a). However, establishment of culture 

technology throughout the larval stage until metamorphosis is still challenged by lack of insights on 

the “critical” early life history stages and dietary requirements for the unique pre-leptocephalus 

larvae. 

As such, research has been conducted to identify natural larval eel feeding resources and early 

hypotheses such as eel leptocephali absorbing dissolved organic carbon or feeding on larvacean and 

zooplankton fecal pellets have been developed (reviewed in Miller 2009). Thereafter, a study 

investigating gut contents of European eel larvae caught in the Sargasso Sea, revealed that even the 

smallest larvae feed on a variety of planktonic organisms and that gelatinous zooplankton could be 

of fundamental dietary importance (Riemann 2010). Subsequently, a study on both natural and 

laboratory-reared larvae of the Japanese eel, estimated that leptocephali most probably feed on 

particulate organic matter (POM) such as marine snow and discarded appendicularian houses 

containing bacteria, protozoans and other biological materials (Miller et al., 2012). However, in 

spite of this increasing knowledge on natural larval eel feeding ecology, most insights gained have 

focused on non-anguillid species or older anguillid leptocephali, beyond the first-feeding stage 

(Miller, 2009). Thus, the natural first-feeding regimes of Anguilla pre-leptocephali still remain an 

enigma. 

Similarly, increased scientific inquiry has focused on identifying potential first-feeding diets 

for laboratory reared eel larvae in aquaculture, where the first exogenously feeding eel larvae was 

reported two decades ago (Tanaka et al., 1995). Shortly after, the transition from the pre-

leptocephalus to the leptocephalus stage was achieved, when Japanese eel larvae were fed a diet 

based on shark egg powder (Tanaka et al., 2001). Subsequent modifications of this diet led to the 

first laboratory reared glass eel production (Tanaka et al., 2003). However, the unstable supply of 

the eggs of the spiny dogfish (Squalus acanthias) used as a natural resource basis to develop this 

diet, in combination with the “vulnerable” status of this species (Fordham et al., 2016), has moved 

focus to more sustainable alternatives. Promising alternative diets based on fish protein hydrolysate 
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that had been pre-digested with integral enzymes from frozen krill (Masuda et al., 2013), or hen egg 

yolk and exoskeleton-free (skinned) Antarctic krill (Okamura et al., 2013) have been reported, but 

still with lower success compared to the shark paste. Additionally, Japanese eel larvae were 

observed to feed on various minute zooplankton species, suggesting that rotifers (such as Proales 

similis) could be an alternative initial food source for eel larvae (Wullur et al., 2013). Unfortunately, 

identifying suitable feeds for larval European eel has been rather stagnant for several decades and 

only recently it was documented that artificially produced European eel pre-leptocephali 

successfully ingested a diet based on rotifers (Brachionus plicatilis) with or without natural chemo-

attractants (Butts et al., 2016). 

Now that European eel research has succeeded in producing larvae (via assisted 

reproduction), which are able to exogenously feed, the opportunity has emerged to elaborate our 

knowledge on the nutritional condition of individual larvae via nucleic acid (RNA/DNA) content 

analysis (Clemmesen, 1993) and to examine physiological mechanisms regulating feeding, 

digestion and growth. Hormones that regulate feeding include appetite stimulators (orexigenic 

factors) such as ghrelin and inhibitors (anorexigenic factors) such as cholecystokinin (Volkoff et al., 

2010). During early life history, fish larvae undergo major morphological and molecular changes, 

where shortly after mouth opening and before first-feeding, it is possible to detect an increasing 

availability of digestive enzymes relating to protein, lipid and carbohydrate hydrolysis, suggesting 

that the onset of the molecular digestive potential is genetically pre-programmed and not only 

influenced by the initiation of exogenous feeding (Zambonino-Infante and Cahu 2001). Similar to 

other fish species, eel larvae lack a stomach, so they probably depend on pancreatic enzymes (such 

as trypsin, lipase and amylase) for the extracellular hydrolysis of food (Kurokawa et al., 2002; 

Pedersen et al., 2003). It has also been shown that a sub-optimum nutritional composition can retard 

the maturational process of digestive enzymes (Krogdahl and Sundby, 1999), indicating that fish 

larvae are not able to handle some dietary components due to unique digestive capacities (Cahu and 

Zambonino-Infante, 1995). However, the maturational processes of digestive capacities can be 

stopped or delayed, but also enhanced depending on the dietary composition (Zambonino-Infante 

and Cahu 2001). Furthermore, rearing larvae in the presence of algae (green-water) can trigger 

digestive enzyme production (Cahu et al., 1998), which in addition to the genetically pre-

programmed enzyme synthesis can induce an early maturation of hydrolytic functions (Lazo et al., 

2000). 

This demonstrates the necessity of determining species-specific molecular digestive potential 

and timing in order to understand the distinct nutritional predisposition and the capacity for 

adaptation towards utilizing dietary components, which might not occur in the corresponding 

natural feeding regime. As such, here we reared European eel larvae with or without the presence of 

algae (Nannochloropsis, Pavlova and Tetraselmis) from 0 to 14 dph and with or without the 

presence of food (rotifer paste) from 15 to 24 dph. Thereafter, we measured larval biometrics, 

quantified individual nucleic acid (RNA/DNA) contents and followed the relative expression of 

genes relating to appetite [ghrelin (ghrl), cholecystokinin (cck)], food intake [proopiomelanocortin 

(pomc)], digestion [trypsin (try), triglyceride lipase (tgl), amylase (amyl)], energy metabolism [ATP 

synthase F0 subunit 6 (atp6), cytochrome-c-oxidase (cox1)], growth [insulin like growth factor 

(igf1)], and thyroid metabolism [thyroid hormone receptors (thrαA, thrβB)]. Hence, the objectives 
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of this study were to i) explore the development of the endocrine systems which regulate appetite, 

ingestion and digestion by targeted gene expression; ii) molecularly define the “first-feeding” 

window; iii) examine the potential benefit of “green-water” during endogenous feeding; and iv) 

investigate the effect of initiating exogenous feeding on larval biometry, nutritional condition and 

gene expression in European eel. 

 

2. Materials and Methods 

 

2.1. Broodstock maturation and husbandry  

 

Broodstock was kept at the EEL-HATCH facility in Hirtshals (Denmark), where females were 

held in 2000 L tanks and males in 500 L tanks, equipped with a closed recirculation system, under a 

continuous flow rate of ~15 L min
-1

. Light conditions were held at low intensity (~20 lux) and 12 h 

day/12 h night photoperiod. Acclimatization took place over two weeks, in order to reach a salinity 

of 36 psu and temperature of 20°C. At the onset of experiments, broodstock fishes were 

anaesthetized (ethyl p-aminobenzoate, 20 mg L
-1

; Sigma-Aldrich Chemie, Steinheim, Germany) 

and tagged with a passive integrated transponder, while initial length and weight were recorded. 

Farmed male fish originated from a commercial eel farm (Stensgård Eel Farm A/S) in Jutland, 

Denmark. Here, mean (±SD) total length and body weight were 37.10 ± 2.2 cm and 97.6 ± 15.80 g, 

respectively (n = 21). Males were matured by weekly injection of human chorionic gonadotropin 

(hCG, Sigma–Aldrich Chemie, Steinheim, Germany; 150 IU per male). Wild-caught female 

broodstock were obtained in late autumn 2015 from the Lough Neagh lake in Northern Ireland and 

had a mean (±SD) length and weight of 76.3 ± 4.3 cm and 875.0 ± 132.8 g, respectively (n = 3). 

Female broodstock were matured via weekly injections of freeze-dried carp pituitary extract based 

on whole glands (CPE, Ducamar Spain S.L.U., Cantabria, Spain) at a dose of 18.75 mg kg
-1

 initial 

body weight. Final follicular maturation was induced using the maturation inducing steroid, 

17α,20β-dihydroxy-4-pregnen-3-one (DHP crystalline, Sigma–Aldrich Chemie, Steinheim, 

Germany).  

 

2.2. Water treatment and conditioning  

 

Three types of water treatment were applied – Artificial seawater (ASW) used for gamete 

activation; filtered seawater (FSW) used for broodstock systems and conditioned filtered seawater 

(CFSW) used for embryo incubation and larval rearing. ASW was prepared using filtered tab water 

(reverse osmosis, Vertex Puratek 100 gpd RO/DI, Vertex Technologies Inc., CA, USA) adjusted to 

36 psu using Sea salt (Red Sea International, Eilat, Israel; Sørensen et al., 2016b). FSW was based 

on seawater (pipeline from Skagerak, Denmark) and treated through a stepwise filtering process, 

passing through i) a glass bead filter (AstralPool S.A. Barcelona, Spain, 0.86 m
2
 filter area, grain 

size 1-1.2 mm) for coarse particle removal, then through ii) three 20” cartridge filter in declining 

steps of 10, 5 and 1 µm pore size and last through iii) a UV lamp (MR1-220PP, 220W, UltraAqua, 

Aalborg, Denmark). CFSW was prepared by supplying FSW to a water conditioning system, 

allowing maturation of the water (>3months) following the principle presented by Vadstein et al., 
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1993 and Attramadal et al., 2012. Maturation was achieved by long retention time and steady level 

of nutrition at a low level in recirculation fitted 3 × 15 m
3
 biofilters filled with RK-bioelements 

(total biomedia-surface of 2.5 mill m
2
 ~ 78.1 m

2
 per L system water) and reservoir for automatic 

adjustment of temperature and water conductivity. Here, salinity was adjusted to 36 psu using 

artificial sea salt (Blue Treasure Reef Sea salt, Qingdao Sea-Salt Aquarium Technology Co., Ltd, 

China). 

 

2.3. Gamete production and embryonic rearing 

 

Gamete production and handling followed procedures described in Butts et al., 2014 and 

Sørensen et al., 2016ab. Upon mixing of gametes, ASW was used for zygote activation ensuring a 

salinity of 36 psu and temperature of 20°C. Early embryos were incubated in 15 L of ASW for 1 h, 

from where the buoyant egg layer was gently moved into new 15L of ASW. At 2 hours post 

fertilization (hpf), buoyant eggs were transferred to 60 L conical egg incubators and supplied with 

CFSW at a flow through rate of ~350 mL min
-1

. Gentle aeration was added after ~10 hpf while 

temperature was lowered to 18°C for better embryonic development (Politis et al., 2017). Light was 

kept at a low intensity of ~10 lux (Politis et al., 2014) and twice a day sinking dead eggs were 

purged from the bottom valve of each incubator. At ~48 hpf aeration was stopped and embryos 

hatched at ~56 hpf.  

 

2.4. Study 1: Green water  

 

Directly after hatch, larvae were stocked in 2 identical rearing units, i) a recirculation system 

containing an algae mix (green-water) at ~40.000 cells/mL or ii) a recirculation system with clear 

seawater and no-algae (control). The algae mix consisted of commercially available frozen 

Nanocloropsis (2-5 µm), Pavlova (5-6 µm) and Tetraselmis (10-14 µm) species, representing 

different size groups (BlueBiotech Int. Germany). Each rearing unit facilitated a sump reservoir of 

~1 m
3
, from where water entered 4 × 80 L wet/dry trickle filters filled with RK-bioelements (240 

m
2
 surface area 0.12 m

2
 per L) and thereafter reentered the sump. Here, a protein skimmer 

(Turboflotor 5000 single 6.0, Aqua Medic Gmbh, Bissendorf, Germany) was included for removal 

of waste protein. Each rearing unit was attached to 3 × 250L tanks, each representing one of the 3 

experimental larval batches, where flow rates were kept at ~10 L min
-1

 of CFSW. Initial stocking 

density was in the range of ~5000 larvae of one batch in a 250 L tank containing the algae mix and 

~5000 larvae of the corresponding batch in a 250L tank with clear water (no algae).  

  

2.5. Study 2: First-feeding  

 

For this study, larvae of the same experimental batches were reared (from 0 to 14 dph) as the 

above mentioned experimental control in an identical recirculation system with clear seawater (no-

algae) at a flow rate of ~10 L min
-1

 of CFSW. Similarly, the rearing unit was attached to 3 × 250 L 

tanks, each representing one of the corresponding batches. On 14 dph, ~75 larvae (25 of each batch) 

were gently transferred to each of 36 acrylic 2 L flow through jars (drz400sm hank, Jug Desk Type, 
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Taipei, Taiwan). The CFSW was again filtered (0.2 μm cartridge filter, CUNO 3M®, St. Paul, MN, 

USA) and then pumped into the bottom of each jar at a flowrate of ~10 ml × min
-1

. All jars were 

randomly arranged, temperature was kept at 18°C (Politis et al., 2017), while light regime was set to 

12 light / 12 dark photoperiod and intensity of 21.5 ± 3.9 μmol m
−2

 s
−1

 (Butts et al., 2016). From 15 

dph onwards, 18 experimental jars received no-food (control), while the other 18 jars were fed an 

enriched rotifer (Brachionus plicatilis) paste diet (Butts el al., 2016) twice a day. Each portion 

weighed 706.5 ± 89.0 mg with a dry matter content of 41.3 ± 3.8 mg (n=8). Composition of 

enrichment: 5% moisture, 56% proteins and 17% lipids as well as 37mg/g DW n-3 HUFA and >5 

DHA/EPA (ORI-ONE®; Skretting, Norway). 

 

2.6. Larval biometry 

 

Here, ~15 larvae per batch (3×) of each treatment for study 1 (algae / control) were randomly 

sampled on 4, 8, 12 and 14 dph, while ~15 larvae per replicate (3×) and treatment for study 2 (food 

/ control) were randomly sampled on 15, 16, 18, 20 and 22 dph. Larvae were anesthetized using 

MS-222 (Sigma Aldrich Chemie, Steinheim, Germany) and photographed using a zoom 

stereomicroscope (SMZ1270i fitted DS-Fi2 Camera Head, Nikon Corporation, Tokyo, Japan) for 

assessment of larval standard length, yolk-sac and oil drop area as well as total body area using the 

NIS-Elements D software (Nikon Corporation, Tokyo, Japan).  

 

2.7. Gene expression  

  

For this molecular analysis, ~30 larvae from each replicate were randomly sampled at 4, 8, 12 

and 14 dph in study 1 (algae / control) and at 15, 16, 17, 18, 20 and 22 dph in study 2 (food / 

control). Those larvae were euthanized using MS-222, rinsed with deionized water, preserved in a 

RNA later (Stabilization Reagent) and kept at -20°C following the procedure suggested by the 

supplier (Qiagen, Hilden, Germany). RNA was then extracted using the NucleoSpin
®
 RNA Kit 

(Macherey-Nagel, Germany) following the manufacturer’s instructions. RNA concentration (264 ± 

15 ng µl
-1

)
 
and purity (260/280 = 2.13 ± 0.002, 230/260 = 2.23 ± 0.008) were determined by 

spectrophotometry using Nanodrop ND-1000 (Peqlab, Germany) and normalized to a common 

concentration of 100 ng µl
-1

 with HPLC water. From the resulting total RNA, 680 ng were 

transcribed using the qScript
TM

 cDNA Synthesis Kit (Quantabio, Germany) according to the 

manufacturer’s instructions, including an additional gDNA wipe out step prior to transcription 

[PerfeCta
®
 DNase I Kit (Quantabio, Germany)]. 

The expression levels of 11 target and 2 reference genes were determined by quantitative real-

time PCR (qRT-PCR), using specific primers. Primers were designed using primer 3 software v 

0.4.0 (http://frodo.wi.mit.edu/primer3/) based on cDNA and predicted cDNA sequences available in 

Genbank databases (Table 1). All primers were designed for an amplification size ranging from 75 

to 200 nucleotides. The elongation factor 1 α (ef1α) and 40S ribosomal S18 (rps18) genes were 

chosen as housekeeping genes since qBase+ software revealed that these mRNA levels were stable 

throughout analyzed samples (M < 0.4); M gives the gene stability and M < 0.5 is typical for stably 

expressed reference genes (Hellemans et al., 2007). 
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Expression of genes in each larval sample from 2 randomly selected replicates, of each 

treatment and larval age were analysed in two technical replicates of each gene using the qPCR 

Biomark
TM

 HD system (Fluidigm) based on 96.96 dynamic arrays (GE chips) as previously 

described (Miest et al., 2015). In brief, a pre-amplification step was performed with a 500 nM 

primer pool of all primers in TaqMan-PreAmp Master Mix (Applied Biosystems) and 1.3 µL cDNA 

per sample for 10 min at 95°C; 14 cycles: 15 s at 95°C and 4 min at 60°C. Obtained PCR products 

were diluted 1:10 with low EDTA-TE buffer. The pre-amplified product was loaded onto the chip 

with SSofast-EvaGreen Supermix low Rox (Bio Rad) and DNA-Binding Dye Sample Loading 

Reagent (Fluidigm). Primers were loaded onto the chip at a concentration of 50 µM. The chip was 

run according to the Fluidigm 96.96 PCR protocol with a Tm of 60°C. The relative quantity of 

target gene transcripts was normalized and measured using the ΔΔ Ct method (Livak and 

Schmittgen 2001). Coefficient of variation (CV) of technical replicates was calculated and checked 

to be < 0.04 (Hellemans et al., 2007).  

 

2.8. Nucleic acid analysis 

 

For this analysis, ~10 larvae per batch (3×) of each treatment of study 1 (algae / no-algae) 

were randomly sampled at 12 and 14 dph, while ~10 larvae per replicate (3×) and treatment of study 

2 (food / no-food) were randomly sampled on 16, 17, 18, 20, 22 and 24 dph. Larvae were 

immediately euthanized using MS-222 and frozen at -20°C. Thereafter individual larvae were 

homogenized using 250-300 µl of sodiumdodecyl sulfate Tris buffer (Tris 0.05; NaCl 0.1M; SDS 

0.01%; EDTA 0.01; pH 8) and the tissue homogenates were treated using the method described by 

Malzahn et al., 2003. Subsequently, fluorescence-photometric measurements using a specific 

nucleic acid dye [Ethidium bromide (EB), 2.5mg·ml
-1

] were used to determine RNA and DNA 

content. In brief, total nucleic acid fluorescence was measured using an aliquot (130 µl) of each 

sample after adding 25 µl of EB solution. After total fluorescence was measured, RNAse (Serva 

Ribonuclease A, from bovine pancreas) was used to digest all RNA for 30 minutes at 37°C before 

the remaining fluorescence of the DNA was measured, allowing for RNA fluorescence to be 

estimated by subtracting the DNA from the total fluorescence. By using a 16S and 23S ribosomal 

RNA standard (Boehringer Mannheim) and measuring the RNA related fluorescence, the mass of 

RNA was calculated from a calibration curve, while the amount of DNA was determined by 

applying a slope factor to the RNA standard curve for DNA being 2.2 times higher compared to the 

RNA concentration slope values to account for the difference in fluorescence between the two 

(Huwer et al., 2011). 

 

2.9. Statistical analysis 

 

All data were analyzed using SAS statistical software (version 9.1; SAS Institute Inc., Cary, 

North Carolina). Residuals were tested for normality using the Shapiro-Wilk test and homogeneity 

of variances was tested using a plot of residuals versus fit values (PROC GLOT, SAS Institute 

2003). Data were log10 or arcsine square-root-transformed when data deviated from normality 

and/or homoscedasticity (Zar 1996). Statistical models were used to investigate effects of “green 

133



water” and “first-feeding” on larval biometry, gene expression and nucleic acid (RNA/DNA) 

content. Here, we analyzed the data using a series of repeated measures mixed-model ANOVAs 

(PROC MIXED; SAS Institute 2003). Models contained treatment (algae / control or food / control) 

and age (4 to 14 dph or 15 to 24 dph) main effects as well as the treatment  age interaction. 

Akaike’s (AIC) and Bayesian (BIC) information criteria were used to assess which covariance 

structure (compound symmetry, autoregressive order, or unstructured) was most appropriate (Littell 

et al., 1996). Treatment and age were considered fixed, whereas larval batch (study 1) or replicate 

(study 2) was considered random. Tukey’s post-hoc analyses were used to compare least-squares 

means between treatments. 

 

2.10. Ethics statement 

 

All fish were handled in accordance with the European Union regulations concerning the 

protection of experimental animals (Dir 86/609/EEC). Eel experimental protocols were approved by 

the Animal Experiments Inspectorate (AEI), Danish Ministry of Food, Agriculture and Fisheries 

(permit number: 2015-15-0201-00696). Briefly, adult eels were anesthetized using ethyl p-

aminobenzoate (benzocaine) before tagging and handling. Larvae of European eel were 

anesthetized prior to handling and euthanized prior to sampling by using tricaine methanesulfonate 

(MS-222). All efforts were made to minimize animal handling and stress. 

 

3. Results 

 

3.1. Biometry 

 

During the endogenous feeding period, larval standard length significantly (p < 0.0001) 

increased from 3.25 ± 0.05 on 0 dph to 7.16 ± 0.05 on 14 dph (Fig. 1B), while larval body area 

significantly (p < 0.0001) increased from 1.51 ± 0.05 on 0 dph to 3.79 ± 0.07 on 14 dph (Fig. 1F). 

Concurrently, larval oil drop area significantly (p < 0.0001) decreased from 0.103 ± 0.002 µm
2
 on 0 

dph to 0.013 ± 0.002 on 14 dph (Fig. 1I). However, rearing larvae in “green water” did not have any 

significant influence on these larval morphometrics (Fig. 1A, E, H).  

During the transition to exogenous feeding, larval oil drop area further significantly (p < 

0.0001) decreased from 0.011 ± 0.001 on 15 dph until it was fully utilized (Fig. 1J), while larval 

standard length significantly (p < 0.0001) decreased on 24 dph (Fig. 1C). However, initiation of 

first-feeding did not significantly alter these larval morphometrics (Fig. 1D, K). Moreover, a 

significant (p < 0.0001) age × treatment (food / no-food) interaction was observed for larval body 

area, revealing that fed larvae retained a greater body area on 18, 20, 22 and 24 dph compared to 

non-feeding larvae; however still in a decreasing trend (Fig. 1G). 

 

3.2. Gene expression  

 

Expression of genes relating to appetite (ghrl, cck) significantly (p < 0.0001) increased during 

early development especially on 12 and 14 dph (Fig. 2B, F), while beyond this point, their mRNA 
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levels remained statistically constant from 15 to 22 dph (Fig. 2C, G). Similarly, genes encoding 

digestive enzymes (try, tgl) significantly (p < 0.0001) increased during early development and 

peaked on 14 dph (Fig. 2J, N), except for amyl which remained statistically constant (Fig. 2R). 

Additionally, all digestion related genes (try, tgl, amyl), continued to be expressed in constant high 

levels (similar to the corresponding levels on 14 dph) until significantly (p < 0.001) dropping on 22 

dph (Fig. 2K, O, S).  

On the contrary, expression of genes relating to energy metabolism (atp6, cox1) remained 

statistically constant throughout development (from 4 to 22 dph), irrespective of whether larvae 

were reared with or without algae as well as with or without food (Fig. 3A-L). Moreover, the gene 

relating to food intake (pomc) significantly (p < 0.0001) increased during the endogenous feeding 

stage with highest values on 12 and 14 dph (Fig. 3N). Subsequently, pomc significantly (p = 0.006) 

peaked on 16 dph after the initiation of first-feeding and decreased again beyond that point (Fig. 

3O). Moreover, the expression of thrβB, relating to thyroid hormone metabolism, significantly (p = 

0.004) decreased during the endogenous period and similarly to pomc showed a significant (p = 

0.0003) peak on 16 dph following the transition to exogenous feeding; and then decreased beyond 

that (Fig. 3W). Furthermore, expression of thrαA (thyroid hormone metabolism) and igf1 (growth 

and development) increased during the endogenous period, reaching highest constant values already 

from 8 to 14 dph (Fig. 3R, Z) and even though they both showed an elevated (non-significant) 

expression on 16 dph during exogenous feeding, mRNA levels remained statistically constant from 

15 to 22 dph (Fig. 3S, AA).  

However, generally rearing larvae with algae or initiating first-feeding did not significantly 

alter gene expression compared to larvae reared with no algae or no food, respectively. 

 

3.3. Nucleic acid analysis 

 

The “green water” principal did not significantly affect any fluorimetrically measured nucleic 

acid content (Fig. 4A, E, H), but it was observed that RNA content significantly (p < 0.001) 

decreased, DNA significantly (p = 0.015) increased, while the RNA/DNA ratio significantly (p = 

0.001) decreased from 12 to 14 dph (Fig. 4 B, F, I). On the contrary, larvae taking up “first-feeding” 

showed a constant significant (p = 0.007) increase in RNA content compared to non-feeding larvae 

(Fig. 4 D). Additionally, a significant (p = 0.043) age × treatment (food / no-food) interaction was 

observed, revealing a significantly (p < 0.05) increased DNA content in feeding larvae on 17 and 18 

dph compared to non-feeding larvae (Fig. 4 G). However, the RNA/DNA ratio was not significantly 

elevated in fed larvae (Fig. 4 K). Furthermore, it was observed that RNA and RNA/DNA ratio 

significantly (p < 0.0001) decreased throughout development (from 16 to 24 dph) irrespectively of 

whether the larvae were feeding or not (Fig. 4 C, J). 

 

4. Discussion 
 

The nutritional requirements of fish larvae are species-specific and even differ across 

developmental stages within a species, mainly due to the major morphological and physiological 

changes during ontogeny (Holt, 2011). Comparable to most species of young marine fish (Govoni 
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et al., 1986), the digestive system of eel larvae is undeveloped at hatch and forms into a narrow and 

straight digestive tract, with liver and pancreas elongated anteriorly from the middle part of the 

digestive tract along the esophagus, while the anus opens posteriorly (Kurokawa et al., 1995). 

However, the stomach differentiates only after metamorphosis into the glass eel stage, suggesting 

that larval eel digestion depends on the enzymatic functionality of the pancreas and gut (Kurokawa 

and Pedersen 2003). During early larval digestive system development, the activity of most fish 

digestive enzymes is initiated before the transition from yolk-sac larvae to exogenous feeding and is 

thus linked to underlying genetic mechanisms (Zambonino-Infante and Cahu 2001). Considering 

that genes encoding digestive enzymes were expressed irrespective of exogenous food ingestion, it 

seems reasonable to assume that this mechanism is linked to an internal clock, which is under 

endocrine control. The mechanism regulating feeding procedures includes appetite stimulators 

(orexigenic factors) such as ghrl and inhibitors (anorexigenic factors) such as cck (Volkoff et al., 

2010). Hence, the expression of genes such as ghrl and cck, which seem to be involved in the 

molecular regulation of fish larval nutrition, can reveal the transition to exogenous feeding 

(Kurokawa et al., 2004; Ping et al., 2014). In our study, both cck and ghrl were expressed at basic 

levels already on 4 dph and peaked at 12 dph, indicating the molecular ontogenetic start of the first-

feeding window in European eel pre-leptocephalus larvae. However, eel larvae were observed to 

ingest exogenous food later than the developmental functionality of the feeding apparatus (Butts et 

al., 2016), demonstrating the necessity for an earlier and/or improved transition to exogenous 

feeding. Interestingly though, cck mRNA levels were significantly elevated prior to the first-feeding 

stage on 8 dph compared to the basal levels on 4 dph, indicating the potential adaptive capacity 

towards an earlier maturation of the digestive function and pancreatic enzyme secretion.  

An early maturation of hydrolytic functions can be induced by the presence of algae during 

larval rearing, as shown in several fish species (reviewed in Reitan et al., 1997) and for instance 

improved larval growth in red drum, Sciaenops ocellatus (Lazo et al., 2000). Similarly, it was 

shown that green-water during larval rearing, acts by triggering digestive enzyme production earlier 

than clear water in sea bass, Dicentrarchus labrax (Cahu et al., 1998). Nonetheless, we did not 

observe any significant benefit of green-water, neither morphologically nor molecularly, during 

European eel pre-leptocephalus rearing. This could potentially be due to non-native algae species 

used in this study, not naturally occurring in the spawning area of European eel (Sargasso Sea), or 

the inert state of algae used which might impede triggering the desired effect of earlier maturation 

in digestive functionality. However, besides providing a direct nutritional supply and an indirect 

stimulation of appetite or digestive function, the presence of algae can influence the bacterial 

community of the rearing water and aid the microbial gut priming in fish larvae (Vadstein, 1993; 

Skjermo and Vadstein, 1993; Støttrup et al., 1995). Thus, it is possible that the here applied green-

water rearing technique influenced the bacterial flora of the water and the microbial gut 

colonization, facilitating an earlier and improved larval digestion potential; however this was 

outside the scope of our study. Application of supplements directing gut microbiota such as 

probiotics, have received increasing attention in aquaculture, as it has been suggested that they 

feature a protective action on the intestinal mucosal cells, stimulating the innate immune response 

and thus causing an elevated state of immuno-readiness in fish such as tilapia, Oreochromis 

niloticus (Standen et al., 2013). Similarly, it was shown that the dietary addition of lactic acid 
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bacteria (probiotics) benefitted fish larvae by facilitating increased larval growth and decreased 

developmental deformities during early ontogeny of sea bass (Lamari et al., 2013). In this regard, 

the impact of algal presence or other nutritional supplementation such as probiotics during 

European eel larval rearing needs to be addressed in future research.  

Gaining knowledge regarding digestive physiology during larval development for fish 

species, which are of interest to aquaculture, is essential for identifying adequate feeding strategies 

leading to improved production of healthy offspring. As such, several studies have utilized the 

recent advances in molecular tool availability in order to explore the molecular digestive system 

functionality and capacity in fish species such as Atlantic halibut, Hippoglossus hippoglossus 

(Murray et al., 2006), Atlantic cod, Gadus morhua (Kortner et al., 2011), catfish jundia, Rhamdia 

quelen (Silveira et al., 2013), blunt snout bream, Megalobrama amblycephala (Ping et al., 2014), 

Atlantic salmon, Salmo salar (Sahlmann et al., 2015) and Senegalese sole, Solea senegalensis 

(Canada et al., 2017). Similarly, intensive scientific inquiry has been subjected to identify the 

molecular functionality and capacity of the digestive tract in Japanese eel larvae during the 

transition from endogenous to exogenous feeding, where it was demonstrated that expression levels 

of genes encoding the major pancreatic enzymes (such as trypsin, amylase and lipase), arise prior to 

or at initiation of exogenous feeding (Kurokawa et al., 2002; Pedersen et al., 2003; Murashita et al., 

2013). In this study, we demonstrate the digestive function ontogeny of European eel larvae, via 

transcriptomics of selected genes encoding some of the most important digestive enzymes relating 

to protein, lipid and carbohydrate hydrolysis. All enzymes were detected at basal expression levels 

already on 4 dph and increased throughout ontogeny to reach peak values on 14 dph, corresponding 

to the period of increasing exogenous feeding incidences in this species (Butts et al., 2016). 

Moreover, we show that the transcript levels of protein (try) digestion enzymes were higher than 

those of carbohydrate (amyl) and lipid (tgl) digestion enzymes (Fig. 5A), similar to the findings for 

pre-leptocephali and leptocephali of Japanese eel (Hsu et al., 2015), indicating a nutritional 

predisposition for proteins during those life stages. This should also be in accordance with their 

natural feeding regime, as it is assumed that they feed on marine snow, primarily consisting of 

protein detritus (Miller et al., 2012). Similar to the Japanese eel findings (Hsu et al., 2015), we also 

detected elevated expression levels of amyl (carbohydrate hydrolysis) within the first-feeding 

window, which might reflect a primary mode of digestion (Zambonino-Infnate and Cahu, 2001), but 

it cannot be considered that eel pre-leptocephalus larvae have a predisposition towards utilizing 

carbohydrates as a main energy source.  

In this study, European eel larvae were first fed (on 15 dph) a paste consisting of enriched 

rotifers (Brachionus plicatilis) as previously described in Butts et al., 2016. On 16 dph, a molecular 

response to initiation of exogenous feeding (Fig. 5B) was observed in the expression pattern of 

genes relating to energy metabolism (atp6, cox1), food intake (pomc), growth (igf1) and thyroid 

metabolism (thrαA, thrβB). This up-regulation was not observed in non-feeding larvae and was 

purely driven by the expression profiles of those genes in the feeding treatments, but since it only 

occurred on this one time point, it was not sufficient to be detected by the applied statistical model. 

Nevertheless, as larvae ingested the diet resulting in similar gut fullness to previously reported 

findings (Butts et al., 2016), we conceive this as a temporary positive reaction to the ingestion of 

this exogenous diet. However, considering that this positive trend of up-regulated expression of 
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those genes vanished already on the consecutive day, it is clear that even though larvae successfully 

ingested the rotifer paste diet, it apparently did not comprise the appropriate nutritional value 

needed to sustain growth and survival during this critical developmental stage. Concurrently, the 

mRNA expression of all digestive enzymes remained at an elevated level from first-feeding and 

throughout ontogeny until dropping on 20 or 22 dph. This, combined with the observed 

degeneration of larval tissue (decreased body area) and the fact that no larvae survived beyond 30 

dph, indicate the end of the window of opportunity for larvae to ingest and digest exogenous food 

and the transition into the point-of-no-return, where larvae that failed to successfully take up 

exogenous feeding and assimilate ingested nutrients into growth, enter a period of irreversible 

starvation.  

In recent years, major progress has been achieved regarding molecular tools, improving the 

sensitivity of analytical methods, such as the application of fluorometric techniques to investigate 

RNA/DNA ratios at individual level of even small organisms such as fish larvae (Clemmesen, 

1993; Clemmesen, 1994). The RNA/DNA ratio provides an indication of the protein-synthesizing 

potential of an organism and has been considered a valuable tool to be used as a biochemical 

indicator of the physiological and nutritional state as well as growth of aquatic organisms (Buckley 

et al., 2008; Chicaro and Chicaro 2008). The principal of the RNA/DNA ratio is based on the 

assumption that under changing conditions the amount of DNA is stable within the somatic cells of 

a given species (and at a given developmental stage), unless the amount of cells (growth or 

deterioration) is changing (Foley et al., 2016). Thus, DNA content can increase throughout 

development, since the DNA content per cell remains constant, but the total cell number increases 

with growth (Ferron and Leggett, 1994). In contrast to DNA, the amount of RNA varies with 

changing nutritional conditions as it directly drives gene expression and protein synthesis. Thus, a 

recently well-fed, metabolically active, growing individual should have a relatively high RNA:DNA 

ratio compared to a starving, metabolically inactive individual (Buckley et al., 1999). In our study, 

we observed a significantly higher amount of RNA in feeding compared to non-feeding larvae, 

throughout the entire investigated period, which is a clear indication of an increased metabolic 

activity associated to protein synthesis, as a direct response to initiation of exogenous feeding. 

Moreover, we observed an increased amount of total DNA in feeding compared to non-feeding 

European eel larvae on 17 and 18 dph, which in combination with the increased amount of RNA 

and greater body area observed, especially on 18 and 20 dph can be associated to growth in feeding 

and faster deterioration in starved larvae.  

Considering fish RNA/DNA ratios, low values are commonly correlated to starvation 

(Chicaro and Chicaro, 2008). European eel larval RNA/DNA ratios in our study ranged only from 

0.66 ± 0.01 on 12 dph to 0.40 ± 0.03 on 24 dph. However, similarly low values (<0.5) have been 

reported for American glass eels (Laflamme et al., 2012) and only slightly elevated (0.8-1.2) for 

Japanese glass eels (Kawakami et al., 1999); although none of these values can be directly 

compared. The relatively low RNA/DNA ratios could also indicate an eel specific developmental 

strategy, characterized by a generally low metabolic activity during this early life phase. During this 

migratory phase in nature, eel offspring probably down-regulate metabolic expenses in order to 

survive their oceanic journey, while efficiently drifting via oceanic currents (Castonguay and 

McCleave, 1987; McCleave et al., 1998). Nevertheless, in our study, the larvae reared with the 
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presence of algae and/or taking up first-feeding, did not show an improved RNA/DNA ratio, even if 

a time lag in response of a few days was taken into consideration (Peck et al., 2015). This is due to 

nucleic acid ratios providing a measure of growth and condition only within a recent time window 

(1-4 days) which depends on environmental factors such as temperature (Buckley et al., 1999; 

Clemmesen, 1994). Actually, the here measured RNA/DNA ratio as well as the RNA content per 

larva constantly decreased from 12 dph onwards, indicating a low larval nutritional condition and a 

lack of successful nutrient assimilation. Additionally, the positive trend of greater DNA amounts in 

feeding larvae only lasted for a short-term period and DNA content followed the decreasing pattern 

of larval body area, leading to the unavoidable point of no return and subsequent irreversible 

starvation due to unsuccessful utilization of exogenous feeding.  

To summarize, we here explored the endocrine regulation of feeding, molecularly identified 

the “first-feeding window” and digestion potential as well as investigated the larval nutritional 

status and molecular response to green water and first-feeding during the transition from 

endogenous to exogenous feeding in European eel larvae. Thus, this study has demonstrated 

sensitive indicators of nutritional and molecular aspects around first-feeding. Together, this will 

help to better define feeding strategies during larviculture of this species, including the appropriate 

choice of nutrient sources, that will facilitate the digestive tract ontogeny and functionality as well 

as hopefully lead to improved growth and survival towards metamorphosis. In conclusion, the here 

applied nutritional regime facilitated a short-term benefit, where feeding European eel larvae were 

able to sustain growth and better condition than their non-feeding conspecifics. Even though a long-

term advantage was not achieved, the knowledge gained provides a great step towards closing the 

life cycle in captivity and will hopefully provide a promising step towards sustainable aquaculture 

of this species.  
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Table 1: Sequences of European eel (Anguilla anguilla) primers used for amplification of genes by 

qRT-PCR. Primers were designed from cDNA or predicted cDNA (*) sequences available in 

Genbank databases or from loci annotation in European eel (Eel loci). The European eel genome 

was obtained from zf-genomics (Henkel et al., 2012). The table also lists function, corresponding 

database and accession number of target gene sequences, as well as position of the primer on the 

referenced sequence. 

Full name 

Abbrev

. Function Database 

Accession 

Number 

Primer sequence (5’ 3’) 

(F: Forward; R: Reverse) 

Prepro-Ghrelin* ghrl Appetite 

GenBank 

Nucleotide 

AZBK018487

91 F: CCCACTGTGAGCTTCAGACA 

     R: TGGACAGAGTCCATCCACAG 

Cholecystokinin* cck Appetite 

GenBank 

Nucleotide 

AZBK017951

76 F: CGCCAACCACAGAATAAAGG 

     R: ATTCGTATTCCTCGGCACTG 

Trypsin try Digestion 

GenBank 

Nucleotide MH001533 F: TGCAGATCAAGCTCAGCAAG 

     R: ATCGTTGGAGCTCATGGTGT 

Triglyceride 

lipase tgl Digestion 

GenBank 

Nucleotide DQ493916 F: CTGACTGGGACAATGAGCGT 

     R: CGTCTCGGTGTCGATGTAGG 

Amylase* amyl Digestion Eel loci g472 F: AGACCAACAGCGGTGAAATC 

     R: TGCACGTTCAAGTCCAAGAG 

ATP synthase F0 

subunit 6 atp6 

Energy 

metabolism 

GenBank 

Nucleotide NC_006531 F: GGCCTGCTCCCATACACATT 

     R: GACTGGTGTTCCTTCTGGCA 

Cytochrome-C-

Oxidase cox1 

Energy 

metabolism 

GenBank 

Nucleotide  NC_006531 F: CTACTCCTCTCCCTGCCAGT 

     R: CTTCTGGGTGGCCGAAGAAT 

Proopiomelanoco

rtin pomc Food intake 

 GenBank 

Nucleotide JX441983  F: GCCTGTGCAAGTCTGAACTG 

     R: GACACCATAGGGAGCAGGAA 

Insulin like 

growth factor 1 igf1 Growth 

GenBank 

Nucleotide EU018410 F: TTCCTCTTAGCTGGGCTTTG 

     R: AGCACCAGAGAGAGGGTGTG 

Thyroid 

Hormone 

Receptor α A thrαA 

Thyroid 

metabolism 

GenBank 

Nucleotide KY082904 F: GCAGTTCAACCTGGACGACT 

     R: CCTGGCACTTCTCGATCTTC 

Thyroid 

Hormone 

Receptor β B thrβB 

Thyroid 

metabolism 

GenBank 

Nucleotide KY082907 F: GAAGACTGAGCCCTGAGGTG 

     R: AGGTAATGCAGCGGTAATGG 

Elongation Factor 

1 α ef1a Housekeeping 

GenBank 

Nucleotide EU407824 F: CTGAAGCCTGGTATGGTGGT 

     R: CATGGTGCATTTCCACAGAC 

40S Ribosomal 

S18 rps18 Housekeeping 

GenBank 

TSA 

GBXM010053

49 F: TGACCGATGATGAGGTTGAG 

     R: GTTTGTTGTCCAGACCGTTG 
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Figure 1: European eel (Anguillla anguilla) larval biometrics and the effect of green-water 

[algae (alg) vs no-algae (con)] during endogenous feeding and of first-feeding [food vs no-food 

(con)] during exogenous feeding. Standard length (A-D), body area (E-G) and oildrop area (H-K). 

Values represent means (± SEM) among three crosses at each age and treatment. Lower case letters 

represent significant differences (p < 0.05). 
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Figure 2: European eel (Anguillla anguilla) larval relative gene expression and the effect of 

green-water [algae (alg) vs no-algae (con)] during endogenous feeding or first-feeding [food vs no-

food (con)] during exogenous feeding. Relative expression of the appetite related orexigenic ghrelin 

(ghrl: A-D) and anorexigenic cholecystokinin (cck: E-H) as well as relative expression of genes 

encoding digestive enzymes relating to protein [trypsin (try): I-L], lipid [triclyceride lipase (tgl): M-

P] and carbohydrate [amylase (amyl): Q-T] hydrolysis. Values represent means (± SEM) among 

three crosses at each age and treatment. Lower case letters represent significant differences (p < 

0.05).  
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Figure 3: European eel (Anguillla anguilla) larval targeted gene expression and the effect of 

green-water [algae (alg) vs no-algae (con)] during endogenous feeding or first-feeding [food vs no-

food (con)] during exogenous feeding. Relative expression of genes relating to energy metabolism 

[ATP-synthase-F0-subunit-6 (atp6: A-D), cytochrome-c-oxidase (cox1: E-H)], food intake 

[proopiomelanocortin (pomc: I-L)], thyroid metabolism [thyroid-hormone-receptors (thrαA: M-P 

and thrβB: Q-T)] and growth [insulin-like-growth-factor-1 (igf1); U-X]. Values represent means (± 

SEM) among three crosses at each age and treatment. Lower case letters represent significant 

differences (p < 0.05).  
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Figure 4: European eel (Anguillla anguilla) individual larval nucleic acid content and the effect 

of green-water [algae (alg) vs no-algae (con)] during endogenous feeding or first-feeding [food vs 

no-food (con)] during exogenous feeding. Total RNA (A-D) or DNA (E-G) content and RNA:DNA 

ratio (H-K). Values represent means (± SEM) among 5-10 individual larvae from 3 replicates at 

each age and treatment. Lower case letters represent significant differences (p < 0.05). 
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Figure 5: Conceptual overview - Expression (2

-ΔΔct
) was calculated in relation to the average 

expression on 0 days post hatch of each gene. A: Relative expression for trypsin (try), triglyceride 

lipase (tgl), amylase (amyl), cholecystokinin (cck) and ghrelin (ghrl); B: Relative expression for 

proopiomelanocortin (pomc), insulin-like growth factor (igf1), thyroid hormone receptors (thrαA, 

thrβB), ATP synthase F0 subunit 6 (atp6) and cytochrome-c-oxidase (cox1); C: European eel pre-

leptocephalus larval development from hatch until the feeding stage. 
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