Appendix A. Supplementary data

Table A1. High-trophic-level (HTL) and low-trophic-level (LTL) species/taxa represented in the ecosystem models.

Ecosystem	Modelled HLT group species/taxa	Modelled LTL group species/taxa	Ecosystem model
Black Sea	Atlantic bonito, Bluefish, Atlantic mackerel, Whiting, Turbot, Red mullet, Spiny dogfish	Horse mackerel, Shad, Sprat, Anchovy	Ecopath with Ecosim
Gulf of Gabes	Mustelus mustelus, Merluccius merlucciu, Octopus vulgaris, Melicertus kerathurus, Metapenaeus monoceros, Trachurus trachurus,	Sardina pilchardus, Sardinella aurita, Engraulis encrasicolus, Diplodus annularisPagellus erythrinus	OSMOSE
North Sea	Dab, Whiting, Sole, Gurnard, Plaice, Haddock, Cod, Saithe	Sprat, Sandeel, Norway Pout, Herring	Size Spectrum
South Catalan Sea	Benthopelagic cephalopods, Conger eel, Anglerfish, Demersal fishes (3), Adult hake, Demersal sharks, Atlantic bonito, Swordfish and Tuna, Loggerhead turtles, Audouin's gull, Other sea birds, Dolphins	Shrimps, Crabs, Norway lobster, Benthic invertebrates, Benthic cephalopods, Mullets, Flatfishes, Poor cod, Juvenile hake, Blue whiting, Demersal fishes (1), Demersal fishes (2), Benthopelagic fishes, European anchovy, Sardine adults, Other small pelagic fishes, Horse mackerel, Mackerel	Ecopath with Ecosim
Southeastern Australian	Shallow Demersals, Flathead, Pink Ling, Trevalla, Gummy Shark, Small Pelagic Tuna, Demersal Shark, Dogfish, Grenadier, Pelagic Shark, Gulper Shark, Shallow Piscivores	Mackerel, Myctophids, Red Bait, Squid, Krill	Atlantis
Southern Benguela	Chub mackerel, Adult Horse mackerel, Snoek, Other large pelagics, Merluccius capensis, Merluccius paradoxus, Pelagicdemersals, Benthicdemersals, Pelagic Chondrichthyes, Benthic Chondrichthyes, Apex Chondrichthyes	Anchovy, Sardine, Redeye, Other small pelagics, Juvenile Horse mackerel, Mesopelagics, Cephalopods,	Ecopath with Ecosim
West coast Canada	Walleye pollock, Pacific cod, Lingcod, Spiny dogfish, Spotted ratfish, Harbour seal	Euphausiids, Shrimp, Pacific herring,	OSMOSE
Western Scotland	Cod mature, Haddock mature, Whiting mature, Pollock, Gurnards, Monkfish, Rays,Sharks, Large demersals,	Flatfish, Other small fish, Mackerel, Horse mackerel, Blue whiting, Herring, Norway pout, Sandeel, Sprat, Nephrops, Lobster, Edible crab, Crustaceans, Cephalopod, Scallops	Ecopath with Ecosim
West Florida Shelf	King mackerel, Amberjacks, Red grouper, Gag grouper, Red snapper,	Sardine Herring Scad Complex, Anchovies and Silversides, Coastal omnivores, Reef carnivores, Reef omnivores, Shrimps, Large crabs	OSMOSE
Western Scotian Shelf	Sharks, Cod, Silver Hake, Halibut, Pollock, Demerdal piscivores, Large benthivores, Skates, Dogfish, Redfish, American plaice, Flounders, Haddock adult	Haddock young, Longhorn sculpin, Herring, Other pelagic, Mackerel, Mesopelagic, Small-medium benthivores, Squids, Lobster, Crabs, Shrimps, Scallop	Ecopath with Ecosim

Table A2. Descriptions of the ecosystem modelling frameworks applied in the study.

| | Atlantis | Ecopath with Ecosim | OSMOSE | Size Spectrum | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Summary
 description | Whole ecosystem model
 from hydrodynamic
 conditions to foodweb and
 human users | Mass-balance model of
 marine foodwebs that
 accounts for the flow of
 biomass between trophic
 groups. | Size-structured Individual-
 based model of fish
 community dynamics with
 coupling with hydrodynamic
 and biogeochemical models
 (end-to-end model). | Multispecies model
 describing the flux
 of biomass along
 size classes | |
| Key features | Includes age structure and
 major ecological processes
 such as full life history
 closure, gape-limited
 predation, habitats,
 movement, biogeochemical
 nutrient cycling and a range
 of effort allocation options. | Ecosim is a dynamic model
 describing the predator-
 prey interactions from
 primary producers to top
 predators. Can include
 different age classes. | The whole life cycle of the | species is modelled
 (migration, food-dependent
 growth, reproduction and | Trophic interactions
 are size-based and
 the dynamics of
 multiple focus fish |
| Reprality) in space and time. | | | | | |

Fig. A1 Cumulative shifts (in R^{2} units) in response to levels of primary productivity (multiplier of phytoplankton biomass) in ten marine ecosystems with first column for indicators B/C (biomass to fisheries catch ratio), Pred (proportion of predatory fish), IVI (mean intrinsic vulnerability), and Lifesp (mean life span); second column for TLc (mean trophic level TL of catch), TLcVar (mean TL of catch with variable TL), MTI (marine trophic index), and TLco (mean TL of fish community surveyed); and third column for B_all (biomass of all species), B_htl (biomass of high-trophic-level species), B_all (biomass of low-trophic-level species), B_H2A (the ratio of B_htl to B_all), B_L2A (the ratio of B_ltl to B_all), and B_L2H (the ratio of B_ltl to B_htl).

Fig. A2 Threshold shifts in the values of four indicators indicators (B/C: biomass to fisheries catch ratio, Pred: proportion of predatory fish, IVI: mean intrinsic vulnerability, and Lifesp: mean life span) along the gradient of fishing pressure under random change in primary productivity of standard deviation $=0.1$. The dashed line indicates where the ratio of the density of split importance to the density of observed fishing pressure is 1 ; peaks above the dashed line suggest threshold values for the fishing pressure. Missing plots indicate failed convergence of the gradient forest model.

Fig. A3 Threshold shifts in the values of four trophic level (TL) based indicators (TLc: mean TL of catch, TLcVar: mean TL of catch with variable TL, MTI: marine trophic index, and TLco: mean TL of fish community surveyed) along the gradient of fishing pressure under randome change in primary productivity of standard deviation $=0.1$.

Fig. A4 Threshold shifts in the values of six biomass-based indicators (B_all: biomass of all species, B_htl: biomass of high-trophic-level species, B_all: biomass of low-trophic-level species, B_H2A: the ratio of B_htl to B_all, B_L2A: the ratio of B_ltl to B_all, and B_L2H: the ratio of $B _l$ tl to $\left.B _h t l\right)$ along the gradient of fishing pressure under random change in primary productivity of standard deviation $=0.1$. The dashed line indicates where the ratio of the density of split importance to the density of observed fishing pressure is 1 ; peaks above the dashed line suggest threshold values for the fishing pressure. Missing plots indicate failed convergence of the gradient forest model.

Fig. A5 Threshold shifts in the values of four indicators indicators (B/C: biomass to fisheries catch ratio, Pred: proportion of predatory fish, IVI: mean intrinsic vulnerability, and Lifesp: mean life span) along the gradient of fishing pressure under random change in primary productivity of standard deviation $=0.3$. The dashed line indicates where the ratio of the density of split importance to the density of observed fishing pressure is 1 ; peaks above the dashed line suggest threshold values for the fishing pressure. Missing plots indicate failed convergence of the gradient forest model.

Fig. A6 Threshold shifts in the values of four trophic level (TL) based indicators (TLc: mean TL of catch, TLcVar: mean TL of catch with variable TL, MTI: marine trophic index, and TLco: mean TL of fish community surveyed) along the gradient of fishing pressure under random change in primary productivity of standard deviation $=0.3$. The dashed line indicates where the ratio of the density of split importance to the density of observed fishing pressure is 1; peaks above the dashed line suggest threshold values for the fishing pressure. Missing plots indicate failed convergence of the gradient forest model.

Fig. A7 Threshold shifts in the values of six biomass-based indicators (B_all: biomass of all species, B_{-}htl: biomass of high-trophic-level species, B _all: biomass of low-trophic-level species, B_H2A: the ratio of B_htl to B_all, B_L2A: the ratio of B_ltl to B_all, and B_L2H: the ratio of B _ltl to $\mathrm{B} _\mathrm{htl}$) along the gradient of fishing pressure under random change in primary productivity of standard deviation $=0.3$. The dashed line indicates where the ratio of the density of split importance to the density of observed fishing pressure is 1 ; peaks above the dashed line suggest threshold values for the fishing pressure. Missing plots indicate failed convergence of the gradient forest model.

