FN Archimer Export Format PT J TI Thermal oxidation of Poly(dicyclopentadiene)– kinetic modeling of double bond consumption BT AF Huang, Jing DAVID, Adelina Le Gac, Pierre Yves Lorthioir, Cedric Coelho, Cristina Richaud, Emmanuel AS 1:1;2:2;3:2;4:3;5:4;6:1; FF 1:;2:PDG-REM-RDT-LCSM;3:PDG-REM-RDT-LCSM;4:;5:;6:; C1 Laboratoire PIMM, Arts et Métiers, CNRS, Cnam, HESAM Université, 151 Boulevard de l'Hôpital, F-75013, Paris, France IFREMER, Service Matériaux et Structures, Centre de Brest BP70, F-29280, Plouzané, France Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, 4 Place Jussieu, F-75005, Paris, France Sorbonne Université, CNRS, Institut des Matériaux de Paris Centre, FR 2482, F-75005, Paris, France C2 ENSAM, FRANCE IFREMER, FRANCE UNIV PARIS 06, FRANCE UNIV PARIS 06, FRANCE SI BREST SE PDG-REM-RDT-LCSM IN WOS Ifremer UPR copubli-france copubli-univ-france IF 4.032 TC 18 UR https://archimer.ifremer.fr/doc/00502/61327/64899.pdf LA English DT Article DE ;Polydicyclopentadiene;Thermal oxidation;Kinetic modeling;Crosslinking AB This paper reports chemical changes that occur in polydicyclopentadiene during thermal oxidation at several temperatures and oxygen pressures. A particular attention was paid to the double bond consumption since these latter are associated with crosslinking and subsequent changes in mechanical properties. A kinetic model was derived from the experimental results. Its rate constants were assessed from the “inverse approach” based on their selective identification under specific ageing conditions (for example under oxygen excess). The resulting model satisfactorily describes both carbonyl formation and double bond consumption for a wide range of temperature and oxygen pressure for the first time. This can be exploited to predict the changes of local mechanical properties. PY 2019 PD AUG SO Polymer Degradation And Stability SN 0141-3910 PU Elsevier BV VL 166 UT 000480377900026 BP 258 EP 271 DI 10.1016/j.polymdegradstab.2019.06.003 ID 61327 ER EF