Marine Environmental Research

September 2019, Volume 150, Pages 104746 (16p.) https://doi.org/10.1016/j.marenvres.2019.06.008 https://archimer.ifremer.fr/doc/00502/61329/

Benthic macrofaunal bioturbation activities from shelf to deep basin in spring to summer transition in the Arctic Ocean

Oleszczuk Barbara 1, *, Michaud Emma 2, Morata Nathalie 2, 3, Renaud Paul E. 3, 4, Kędra Monika 1

- ¹ Institute of Oceanology, Polish Academy of Science (IOPAN), Powstańców Warszawy 55, 81-712, Sopot, Poland
- ² Laboratoire des Sciences de L'environnement Marin Sciences (LEMAR), UMR 6539 (CNRS/UBO/IRD/Ifremer), Institut Universitaire Européen de la Mer, rue Dumont d'Urville, 29280, Plouzané, France
- 3 Akvaplan-niva, Fram Centre for Climate and the Environment, Tromsø, Norway
- ⁴ The University Centre in Svalbard, Longyearbyen, Norway
- * Corresponding author: Barbara Oleszczuk, email address: oleszczuk@iopan.gda.pl

Abstract:

The aim of this study was to assess bioturbation rates in relation to macrozoobenthos and environmental variables in the Svalbard fjords, Barents Sea and Nansen Basin during spring to summer transition. The results showed differences in benthic community structure across sampled area in relation to sediment type and phytopigment content. Fjords, Barents Sea and the shallow parts of Nansen Basin (<400 m) were characterized by high functional groups diversity, and by biodiffusive and non-local rates ranging from 0.05 to 1.75 cm-2 y-1 and from 0.2 to 3.2 y-1, respectively. The deeper parts of Nansen Basin, dominated by conveyors species, showed only non-local transport rates (0.1–1 y-1). Both coefficients intensity varied with benthic biomass. Non-local transport increased with species richness and density and at stations with mud enriched by fresh phytopigments, whereas biodiffusion varied with sediment type and organic matter quantity. This study quantified for the first time the two modes of sediment mixing in the Arctic, each of which being driven by different environmental and biological situations.

Highlights

▶ This is the first complex report on bioturbation in spring to summer transition conducted over a large depth gradient in the Arctic Ocean. ▶ Benthic community structure and related biodiffusion and non-local transport varied in Svalbard fjords, Barents Sea and Nansen Basin. ▶ Changes in environmental conditions, and related changes in quality and quantity of available organic matter, had impact on benthic communities and bioturbation. ▶ Large inputs of fresh OM to the seabed can trigger bioturbation activities.

Keywords: non-local transport, biodiffusive transport, macrozoobenthos, spring season, sea ice cover, Arctic Ocean

1. Introduction

The structure and functioning of benthic communities depend on the quality and quantity of organic matter (OM) export fluxes to the sea floor and this dependence increases with increasing depth. Shallow Arctic shelves benthos is often fueled by high OM fluxes to the sea floor due to tight pelagic-benthic coupling (e.g. Grebmeier et al., 2006; Tamelander et al., 2008), while deep-sea communities become food-limited due to low amount of OM reaching

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

sea floor (Maiti et al., 2010). The seasons strongly shape the OM fluxes to the sea floor in the Arctic marine ecosystems. Phytoplankton and ice algae are two principal sources of primary production (PP) in the Arctic Ocean with ice algae being the first food source available after polar night (Søreide et al., 2006, 2008; Leu et al., 2010). Although phytoplankton is quantitatively dominant, ice algal blooms tend to occur earlier in the seasonally ice-covered Arctic seas and may contribute up to 50-60% of total PP (Gosselin et al., 1997; McMinn et al., 2010; Fernandez-Mendez et al., 2015; Van Leeuwe et al., 2018). During the spring, PP is typically greater than zooplankton consumption and thus highest vertical carbon fluxes are recorded (Andreassen and Wassmann, 1998; Tamelander et al., 2006). Later in the season, the zooplankton grazing reduces the OM flux but also adds to it by producing fecal pellets, which helps phytoplankton sink rapidly to the sea bottom (Olli et al., 2002). In fjords and on the shelf, benthic communities can also be fueled by terrestrial OM carried by rivers and/or glaciers, mainly during summer (Bourgeois et al., 2016). Benthic organisms act as temporal couplers in the seasonal systems, since they can consume variable carbon sources over the different seasons (McMeans et al., 2015), therefore benthic communities reflect rather long term (months to years) water column production, while the benthic activities reflect short term (days to weeks) environmental conditions (Morata and Renaud, 2008).

Bioturbation occurs when an organism moves through the sediment, constructs and maintains burrows, and ingests and defecates. This process results in mixing of particles and solutes within the substratum (Kristensen et al., 2012), and alters sediment structure (e.g., grain size distribution; Montserrat et al., 2009), and production, mineralization and redistribution of OM (Kure and Forbes, 1997). Life habit, motility, and manner of feeding of infaunal species induce either random particle movement over a short distance (biodiffusion (Db) hereafter) (Gérino et al., 2007; Meysman et al., 2003) or biologically induced discontinuous particle transfer between the sediment surface and deeper sediment layers, for

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

example via burrowing or feeding behavior (non-local transport (r) hereafter) (Boudreau, 1986; Meysman et al., 2003; Duport et al., 2007; Gogina et al., 2017). According to the mode of particle mixing, benthic organisms can be classified into five functional groups of sediment reworking which may include biodiffusion and/or non-local transport: biodiffusors, gallerydiffusors, upward- and downward-conveyors, and regenerators (François et al., 1997). The presence and intensity of these bioturbation modes are therefore mediated by fauna characteristics like biomass, density, burrowing depth or feeding behavior (François et al., 1999; Gérino et al., 1998; Sandnes et al., 2000; Gilbert et al., 2007; Michaud et al., 2005, 2006; Duport et al., 2007; Aschenbroich et al., 2017). In turn, species composition, nature and intensity of their effects on sediment mixing depends on temperature (Ouelette et al., 2004; Duport et al., 2007; Maire et al., 2007), food inputs (Nogaro et al., 2008) and sediment characteristics (Needham et al., 2011). Changes in species composition and activities, and therefore in bioturbation mode and/or intensity, are expected to influence biochemical processes near the sediment-water interface, including carbon cycling. Bioturbation rate can therefore be influenced by seasonal changes in PP in the above water column and deposited OM in the seafloor (food bank; Morata et al., 2015). Only a few studies of bioturbation exist in the Arctic Ocean. Teal et al. (2008) created the database with global bioturbation intensity coefficient (Db) and layer depth (L), where they showed that the Arctic, Central Pacific and most tropical regions are missing bioturbation data. In polar regions, it has been shown that sediment mixing rates were higher through biological transports in the shallow sediments directly impacted by the OM input along the marginal ice covered area of the Barents Sea (Maiti et al., 2010) and in the Svalbard fjords (Konovalov et al., 2010). On the contrary, the deep sediments of the Arctic Ocean were marked by lower sediment mixing rates in relation to a lower benthic biomass correlated with

lower OM inputs (Clough et al., 1997). Soltwedel et al. (2019), however, did not confirm a

higher bioturbation activity in the high productive Marginal Ice Zone (MIZ) in Fram Strait compared to the less productive ice zone. Seasonal aspects of bioturbation in the Arctic were preliminarily studied by Morata et al. (2015), whose experiments showed that the bioturbation activity was positively correlated with fresh food input during the polar night. McClintic et al. (2008) found no seasonal variation in bioturbation intensity during June and October in West Antarctic continental shelf which suggests that deposit feeders are able to access food particles accumulated during high PP periods. Still, our knowledge on benthic communities responsible for bioturbation processes and their relation to OM inputs in the Arctic Ocean and adjacent shelves remains limited, particularly during the spring bloom.

The main aim of this study was to understand the impacts of differences in environmental conditions on benthic communities and their bioturbation function during the spring to summer transition. We focused on the Svalbard area where fjords, shelf and deep Nansen Basin differ considerably in terms of physical forcing affecting the quality and quantity of the OM inputs to the seafloor. Sediment reworking rates were quantified in relation to taxonomic and functional composition of the benthic macrofaunal communities, and in relation to the environmental variables. This work is the first study on bioturbation processes conducted in the Arctic Ocean during spring to summer transition time over a large depth gradient. It will contribute to our understanding of response of macrofauna and their activity to the quality and quantity of OM in the Arctic seabed.

2. Material and methods

123 2.1. Study area

Sampling was conducted in the Svalbard Archipelago, the Barents Sea and deep Nansen Basin north of Svalbard (Fig. 1, Table 1). This area is highly influenced by cold Arctic Water coming from the north and warm Atlantic Waters coming from the south, and the relative influence of those two water masses varies largely in the study area.

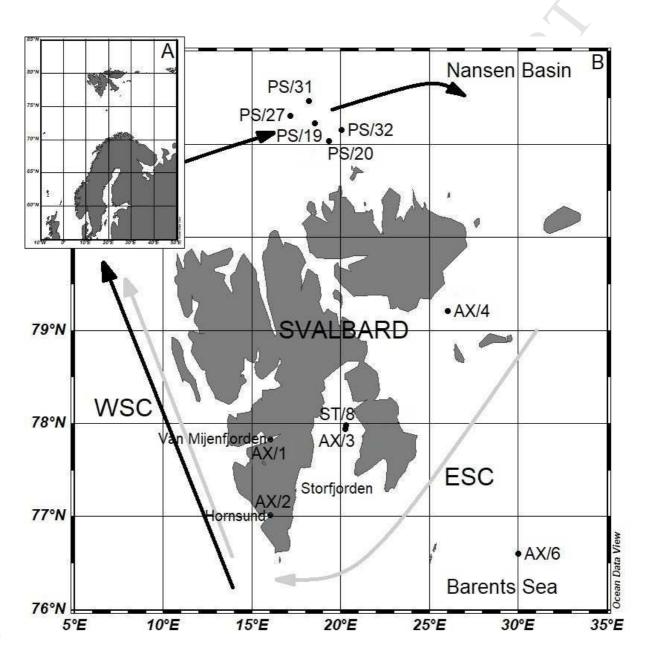


Fig. 1. Geographical location of the study region (A) and (B) sampling locations during two cruises (AX – ARCEx, PS – TRANSSIZ) with two major currents surrounding Svalbard:

- 133 WSC West Spitsbergen Current, warm Atlantic waters (black) and the ESC East
- 134 Spitsbergen Current, cold Arctic waters (gray) (after Svendsen et al., 2002).

Table 1. Main characteristics of the sampling stations.

Station	Date	Cruise name	No of cores	Area	Latitude (°N)	Longitude (°E)	Main current	Depth [m]	Bottom Water Salinity	Bottom Water Temperature (°C)
AX/1	19.05.2016	ARCEx	5	Van Mijenfjorden	77.83°	16.47°	ESC	59	34.5	-0.8
AX/2	20.05.2016	ARCEx	5	Hornsund	77.02°	16.45°	ESC	121	34.5	-0.8
AX/3	21.05.2016	ARCEx	5	Storfjorden	77.94°	20.22°	ESC	96	34.5	-0.8
ST/8	15.07.2016	SteP	4	Storfjorden	77.98°	20.28°	ESC	99	34.1	4.5
AX/4	24.05.2016	ARCEx	5	Erik Eriksen Strait	79.21°	26.00°	ESC	217	34.7	0.5
AX/6	25.05.2016	ARCEx	5	Southern Barents Sea	76.60°	30.01°	ESC	278	35.0	2.5
PS/20	30.05.2015	TRANSSIZ	3	Northern Barents Sea	81.04°	19.32°	WSC	170	34.9	0.9
PS/32	06.06.2015	TRANSSIZ	4	Northern Barents Sea	81.16°	20.01°	WSC	312	34.9	2.1
PS/19	29.05.2015	TRANSSIZ	5	Northern Barents Sea	81.23°	18.51°	WSC	471	35.1	1.4
PS/27	01.06.2015	TRANSSIZ	5	Northern Barents Sea	81.31°	17.15°	WSC	842	34.9	0.2
PS/31	04.06.2015	TRANSSIZ	5	Nansen Basin	81.47°	18.17°	WSC	1656	34.9	2.5

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

Van Mijenfjorden and Hornsund are located on the west coast of Spitsbergen, Svalbard. Van Mijenfjorden is a small fjord, nearly closed by an island at its mouth. It is separated into two basins: the outer (115 m depth) and inner (74 m depth), and by 45 m deep sill that restricts exchange of water between the fjord and the coastal waters (Skardhamar and Svendsen, 2010). Hornsund is a large open glacial fjord with eight major tidal glaciers located in the central and inner parts and large terrestrial inflow (Błaszczyk et al., 2013; Drewnik et al., 2016). The average depth is 90 m with a maximum of 260 m (Kedra et al., 2013). Strong gradients in sedimentation, PP and benthic fauna occur along the increasing distance to the glaciers (Włodarska-Kowalczuk et al., 2013). These high latitude fjords are productive systems, where PP starts in early spring and continue to late autumn (Fetzer et al., 2002). The annual PP reaches up to 216 g C m⁻² y⁻¹ in Hornsund (Smoła et al., 2017). The Barents Sea is a shelf sea with water depths ranging from 35 m in the Svalbard Bank to up to 400 m or more in deep depressions and proximal canyon boundaries (Cochrane et al., 2012). The southern part of the Barents Sea is relatively warm and ice free while its northern parts are seasonally ice covered, with maximum ice coverage from March to April and minimum ice coverage generally occurring in September (Vinje, 2009; Ozhigin et al., 2011; Jørgensen et al., 2015). It is one of the most productive areas in the Arctic Ocean with average PP about 100 g C m⁻² y ⁻¹ and maximum PP reaching over 300 g C m⁻² y ⁻¹ on shallow banks (Sakshaug, 2004). Storfjorden is located east of Spitsbergen and has a maximum depth of 190 m (Skogseth et al., 2005). A polynya appears regularly in Storfjorden. It is a very productive area of the Barents Sea, and its productivity is correlated with the duration of the seasonal sea cover (Winkelmann and Knies, 2005). In Storfjorden the production of marine organic carbon may exceed 300 mg C cm⁻² kyr⁻¹, while the production of total organic carbon (TOC) may exceed 500 mg C cm⁻² kyr⁻¹ (Pathirana et al., 2013; Rasmussen and Thomsen, 2014). Nansen Basin,

	ACCELLED MANUSCRIFT
164	with a maximum depth of 4000 m, is part of the Eurasian basin of the Arctic Ocean. In
165	general, annual gross PP is within the range of 5–30 g C m ⁻² (Codispoti et al., 2013).
166	
167	2.2. Sampling
168	
169	Benthic sampling was conducted during spring cruises of R/V Polarstern PS92 -
170	TRANSSIZ in May and June 2015, and R/V Helmer Hanssen – ARCEx in May 2016 (Table
171	1). Samples were collected at 10 stations located along the depth gradient, from Svalbard
172	fjord (depth: 59 - 121 m), through the Barents shelf and slope (from 170 to 842 m) to the
173	deep Nansen Basin (max. depth: 1656 m) (Fig. 1). Almost all stations north of Svalbard (P32,
174	PS/19, PS/27 and PS/31) were sea ice covered during sampling, except PS/20 station. One
175	station in Storfjorden (AX/3) was revisited in July 2016 during the cruise of R/V L'Atalante –
176	STeP 2016 (ST/8).
177	At each station the bottom water temperature and salinity were determined by the
178	shipboard Conductivity Temperature Density (CTD) rosette. Bottom-water samples were
179	collected using Niskin bottles attached to a CTD and were filtered on pre-combusted
180	Whatman GF/F glass microfiber filters in triplicate and frozen at -20 °C for later analyses of
181	bottom water organic carbon (BW C_{org}), total nitrogen (BW N_{tot}), $\delta^{13}C$ (BW $\delta^{13}C$), $\delta^{15}N$ (BW
182	δ^{15} N), and C/N ratio (BW C/N).
183	Sediment samples were collected with a box corer of 0.25 m ² sampling area. The
184	overlying water from box corer was gently removed from sediment surface and push-cores
185	samples (12 cm Ø and 20 cm deep, 113.0940 cm ² surface layer) were collected. The top 2 cm
186	sediment of the core was sampled for biogeochemical variables (grain size, chlorophyll a (Chl

a) and phaeopigments (Phaeo), organic matter (SOM), organic carbon (Sed C_{org}) and total

nitrogen (Sed N_{tot})). Samples were frozen in -20 $^{\circ}\text{C}$ and transported to the laboratory for analysis.

Additional sediment cores were taken from the box corer for bioturbation experiments following procedures described by Morata et al. (2015). Sediment cores (3 to 5 per station, Table 1) were kept in dark cold room on board (i.e., temperature at 2 °C, the average between -0.8°C and 4.5°C being the range of temperatures observed in the bottom waters, Table 1).

Fluorescent luminophores (5 g; 90–120 µm diameter) were homogeneously added to the overlying water and gradually spread on the sediment surface of each core without disturbing the resident infauna. Cores were then filled with bottom water and aerated by bubbling to keep the overlying water saturated with oxygen. Overlying water was renewed every four days. Sediment cores were incubated in those conditions for 10 days which is the minimum time to enable the characterization of the different transport modes. Incubation time that exceeds 15 days increases the probability of complete homogenization of the sedimentary column, and may thus prevent the differentiation of transport modes (François et al., 1997). This choice of 10 days for duration of experiment was a compromise between the response that we were expecting from the benthic communities and the available time on board to process the experiments.

After this time of incubation in stable conditions the surface water was carefully removed and cores were sliced horizontally in 0.5 cm layers from 0 to 2 cm depth, and in 1 cm layers between 2 and 10 cm depth. In total, 12 samples were taken, and each sediment layer was homogenized. A subsample of each sediment layer was directly frozen (-20 °C) and used for bioturbation analyses. The remaining sediment of each core samples were sieved onboard through 0.5 mm sieve for benthic community structure analysis, and fixed with 10 % buffered formaldehyde.

213	2.3. Bioge	eochemical	environment	al analyse.

Sediments for grain size analysis were freeze-dried at -70 °C, homogenized and dry sieved into coarse-grained fractions (>0.250 mm) and fine-grained (<0.250 mm). For the fine fraction, analyses were performed using a Malvern Mastersizer 2000 laser particle analyzer and presented as volume percent. Mean grain size parameters were calculated using the geometric method of moments in the program GRADISTAT 8.0 (Blott and Pye, 2001).

Pigment concentrations were analyzed fluorometrically following methods described in Holm-Hansen et al. (1965) to determine Chl *a* and Phaeo concentrations. About 1 g of dried sediment was extracted with 10 ml of 90 % acetone at 4 °C in the dark. After 24 h, sediment was then centrifuged (3000 rpm for 2 min), and analysed using a Turner Designs AU-10 fluorometer before and after acidification with 100 µl 0.3 M HCl.

For sediment and bottom water biogeochemical parameters analyses, sediments and filters were dried, homogenized and weighed into silver capsules. For sediment and bottom water $\delta^{13}C$ and $\delta^{15}N$, C_{org} and N_{tot} analyses, samples were acidified with 2 M HCl to remove inorganic carbon and dried at 60 °C for 24 h. The analyses were performed on an Elemental Analyzer Flash EA 1112 Series combined with an Isotopic Ratio Mass Spectrometer IRMS Delta V Advantage (Thermo Electron Corp., Germany). SOM content was measured as loss on ignition at 450°C for 4 h (Zaborska et al., 2006). Sed C_{org} content was measured following the method of Kennedy et al. (2005). About 10 mg of dried sediment was acidified with 50 μ l of 1 N HCl three times. Analyses were run on a Thermo Quest Flash EA 1112 CHN analyzer.

2.4. Benthic community analysis

In the laboratory, macrofaunal organisms were picked from sediments under a binocular microscope and identified to the lowest possible taxonomic level. Each taxon was counted, weighed (g wet weight) and transferred to 70 % ethanol. Mobility and feeding (WoRMS Editorial Board, 2019), and burrowing behavior (for references see Table 4) were attributed to each taxon. Benthic fauna was classified into five bioturbation functional groups based on the type of the sediment mixing: biodiffusors, gallery-diffusors, upward- or downward-conveyors, and regenerators. Biodiffusors move particles in a random manner in short distances (Gérino, 1992). Gallery-diffusors transport material from the surface sediment layer to deeper by constructing tubes or tunnels system (François et al., 2002). Upward-conveyors transport material from depth to the sediment surface and downward-conveyors transport sediment nonlocally to deeper layers (Fisher et al., 1980; Knaust and Bromley, 2012). Regenerators create a biodiffusion-like process, with large amounts of sediment transported out of the reworked zone with a strong input to the overlying water column, as well as passive downward transport of surface sediment to the bottom of the burrow after burrow abandonment (Gardner et al., 1987; Knaust and Bromley, 2012). Organism density and biomass were evaluated per taxon, trophic and bioturbation functional group, and in total for each sediment core, and subsequently converted per 1 m⁻² (area) in order to provide relevant surface values. The biomass to density (B/D) ratio was calculated per core as a proxy of the mean organism size.

255

256

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

2.5. Bioturbation analyses

257

258

259

260

261

After the sediment cores were sliced, part of the sediment from each sediment layer was freeze-dried at -70 °C, and homogenized with a mortar and pestle. Three replicates of 0.2 g sediment from each layer were taken and placed on a black box (9.5 cm x 7 cm) under a constant UV light source (350 \pm 370 nm, Tube UV BLB G5T5 6 W). Images were taken with

a digital camera (Nikon digital captor 2.342.016 pixels) with 28 μm per pixel resolution from a constant 12 cm from the sediment sample to assure identical acquisition conditions for all images (aperture time 1 s; diaphragm aperture f/13, ISO 200). Images were saved in redgreen-blue (RGB) colour in jpeg format. The images were analysed using an image processing toolbox (@mathworks) in order to differentiate luminophores from the background sediment by using an appropriate set of RGB threshold levels (Michaud, 2006). Finally, the particle size appropriate for each luminophore was selected (6 pixels × 6 pixels for the smallest luminophores), and the pictures were corrected (cleaned) by removing the particle sizes smaller and larger than the actual size of the specific luminophore (90–120 μm). The sum of areas (in pixels) of the remaining objects and the number of objects (i.e., luminophores) were calculated for each picture and averaged between the three pictures from each sediment layer. Finally, with these abundances for all sediment depths for each core, the results were computed as the percentage of detected pixels per depth according to the total number of pixels detected per core thus representing the luminophores distribution over depth for each sediment core.

The reaction diffusion type model used in this paper to describe luminophore redistribution following macrofaunal reworking is based on the general diagenetic equation (Berner,1980):

280
$$\frac{\partial Q}{\partial t} = \frac{\partial}{\partial z} \left(Db \frac{\partial Q}{\partial z} \right) + r(Q) \tag{1}$$

where Q is the quantity of the tracer (e.g., luminophores), t is the time, z is the depth, Db is the apparent biodiffusion coefficient, and r(Q) is the non-continuous displacement of tracer. The term r(Q) is defined as follows:

284
$$\underline{r(Q(z,t))} = \begin{cases} \frac{r}{z_2 - z_1} \int_0^{x_1} Q(x,t) dx & \text{if } z \in [z_1; z_2] \\ -rQ(z,t) & \text{if } z \in [0; z_1[\\ 0 & \text{if } z > z_2 \end{cases}$$
 (2a-c)

where z_1 and z_2 define the upper and lower limits of the tracer redistribution, x and z are depth variables and r is the biotransport coefficient that is the percentage of tracer that left the $[0; x_1]$ deposit and was redistributed in the $[z_1; z_2]$ layer. The redistribution of tracer between z_1 and z_2 and the disappearance of tracer from the 0- z_1 layer are, respectively, described by Eqs. (2a) and (2b). Eq. (2c) indicates that no tracer movement occurs below z_2 .

This displacement term was originally exemplified in a model describing gallery-diffusion of macrofaunal reworking (François et al., 2002). This biological reworking process describes the diffusive-like mixing of particles in the region of intense burrowing activity and the rapid transport of organic and inorganic material from the upper sediment layers to the lower regions of reworking (i.e. 'biotransport' or "non-local transport").

295 According to the experimental conditions, the following initial conditions were used:

296
$$\underline{Q(z,0)} = \begin{cases} Q_0 & \text{if } z \in [x_1; x_2[\\ O & \text{else} \end{cases}$$
 (3)

297 where $[x_1;x_2]$ is the tracer deposit layer. Finally, a zero-flux Neuman boundary condition was considered:

299
$$\frac{\partial Q}{\partial z}(0,t) = \lim_{z \to \infty} \frac{\partial Q}{\partial z}(z,t) = 0 \tag{4}$$

The application of this bioturbation model to tracer redistributions, initially started by François et al. (1997, 2001) and later revised by Duport al., (2007), allowed the quantification of two particle mixing coefficients: an apparent biodiffusion coefficient Db and a biotransport coefficient r. The biodiffusion coefficient Db takes into account the diffusion-like transport due to the activity of the organisms. We assume that the actual concentration dependent diffusion of tracers is negligible. The biotransport coefficient (r) represents a non-local mixing pattern associated with a biologically induced transfer of particles from one place to another in a discontinuous pattern (i.e. a non-continuous transport; Boudreau, 1986; Meysman et al., 2003). Estimates of the parameters Db and r were finally obtained by minimizing a weighted sum of squared differences between observed and calculated tracer concentrations (François

et al., 1999, 2002). For each core, many adjustments between the observed and modelled profiles are necessary in order to find the minimum weighted sum of squared differences.

This model was used with MatLab (@mathworks), thus it gives qualitative data (i.e., kind of sediment mixing) and quantitative data (intensity of the sediment mixing) on the sediment mixing function for the entire benthic community at the sediment-water interface.

315

310

311

312

313

314

2.6. Statistical analysis

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

316

Bray-Curtis similarity matrix, based on square-root transformed data was used for the multivariate analysis of the macrobenthic community. Principal coordinate analysis (PCO) was conducted to explore multivariate variability among different sampling stations based on the (B/D) ratio community composition data matrix. Pearson rank correlation (>0.5) vectors of species B/D with axes were overlaid on the PCO plots to visualize the relationships between ordination axes and the directions and degrees of variability in the biological variables. Differences in species composition in samples among the groups of stations were explored using non-parametric multivariate methods applied to Bray-Curtis dissimilarity matrix calculated from biomass/density ratio (B/D) (one-way PERMANOVA). Whenever the significant effect of factor was detected by the main PERMANOVA test, pair-wise tests for differences between levels of each significant factor was performed. SIMPER procedure (similarity percentage species contribution) was used to discriminate species responsible for the differences between sites. In all models, a forward-selection procedure was used to determine the best combination of predictor variables for explaining the variations in macrofauna assemblages. The selection criteria chosen for the best-fitting relationship were based on R² values (Anderson et al. 2008). A distance-based linear model (DistLM) was used to analyse and model the relationships between the macrofaunal community structure and the

all the statistical tests was $p = 0.05$.
based on 999 permutations of the residuals under a reduced model. The significance level for
environmental factors with the dbRDA axes. Calculations of the pseudo-F and p values were
assigned groups. Superimposed vectors corresponded to Pearson's correlations (>0.5) o
the variability along the two axes that best discriminated groups of samples defined by a prior
environmental factors. A distance-based redundancy analysis (dbRDA) was used to visualize

The normality of environmental factors and biological factors (non-local and biodiffusion coefficients, benthic density and biomass) was verified with use of Shapiro-Wilk test (p<0.05). Since data did not have a normal distribution, Spearman correlations were calculated to estimate the relationships between faunal community characteristics (Table 8) and environment (Appendix 1). Differences in benthic density, biomass, non-local and biodiffusion coefficient were evaluated with the use of the nonparametric Kruskal-Wallis test, and the Dunn's post-hoc multiple comparison test was applied to identify the differences among stations groups. Station ST/8, sampled in July, was excluded from those analyses due to lack of environmental information and because it was sampled during a different season than the other stations. Additionally, a non-parametric pairwise Mann-Whitney U-test was performed to compare differences between the spring and summer season in Storfjorden (AX/3 vs ST/8). All analyses were performed using the PRIMER package v. 7 Clarke and Gorley, 2006; Anderson et al., 2008) and the Statsoft software STATISTICA v. 9.

3. Results

3.1. Environmental patterns

Bottom water salinity ranged from 34.5 to 35.1 and bottom water temperature ranged
from -0.8 $^{\circ}\text{C}$ to 2.5 $^{\circ}\text{C}$ during our sampling. The lowest BW C_{org} concentrations were
measured in Erik Eriksen Strait (AX/4; 0.1 ± 0.1 %) and the highest in Storfjorden (AX/3; 0.6
$\pm~0.0$ %). The BW $\delta^{13}C$ values ranged from -27.7‰ on the slope north of Svalbard (PS/32) to
-22.2 ‰ in Storfjorden. The lowest BW C/N ratio values were found at the deepest station
(PS/31: 6.1 \pm 0.0) and the highest values were measured in the southern Barents Sea (AX/6:
10.3 ± 1.2) (Table 2). Sandy and muddy sediments dominated in the study area. The lowest
SOM concentrations were measured at station PS/32, on slope (2.6% \pm 0.1) and the highest in
Storfjorden (AX/3; 6.5% \pm 0.3). The most depleted sediment $\delta^{13}C$ values occurred in fjords
(AX/1: -24.2‰ and AX/2: -25.4‰) while the most enriched values were found on southern
Barents Sea shelf (AX/6: -22.2‰). The lowest Sed C/N ratio values were found in deep basin
(PS/27: 7.8 \pm 0.4) and the highest value occurred in Van Mijenfjorden (AX/1: 18.7 \pm 0.5)
(Table 3).

Table 2. Bottom water (BW) characteristics for each sampling station: C_{org} , N_{tot} , $\delta^{13}C$, $\delta^{15}N$ (in %) and C/N values (mean \pm SD, n=3).

Station	BW C _{org} (%)	BW N _{tot} (%)	BW δ ¹³ C (‰)	$BW \delta^{15}N (\%)$	BW C/N
AX/1	0.204 ± 0.017	0.023±0.002	-24.7±0.1	5.7±0.7	10.3±1.1
AX/2	0.187 ± 0.005	0.024 ± 0.001	-24.0±0.1	3.9±0.5	8.9±0.2
AX/3	0.630 ± 0.037	0.097 ± 0.005	-22.2±0.2	4.8±0.3	7.6±0.2
ST/8	-	-	-	-	-
AX/4	0.137 ± 0.047	0.015 ± 0.003	-24.0±0.1	5.1±0.2	10.2±1.7
AX/6	0.268 ± 0.013	0.031 ± 0.005	-24.5±0.9	5.9±1.7	10.3±1.2
PS/20	0.354 ± 0.017	0.063 ± 0.001	-23.5±0.0	1.4 ± 0.0	6.6 ± 0.2
PS/32	0.180 ± 0.002	0.030 ± 0.001	-27.7 ± 0.1	1.9±0.6	7.0 ± 0.2
PS/19	0.188 ± 0.014	0.032 ± 0.001	-24.6±0.2	2.1±0.2	6.8 ± 0.2
PS/27	0.226 ± 0.007	0.040 ± 0.001	-22.9±0.2	2.0±0.7	6.6 ± 0.1
PS/31	0.258 ± 0.013	0.050 ± 0.002	-23.8±0.1	2.3±0.7	6.1±0.0

Table 3. Sediment variables for each sampling station: sediment type, C_{org} , N_{tot} , $\delta^{13}C$, $\delta^{15}N$, OM (in %), C/N, Chl a (µg DW g^{-1}) and Chl a/Phaeo values (mean \pm SD, n=no of cores).

Station	No of cores	Sediment type	Gravel (%)	Sand (%)	Mud (%)	Sed C _{org} (%)	Sed N _{tot} (%)	Sed δ ¹³ C (‰)	Sed δ ¹⁵ N (‰)	Sed C/N	SOM (%)	Chl a (μg/g)	Chl a/ Phaeo
AX/1	3	Sand	0.0	78.1	21.9	1.9 ± 0.0	0.1 ± 0.0	-24.2	4.0	18.7 ± 0.5	5.1 ± 0.4	2.3 ± 0.2	0.5 ± 0.1
AX/2	3	Sand	1.3	86.8	12.0	1.8 ± 0.0	0.1 ± 0.0	-25.4	4.8	18.1 ± 0.2	4.4 ± 0.3	1.4 ± 0.1	0.4 ± 0.0
AX/3	3	Mud	0.0	40.8	59.2	2.1 ± 0.0	0.2 ± 0.0	-22.9	3.6	10.8 ±0.1	6.5 ± 0.3	19.4 ± 2.6	1.9 ± 0.4
ST/8	2	-	-	-	-	2.1 ± 0.0	0.2 ± 0.0	- ,	(- -)	11.0 ± 0.4	7.3 ± 0.6	21.8 ± 1.3	51.8 ± 34.2
AX/4	3	Sand	2.3	66.4	31.2	1.0 ± 0.0	0.1 ± 0.0	-23.6	5.3	8.2 ± 0.2	5.1 ± 0.6	2.2 ± 0.3	0.3 ± 0.0
AX/6	3	Mud	1.3	42.6	56.1	2.1 ± 0.0	0.3 ± 0.0	-22.2	4.6	9.9 ± 0.2	5.7 ± 0.6	2.6 ± 0.5	0.4 ± 0.0
PS/20	2	Sand	7.5	51.3	41.2	0.9 ± 0.0	0.1 ±0.0	-22.8	2.8	8.5 ± 0.1	4.6 ± 0.3	7.6 ± 1.7	1.1 ± 0.2
PS/32	2	Sand	1.9	76.6	21.5	0.5 ± 0.1	0.1 ± 0.0	-22.8	4.0	8.1 ± 0.2	2.6 ± 0.1	12.8 ± 1.6	1.9 ± 0.4
PS/19	3	Sand	0.1	74.5	25.3	1.6 ± 0.0	0.2 ± 0.0	-22.7	4.6	9.5 ± 0.3	8.3 ± 0.8	2.9 ± 0.5	0.4 ± 0.0
PS/27	3	Sand	6.3	62.3	31.5	0.8 ± 0.0	0.1 ± 0.0	-22.9	3.0	7.8 ± 0.4	3.7 ± 0.3	2.6 ± 0.5	0.5 ± 0.0
PS/31	3	Sand	30.1	46.0	23.9	0.8 ± 0.1	0.1 ± 0.0	-23.0	3.9	16.7 ± 3.8	4.4 ± 0.1	1.1 ±0.4	0.3 ±0.0

3.2. Macrobenthic community structure

In total, 186 taxa were identified. The number of taxa per station ranged from 9 (AX/2)
to 68 (PS/32) (Table 4). Four burrowing and four sediment-mixing types were recorded. Sub-
surface burrowing, Cirratulidae (biodiffusor) and Lumbrineris sp. (gallery diffusor) dominated
in Svalbard fjords in biomass and density, and in Storfjorden in density. The deep burrowing
Yoldia hyperborea (conveyor) dominated in biomass at AX/3. Two biodiffusors, the tube
building polychaete Myriochele heeri and the deep burrowing bivalve Astarte borealis
dominated in Erik Eriksen station (AX/4) in density and biomass respectively. The tube
building Spiochaetopterus typicus (conveyor) dominated in terms of density and was second
dominant in biomass in the Southern Barents Sea (AX/6). The sea star Ctenodiscus sp.
dominated in biomass at this station. The tube building polychaete, Maldane glebifex,
dominated in both density and biomass at the shelf station PS/20. Deep burrowing bivalves
(Yoldiella lenticula, Yoldia hyperborea) dominated in density at PS/32 while the tube building
polychaete Galathowenia oculata dominated in biomass. Burrow-building taxa were mostly
biodiffusors and dominated at all shallow stations. Deep burrowing and tube building taxa
were mostly conveyor bioturbators and dominated at deeper stations (Table 4). Fourteen
mobility-feeding groups were recorded, and sessile and mobile macrofauna dominated at all
stations except from the deepest one ($PS/31$) where discretely mobile fauna dominated. The
lowest number of functional groups was found in Hornsund (AX/2) where 4 groups (sessile
surface feeders, discretely subsurface feeders, mobile omnivore and mobile subsurface
feeders) occurred. Sessile subsurface feeders dominated at PS/20 (30%) and PS/27 (33%).
Sessile surface feeders were predominant in fjords (AX/1: 52% ; AX/2: 80%), Storfjorden
(AX/3: 35%), in the southern Barents Sea (AX/6: 45%) and on slope (PS/19: 18%). The share
of discretely mobile fauna increased with depth, and discretely mobile surface feeders

414	dominated in the Nansen Basin (PS/31: 44%). The highest number of mobile subsurface
415	feeders was found on the shelf (PS/32: 23%). The number of mobile taxa was similar for all
416	stations. The mobile surface fauna dominated in Erik Eriksen Strait (AX/4: 25%) (Fig. 2).
417	
418	
419	
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433 434	
435	
436	
430 437	
437	
4 38	
13)	22

Table 4. Functional traits, relative density and biomass of the three dominant taxa for each sampling station. Class: P – Polychaeta, B – Bivalvia, An – Anthozoa, As – Asteroidea, O – Ophiuroidea, S – Sipunculidea. Mobility and feeding groups (M/F) are marked by codes: mobility type (D – Discretely mobile, M – Mobile, S – Sessile) and feeding type (car - carnivore, omn - omnivore, sub - subsurface feeder, sur - surface feeder, sus - suspension feeder). Burrowing depth (BT): 1 – surface burrowing, 2 – subsurface burrowing, 3 – deep burrowing. Tubes (T): "+" – I-shaped tube, "-" – no tube. Sediment mixing types (SMix): biodiffusor (B), upward conveyor (UC), gallery diffusor (GD), downward conveyor (DC).

Station	No of taxa	Taxa	Class	M/F	ВТ	Т	SMix	Density %	Taxa	Class	M/F	вт	Т	SMix	Biomass %
AX/1	20	Cirratulidae ²	P	Ssur	2	-	В	41.4	Lumbrineris sp. 6	P	Momn	2	-	GD	72.1
		Polycirrus arcticus 4,5	P	Ssur	3	+	DC	7.1	Polycirrus arcticus 4,5	P	Ssur	3	+	DC	11.5
		Lumbrineris sp. 6	P	Momn	2	-	GD	6.4	Aglaophamus malmgreni 4	P	Mcar	2	-	В	10.6
AX/2	9	Cirratulidae ²	P	Ssur	2	-	В	66.7	Cirratulidae ²	P	Ssur	2	-	В	49.3
		Polycirrus arcticus 4,5	P	Ssur	3	+	DC	13.1	Polycirrus arcticus 4,5	P	Ssur	3	+	DC	36.6
		Lumbrineris sp. 6	P	Momn	2	_<	GD	8.3	Lumbrineris sp. 6	P	Momn	2	-	GD	8.7
AX/3	34	Cirratulidae ²	P	Ssur	2	2	В	31.2	Yoldia hyperborea ⁷	В	Msub	3	-	C	57.4
		Lumbrineris sp. 6	P	Momn	2) -	GD	14.1	Maldane sarsi ⁸	P	Ssub	3	+	C	12
		Yoldia hyperborea ⁷	В	Msub	3	-	C	6.3	Nuculana radiata ⁴	В	Msub	3	-	В	11.5
ST/8	29	Lumbrineris sp. ⁶	P	Momn	2	-	GD	18.3	Yoldia hyperborea ⁷	В	Msub	3	-	C	30.5
		Cirratulidae ²	P	Ssur	2	-	В	11	Nuculana radiata ⁴	В	Msub	3	-	В	27.8
		Eteone longa 9, 10	P	Msub	1	-	GD	7.3	Macoma calcarea 11	В	Ssur	3	-	В	13.7
AX/4	63	Myriochele heeri ¹⁷	P	Msur	3	+	В	12.1	Astarte borealis ⁴	В	Msus	3	-	В	90

		Macoma sp. 1, 11	В	Ssur	3	-	В	11.6	Actinaria ⁴	An	Scar	1	-	В	1.8
		Maldane sarsi ⁸	P	Ssub	3	+	C	8.2	Yoldiella lenticula ⁷	В	Msur	3	-	C	1.5
AX/6	36	Spiochaetopterus typicus ⁸	P	Ssur	3	+	C	34.9	Ctenodiscus sp. 20	As	Msur	1	-	В	47.3
		Macoma sp. 1, 11	В	Ssur	3	-	В	6.4	Spiochaetopterus typicus ⁸	P	Ssur	3	+	C	27.3
		Heteromastus sp. 12, 13, 14	P	Msub	3	-	C	6.4	Aglaophamus malmgreni ⁴	P	Mcar	2	-	В	6.4
PS/20	58	Maldane glebifex ⁸	P	Ssub	3	+	C	22.4	Maldane glebifex ⁸	P	Ssub	3	+	C	24.5
		Yoldiella lenticula ⁷	В	Msur	3	-	C	8.7	Chirimia biceps ⁸	P	Ssub	3	+	C	9.4
		Macoma calcarea 11	В	Ssur	3	-	В	7.1	Nicomache lumbricalis 8	P	Ssub	3	+	C	9.4
PS/32	68	Yoldiella lenticula ⁷	В	Msur	3	-	C	13.8	Galathowenia oculata ³	P	Msur	2	+	C	7.7
		Yoldia hyperborea ⁷	В	Msub	3	-	C	8.7	Ctenodiscus sp. 20	As	Msur	1	-	В	7.5
		Axinopsida orbiculata 15	В	Dsub	3	-	C	5.9	Yoldiella lenticula ⁷	В	Msur	3	-	C	6.3
PS/19	38	Cirratulidae ²	P	Ssur	2	-	В	12	Amphiura sundevalli ⁴	O	Msus	1	-	В	25.5
		Notoproctus oculatus ⁸	P	Ssub	3	+	C	10.1	Lumbrineridae ⁶	P	Somn	2	-	GD	9.3
		Yoldia hyperborea ⁷	В	Msub	3	-	C	8.9	Nemertea ⁴	N	Momn	1	-	В	7.1
PS/27	35	Prionospio cirrifera ¹⁶	P	Dsur	2	7	C	13.2	Streblosoma intestinale 4	P	Dsur	3	+	C	43
		Notoproctus oculatus ⁸	P	Ssub	3	+	C	13.2	Chone fauveli ³	P	Ssur	2	+	C	32.6
		Lumbriclymene minor ⁸	P	Ssub	3	+	C	8.8	Notoproctus oculatus ⁸	P	Ssub	3	+	C	4.2
PS/31	19	Levinsenia gracilis ¹⁸	P	Dsur	2	-	C	33.6	Nephasoma lilljeborgi ¹⁹	S	Dsur	3	-	C	28
		Paraonidae ²	P	Msub	2	-	В	19.3	Levinsenia gracilis ¹⁸	P	Dsur	2	-	C	14.2
		Cirrophorus sp. ²	P	Dsub	2	-	В	16.8	Paraonidae ²	P	Msub	2	-	В	11

References in superscripts: ¹ Gilbert at al. (2007); ² Gérino at al. (1992, 2007); ³ Fauchald and Jumars (1979); ⁴ Queirós at al. (2013); ⁵ Gingras et al. (2008); ⁶ Petch (1986); ⁷ Stead and Thompson (2006); ⁸ Smith and Shafer (1984); ⁹ Mazik and Elliott (2000); ¹⁰ Mermillod-Blondin et al. (2003); ¹¹ Michaud et al. (2006); ¹² D'Andrea et al. (2004); ¹³ Mulsow et al. (2002); ¹⁴ Quintana et al. (2007); ¹⁵ Zanzerl and Dufour (2017); ¹⁶ Bouchet et al. (2009); ¹⁷ Duchêne and Rosenberg (2001); ¹⁸ Venturini et al. (2011); ¹⁹ Shields and Kędra (2009); ²⁰ Shick (1976).

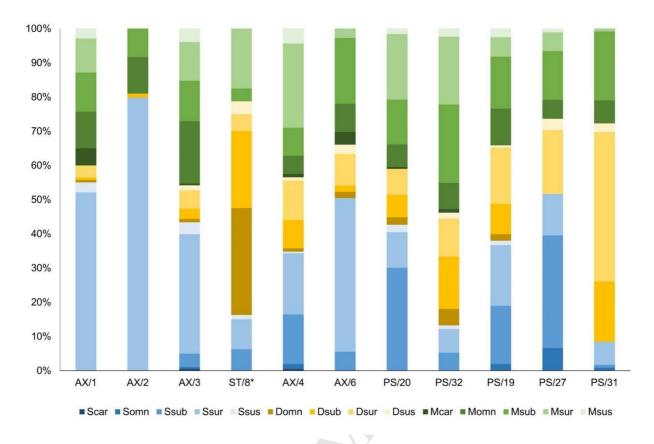


Fig. 2. Percentages of mobility and feeding groups at different sampling stations. Station ST/8 marked with * was sampled in summer season. Functional traits codes: mobility type (D - Discretely mobile (yellow), M – Mobile (green), S – Sessile (blue)) and feeding type (car - carnivore, omn - omnivore, sub - subsurface feeder, sur - surface feeder, sus - suspension feeder).

Stations were separated into 4 groups, based on the PCO analysis: A - fjords (Van Mijenfjorden: AX/1, Hornsund: AX/2), B - Storfjorden (AX/3), C - Barents Sea shelf (Erik Eriksen Strait: AX/4, southern Barents Sea: AX/6, and northern Barents Sea: PS/20, PS/32), D - northern Barents Sea, stations deeper than 400m on continental stock: PS/19, PS/27 and Nansen Basin: PS/31. PCO explained 22.5% of the variability among sampling stations: the first axis explained 13.6% and the second axis 8.9% (Fig. 3). Fjords' communities were correlated with presence of polychaete *Polycirrus arcticus* and cumacean *Diastylis lucifera* while benthic patterns in Storfjorden were correlated with presence of polychaetes *Maldane*

sarsi and Apistobranchus tullbergi, and bivalves Musculus discors, Ennucula tenuis and Yoldia hyperborea. Those correlations were negative for deeper stations where benthic communities were mainly correlated with presence of polychaetes Notoproctus oculatus and Prionospio cirrifera. The shelf stations varied the most with less clear patterns for benthic communities.

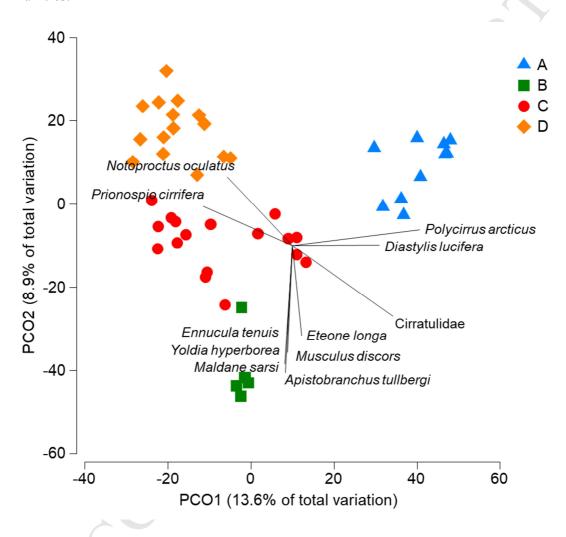


Fig. 3. PCO analysis for macrobenthic communities based on species biomass to density ratio, and the Bray-Curtis similarity among four sampling areas: A (Hornsund, Van Mijenfjorden); B (Storfjorden); C (Barents Sea shelf); D (northern Barents Sea and Nansen Basin). Significantly correlated species with the PCO coordinates (r>0. 5) are shown on the plot.

Polychaeta dominated at all stations. There were significant differences in density (Kruskal-Wallis test; p<0.05; significant differences (post hoc test) between group A:B, A:C and C:D) (Fig. 4A). Benthic density ranged from 1485.5 ind./m² \pm 168.7 standard error (SE) (station AX/2) to 2475.8 ind./m² \pm 369.9 SE (station AX/1) in group A. In group B benthic density was 3625.3 ind./m² \pm 83.9 SE (station AX/3). In group C density ranged from 1927.6 ind./m² \pm 196.5 SE (station AX/6) to 6388.5 ind./m² \pm 399.3 SE (station PS/32). In group D density ranged from 1609.3 ind./m² \pm 295.1 SE (station PS/27) to 2794.1 ind./m² \pm 404.8 SE (station PS/19). There were significant differences in biomass among areas (Kruskal-Wallis test; p<0.05; significant differences (post hoc test) between group A:B, B:D and C:D) (Fig. 4B). Benthic biomass ranged from 2.6 g wet weight/m² \pm 0.5 SE (station AX/2) to 37 g wet weight/m² \pm 18.4 SE (station AX/1) in group A. In group B benthic biomass was 172.3 g wet weight/m² \pm 37.3 SE (station AX/3). In group C biomass ranged from 7.8 g wet weight/m² \pm 1.1 SE (station PS/32) to 112.9 g wet weight/m² \pm 61.3 SE (station AX/4). In group D biomass ranged from 2.2 g wet weight/m² \pm 0.5 SE (station PS/31) to 11.2 g wet weight/m² \pm 5.7 SE (station PS/27).

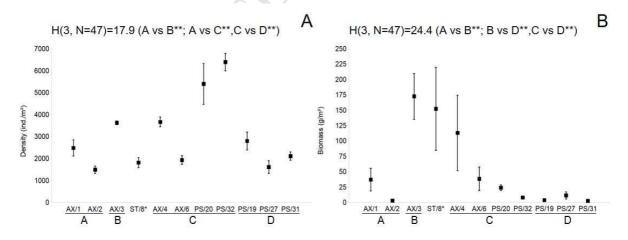


Fig. 4. Mean density (ind./m $^{-2}$) (A) and biomass (g/m $^{-2}$) (B); \pm SE, n= no of cores (Table 1) at stations sampled in Van Mijenfjorden, Hornsund (group A); Storfjorden (group B); Barents Sea shelf (group C); northern Barents Sea and Nansen Basin (group D). Station ST/8 marked

with * was sampled in summer season. Kruskal – Wallis results for differences between sampling sites are given; significant test results are marked with ** (p<0.05).

There were significant differences in the benthic communities structure (biomass/density ratio) among different locations (PERMANOVA test Pseudo-F: 5.07, p=0.001). Significant differences were found for each group (significant pairwise comparisons p=0.001); see Table 5 for details.

Table 5. PERMANOVA results for the multivariate descriptors of benthic communities with significant pair-wise comparisons results for different groups.

Benthic parameter	Source of variation	Df	MS	Pseudo-F	P (perm)
Biomass/Density ratio	Gr	3	16606.0	5.07	0.001
	Res	43	3272.8		
	Total	46	Y		

Benthic parameter	Regime	Site	t	Df	P(MC)	P (perm)
Biomass/Density ratio	Groups	A:B	2.886	13	0.001	0.001
		A:C	2.469	25	0.001	0.001
		A:D	2.715	23	0.001	0.001
		B:C	1.874	20	0.001	0.001
		B:D	2.151	18	0.001	0.001
		C:D	1.852	30	0.001	0.001

Benthic taxa that contributed mostly to the groups similarities were: *Polycirrus arcticus* (44.7 %) in fjords (A), *Yoldia hyperborea* (31.7 %) in Storfjorden (B), *Spiochaetopterus typicus* (16.8 %) in the Barents Sea shelf (C) and *Nephasoma diaphanes diaphanes* (16 %) in the northern Barents Sea and Nansen Basin (D) as revealed by SIMPER analysis (Table 6).

Table 6. SIMPER analysis results based on B/D ratio. Species that contributed more than 5% of the average similarity for different sampling stations groups are listed.

Group	Average similarity	Species	Contribution %
A	39.7	Polycirrus arcticus	44.7
		Cirratulidae	28.5
		Lumbrineris sp.	18.7
В	35.9	Yoldia hyperborea	31.7
		Maldane sarsi	31
		Nuculana radiata	9
		Lumbrineris sp.	8.1
		Cirratulidae	5.8
C	12	Spiochaetopterus typicus	16.8
		Lumbrineris sp.	10.7
		Yoldiella lenticula	7.3
		Maldane sarsi	5.6
D	14.8	Nephasoma diaphanes diaphanes	16
		Maldane glebifex	11.7
		Prionospio cirrifera	10.1
		Notoproctus oculatus	9.8
		Nemertea	9.5
		Lumbrineris sp.	6.3
		Byblis minuticornis	5.9

observed in the macrofauna community while Sed δ^{13} C (10%) and Sed C/N (9.3%) were next main contributors. Nine variables were included by the DistLM procedure to construct the best fitting model, together explaining 46.8% of total variation. However, one of the variables was not statistically significant (gravel) (Table 7). The most important parameter contributing to the first axis of the dbRDA plot was Sed C/N and explained 17.2% of fitted variation. It also positively correlated with fjords' group (A). The most important parameter contributing

to the second axis was sediment Chl a and explained 25.7% of fitted flux variation. It was

positively correlated with Storfjords group (B) and most stations in group C (shelf) (Fig. 5).

The results of DistLM analyses showed that salinity explained 10.1% of the variation

Table 7. Results of DistLM procedure for fitting environmental variables to the macofauna community data. % Var - percentage of explained variance; % Cum - cumulative percentage explained by the added variable. Significance level p < 0.05. Environmental factors: D – depth, S – salinity, T – temperature, types of sediment (mud, sand, gravel), BW C_{org} – bottom water C_{org} , BW N_{tot} – bottom water N_{tot} , BW $\delta^{13}C$ – bottom water $\delta^{13}C$ BW, BW $\delta^{15}N$ –

bottom water δ^{15} N, BW C/N – bottom water C/N, Sed C_{org} – C_{org} concentration in sediment, Sed N_{tot} – sediment N_{tot}, Sed δ^{13} C – sediment δ^{13} C, Sed δ^{15} N – sediment δ^{15} N, Sed C/N – sediment C/N, SOM – sediment organic matter, Chl a – sediment Chlorophyll a and Chl a/Phaeo – sediment Phaeopigments.

MARGINAL TESTS				
Variable	Pseudo-F	Var%	P	
S	5.06	10.1	0.001	
Sed δ^{13} C	5.01	10.0	0.001	
Sed C/N	4.59	9.3	0.001	
BW C/N	4.31	8.7	0.001	
BW δ^{15} N	4.25	8.6	0.001	
Sed C _{org}	4.11	8.4	0.001	
D	3.99	8.1	0.001	
T	3.96	8.1	0.001	
Chl a	3.66	7.5	0.001	
Sand	3.62	7.4	0.001	
Mud	3.46	7.1	0.001	
Chl a/ Phaeo	3.34	6.9	0.001	
BW C _{org}	3.26	6.8	0.001	
BW N _{tot}	3.16	6.6	0.002	
Gravel	3.11	6.5	0.001	
Sed N _{tot}	2.43	5.1	0.001	
Sed $\delta^{15}N$	2.09	4.4	0.004	
BW δ^{13} C	2.04	4.3	0.001	
SOM	1.56	3.4	0.032	

SEQUENT	TAL TESTS					
Variable		\mathbb{R}^2	Pseudo-F	Var%	Cum%	P
D		0.08	3.99	8.1	8.1	0.001
S		0.16	3.98	7.6	15.7	0.001
Sand		0.30	4.06	7.0	22.7	0.001
$BW \; \delta^{15} N$		0.44	3.71	5.5	28.2	0.001
BW C/N		0.49	3.70	5.1	33.3	0.001
BW δ^{13} C		0.38	3.06	4.9	38.1	0.001
T		0.20	2.44	4.5	42.7	0.001
Mud		0.33	2.26	3.8	46.4	0.001
Gravel		0.23	1.29	2.4	48.8	0.127

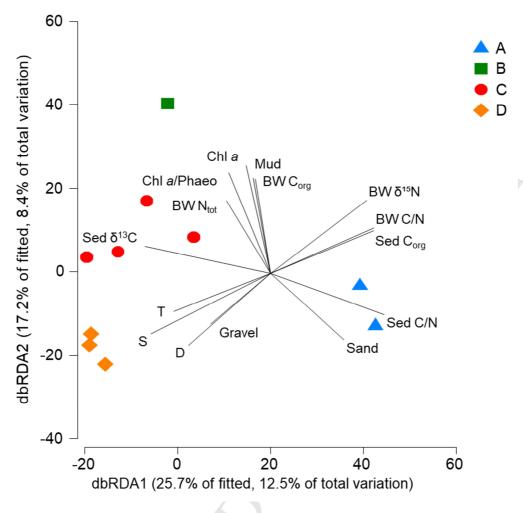


Fig. 5. Distance-based Redundancy Analysis (dbRDA) plot of the DistLM model visualizing the relationships between the environmental parameters and the biomass/density ratio of species between four sampling areas: A (Hornsund, Van Mijenfjorden); B (Storfjorden); C (Barents Sea shelf); D (northern Barents Sea and Nansen Basin). Environmental variables with Pearson rank correlations with dbRDA axes > 0.5 are shown. Environmental factors: D – depth, S – salinity, T – temperature, types of sediment (mud, sand, gravel), BW C_{org} – bottom water C_{org} , BW N_{tot} – bottom water N_{tot} , BW $\delta^{15}N$ – bottom water $\delta^{15}N$, BW C/N – bottom water C/N, Sed C_{org} – C_{org} concentration in sediment, Sed $\delta^{13}C$ – sediment $\delta^{13}C$, Sed C/N – sediment C/N, Chl a – sediment Chlorophyll a and Chl a/Phaeo – sediment Phaeopigments.

3.3.Bioturbation

5	4	8

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

After 10 days, almost all luminophores (~95%) remained on sediment core surface at all sampling stations meaning that about 5% of luminophores were transported into sediments. The fastest decrease was noted at the B group (Storfjorden: AX/3 and ST/8), and at the C group (Southern Barents Sea station (AX/6); Nansen Basin < 400 m (PS/20, PS/32)) where ~15 to 25% of surface luminophores were buried. While luminophores were still present all along the sedimentary column in the Storfjorden station, some subsurface peaks of luminophores were clearly measured below 3 cm in the C group. The lowest decrease of the luminophores over depth was noted in the A group (Svalbard Fjords AX1/1, AX/2) and in the D group at deepest station (PS/31) in the Nansen Basin where 92 to 98% of luminophores remained at surface with slight subsurface peaks of tracers (about: only 0.91 %) between 1 to 3 cm deep. Biodiffusion rates ranged from $0.04 \text{ cm}^{-2} \text{ y}^{-1} \pm 0.01 \text{ standard error (SE) (station AX/2)}$ to 0.07 cm⁻² y⁻¹ \pm 0.03 SE (station AX/1) in group A. In group B biodiffusion rates was 0.06 cm⁻² y⁻¹ \pm 0.04 SE (station AX/3). In group C biodiffusion ranged from 0 (station PS/32) to $0.76 \text{ cm}^{-2} \text{ y}^{-1} \pm 0.71 \text{ SE}$ (station AX/6). There was no biodiffusive transport in group D. There were significant differences in biodiffusion among areas (Kruskal-Wallis test; p<0.05; significant differences (post hoc test) between group A:D and C:D) (Fig. 6A). Non-local transport rates ranged from 0.21 $v^{-1} \pm 0.20$ SE (station AX/2) to 0.60 $v^{-1} \pm 0.23$ SE (station AX/1) in group A. In group B non-local transport rates was 2.12 $y^{-1} \pm 1$ SE (station AX/3). In group C non-local transport rates ranged from $0.75 \text{ y}^{-1} \pm 0.25 \text{ SE}$ (station PS/32) to $2.08 \text{ y}^{-1} \pm$ 0.58 SE (station AX/6). In group D non-local transport rates ranged from 0.28 $y^{-1} \pm 0.04$ SE (station PS/31) to 0.68 $y^{-1} \pm 0.31$ SE (station PS/19). There were significant differences in non-local transport (Kruskal-Wallis test; p<0.05; significant differences (post hoc test) between group A:C and C:D) (Fig. 6B). Biodiffusive transport values were significantly

related with depth, Sed $C_{\rm org}$ and BW C/N ratio Spearman correlation: -0.6, 0.6 and 0.6, p<0.05 respectively). Non-local transport values were significantly related to benthic taxa richness, biomass, mud and Sed $N_{\rm tot}$ (Spearman correlation: 0.5, 0.5, 0.5 and 0.5 p<0.05 respectively) (Table 8).

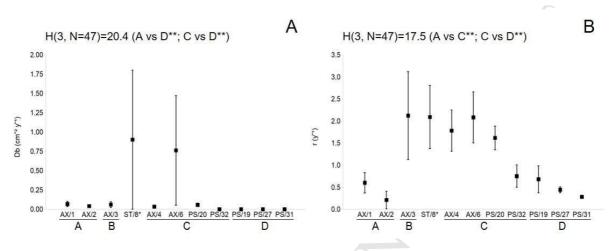


Fig. 6. Mean bioturbation coefficients: Db - biodiffusion (cm $^{-2}$ y $^{-1}$) (A) and r - non-local (y $^{-1}$) (B); \pm SE, n=no of cores (Table 1) at stations sampled in Van Mijenfjorden, Hornsund (group A); Storfjorden (group B); Barents Sea shelf (group C); northern Barents Sea and Nansen Basin (group D). Station ST/8 marked with * was sampled in summer season. Kruskal – Wallis results for differences between sampling sites are given; significant test results are marked with ** (p<0.05).

Table 8. Spearman's rank correlation analyses among biological and physical parameters. Significant values are marked in bold (p<0.05).

	No of taxa	Density	Biomass	Non-local (r)	Biodiffusion (Db)	Depth	Salinity	Temperature	Gravel	Sand	Mud	$\mathbf{BW} \mathbf{C_{org}}$	BW Ntot	BW 8 ¹³ C	BW 8 ¹⁵ N	BW C/N	Sed Corg	Sed N _{tot}	Sed 8 ¹³ C	Sed $\delta^{15}N$	Sed C/N	SOM	Chl a	Chl a/Phaeo
No of taxa	-	0.9	0.5	0.5	0.0	-0.1	0.2	0.1	0.0	-0.1	0.3	-0.1	0.0	-0.1	-0.2	0.0	-0.2	0.3	0.5	-0.1	-0.6	0.1	0.6	0.2
Density	0.9	-	0.5	0.4	-0.1	-0.2	-0.1	0.0	0.0	-0.1	0.2	-0.1	0.1	-0.1	-0.2	-0.1	-0.2	0.1	0.3	-0.1	-0.3	0.1	0.5	0.3
Biomass	0.5	0.5	-	0.5	0.4	-0.5	-0.2	-0.3	-0.3	-0.4	0.6	0.3	0.0	0.2	0.4	0.4	0.4	0.6	0.2	-0.1	-0.1	0.3	0.4	0.3
Non-local (r)	0.5	0.4	0.5	-	0.3	-0.2	0.1	0.0	-0.1	-0.4	0.5	0.2	0.1	0.1	0.2	0.2	0.2	0.5	0.4	-0.1	-0.3	0.3	0.4	0.1
Biodiffusion (Db)	0.0	-0.1	0.4	0.3	-	-0.6	-0.4	-0.3	-0.3	0.0	0.2	0.2	-0.2	0.0	0.5	0.6	0.6	0.4	-0.2	0.2	0.4	0.3	0.0	0.0

586	<i>3.4</i> .	Storfjorden –	- seasonal	changes
-----	--------------	---------------	------------	---------

Bottom water salinity was similar in spring and summer in Storfjorden, respectively 34.5 and 34.1. Bottom water temperature in spring season was -0.8 °C and increased to 4.5 °C (Table 1). Benthic density decreased from 3625.3 ind./m² \pm 83.9 SE in spring (AX/3) to 1812.7 ind./m² \pm 229.7 SE in summer (ST/8). Biomass was similar in both seasons (172.3 g/m² \pm 37.3 SE (spring, AX/3) and 152.1 g/m² \pm 67.5 SE (summer, ST/8). Non-local transport rates were similar in spring and summer (2.12 \pm 1 and 2.09 \pm 0.72 y⁻¹ respectively) but biodiffusion rates increased in summer (0.06 \pm 0.04 in spring and 0.90 \pm 0.90 cm² y⁻¹ in summer). Significant differences were found for the number of taxa and macrofauna density between spring and summer seasons (Mann-Whitney U-test; Z= 2.3; p<0.05 and Z=2.4; p<0.05, respectively).

4. Discussion

This is the first complex report on bioturbation activities in spring to summer transition time conducted over the large area from Svalbard fjords and Barents Sea to deep basin north off Svalbard. In our study, benthic community variables differentiated four groups of stations, and this separation was to some extent echoed by the environmental factors. The benthic community properties further affected the measured benthic activities i.e. bioturbation rates.

4.1. Benthic community characteristics across the sampled area

The structure and composition of the benthic communities seemed to be grouped in
four groups of stations, however, the primary variables of the benthic community structure
(e.g., density, biomass) were highly variable within each station. One of the reasons could be
the high variability among replicates that covered only small area of sampled sediment.
Benthic species richness of the region was not well represented in the cores taken for the
experiments at each station due to their small sampling unit (~113 cm²). This may have
implications for the results generalization to the sampled areas due to high variability of
benthic density, biomass and consequently on the effects of these on the measured
bioturbation coefficients. However, we assume that we collected the most abundant taxa,
which would likely have the dominant role in mediating bioturbation effect. We have sampled
and identified the benthic organisms in each sediment core where the bioturbation
experiments were processed meaning that we know the organisms responsible of the
measured bioturbation activities.

The variability of the quality and quantity of sedimentary OM within each station impacted benthic community structure. For instance, the lowest quality of SOM (C/N~18) was found in sandy sediments of Van Mijenfjorden and Hornsund fjords, highlighting dominance of refractory organic material within the group A. This probably explains the lowest benthic densities and biomass at these stations. This can be the result of geographical locations (e.g., water circulation restrictions) and glacial activity in Hornsund, related high sedimentation rates and high terrestrial OM inputs disturbing benthic fauna (Drewnik et al., 2016; Włodarska-Kowalczuk and Pearson, 2004). These two stations' communities were mainly shaped by presence of polychaete *Polycirrus arcticus* and cumacean *Diastylis lucifera*, and opportunistic cirratulids were among dominants.

A high, but variable, B/D ratio was found in Storfjorden (group B), which is the site of a recurring polynya and has some of the highest productivity in the Barents Sea. The low

temperature, presence of a sea ice-edge bloom, very fine grained sediments (muds) indicating low hydrodynamism, and high C_{org} and Chl *a* contents in sediments and in bottom waters promote diverse and high biomass benthic communities with larger individuals burrowing and feeding deeper (Winkelmann and Knies, 2005). High Chl *a*/Phaeo ratio and large quantities of Chl *a* within sediments show also a more frequent input of fresh OM because of the presence of the polynya (Haarpaintner et al., 2001; Vinje, 2001; Winkelman and Knies, 2005). This community was also diverse, with high dominance of polychaetes (cirratulids, carnivore *Lumbrineris* sp, and subsurface tube-building conveyor *Maldane sarsi*) and bivalves like *Yoldia hyperborea* and *Nuculana radiata*. PCO indicated that samples collected in Storfjorden were correlated with presence of bivalve *Ennucula tenuis* and polychaete *Apistobanchus tulbergi*.

The group C, covering stations sampled over the Barents Sea shelf, was highly variable in terms of community structure and various environmental factors. The southern Barents Sea station (AX/6) was characterized by similar environmental conditions to the Storfjorden resulting in the occurrence of fauna with similar characteristics but with a lower biomass to density ratio. This station was dominated by tube-building conveyor polychaete *Spiochaetopterus typicus* and *Heteromastus* sp. and bivalve *Macoma* sp. It was characterized by high amount of SOM but low Chl a in the sediments, indicating late bloom/post bloom conditions, where most of the fresh OM was already utilized by benthic organisms. Lower Chl a/Phaeo ratio also indicates more degraded OM, possibly a result of intensive pelagic grazing (Morata and Renaud, 2008). This is likely since this station is in the southernmost location, therefore it was under the strong influence of Atlantic waters and was already in the late-phase of the phytoplankton bloom (Krause et al., 2018). The other stations from this group, located in the northern part of Barents Sea e.g. Erik Eriksen Strait, were characterized by high share of sand but relatively fresh and abundant SOM, though low Chl a levels. This is

quite similar to stations north of Svalbard (PS/20 and PS/32), although the later was characterized by higher amounts of Chl *a* present in the sediment related to the bloom in progress at the time of sampling (Peeken, 2016). This group was characterized by highly diverse communities (from 36 (AX/6) to 68 (PS/32) number of taxa), however most of them belonged to either biodiffusors or conveyors.

The northern Barents Sea and Nansen Basin (group D) were differentiated from the other groups by salinity, temperature, depth and occurrence of gravel. The species shaping communities included polychaetes *Prionospio cirrifera* and *Notoproctus oculatus*. Stations in group D were seasonally ice covered (including during sampling), and deeper than 400 m. They were characterized by low amount of Sed C_{org} but presence of high OM quality in bottom water layer, perhaps indicating recent sedimentation. They were characterized by much lower benthic biomass and higher benthic density which were both decreasing with increasing depth regardless the bloom stage. Decreasing quality and quantity of OM with increasing depth, as it was observed in Nansen Basin, are often reflected in spatial variations in benthic community structure (Carroll et al., 2008) and result in severe energy limitation for deep-seafloor communities, dominated by small sized-individuals in high densities (Gage and Tyler, 1991; Bergmann et al., 2009; Grebmeier et al., 1988; Renaud et al., 2008).

Long living Arctic benthic fauna reflects carbon export fluxes to the sea bottom but changes are observed after several years or decades at deep stations (Grebmeier, 2012; Link et al., 2013). Therefore, it is likely that the bloom stage and current OM delivery to the sea floor did not directly influence the benthic community structure which is mainly dependent on the integrated carbon input to the sediments and OM pool available in the sediment. However, fresh OM arriving to the sea floor can trigger fast benthic response in terms of feeding and related movement (Morata et al., 2015; Boetius et al., 2013), thus influence the community functioning.

4.2. Bioturbation processes (sediment mixing)

Conducting experiments at the large depth gradient posts a challenge of working in hyperbaric conditions. Although, Glud et al. (1994) showed that in situ measurements of sediment oxygen demand/oxygen penetration depth were uniformly higher than deck incubations, the relative differences among stations did not change with depth. Since other published studies have also not incorporated hyperbaric chambers when estimating sediment oxygen demand (Boetius et al., 2013), metabolism (Linke et al., 1995), and bioturbation (Clough et al., 1997), our results, as the relative rates, remain comparable.

Both coefficients of bioturbation (non-local transport (r) and biodiffusion (Db) were quantified in the stations of groups A, B and C where a higher diversity of bioturbation groups was recorded among the dominant taxa (Table 4). Stations of the group D, on the contrary, exhibited lower diversity of functional traits among the dominant taxa with the simultaneous presence of two groups of sediment mixing (conveyors, biodiffusers) but where only non-local transport was observed.

Species identity and differences in species characteristics, such as feeding mode and typical burrowing depth, have been previously shown to influence the intensity of bioturbation (Viitasalo-Frösén et al., 2009; Josefson et al., 2012; Näkki et al., 2017) and functional diversity can be considered to have more impacts than taxonomic richness (Harvey et al., 2012; Link et al., 2013). However, interpreting the bioturbation processes and the assignment of the macrofaunal species to the correct functional group can be challenging. Short-term experimental studies of sediment mixing provide just essential data for only few species and results are hard to compare with longer time-scale processes in natural ecosystems. Also, the same species can have different behavior and belong to another

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

sediment mixing groups across their ranges since species are known to be able to feed in several different ways and change their feeding and mobility to exploit the food resources available (Biles et al., 2002). Change in organism feeding behavior will also mean a change in bioturbation which is reduced as a result of decreasing species diversity and community biomass, as well as diversity of feeding and bioturbation groups (Mazik and Elliott, 2000). In general, in our study, the high number of sub-surface deposit feeders, which feed at depth and transport material to the surface can explain dominance of non-local mixing (Boudreau, 1997; Gérino et al., 1998). Conveyors were actually omnipresent and the intensity of non-local transport was variable between stations, and was increasing with increasing species richness, density and biomass, but also with increasing percentage of mud presence and Chl a contents (Table 8). Since non-local transport is non-continuous, it is usually difficult to link it directly to benthic biomass (or biovolume) since some movements of particles do not depend only on animal movements, but also on animal-independent effects (e.g., particles falling down into the burrows, initial burrows construction). In our study, increasing benthic biomass generated by high labile OM inputs, seems to have positive effects on the conveying activities and consequently on the non-local transport rates.

In shallow fjords (Van Mijenfjorden and Hornsund, Group A), the benthic communities were characterized by low bioturbation rates (non-local transport from 0.21 ± 0.20 to 0.60 ± 0.23 y⁻¹ and biodiffusion from 0.04 ± 0.01 to 0.07 ± 0.03 cm⁻² y⁻¹). This similarity between the AX/1 and AX/2 stations of the group A can be explained by the occurrence of a similar benthic community whose the species have the same functional traits combination (i.e., feeding, mobility, burrowing depth, burrowing mode and sediment mixing mode; Table 4) but present in low density and biomass. Biodiffusors (Cirratulidae; Gérino et al., 1992, 2007), conveyors (*P. arcticus*) and gallery diffusors (*Lumbrineris* sp.; Petch, 1986),

both present in those fjords, were probably limited by the lack of fresh OM in the sediments at the time of sampling.

Storfjorden (AX/3, group B), Erik Eriksen Strait (AX/4) and PS/20 (group C) had similar measured bioturbation rates with high non-local transport and low biodiffusion, and shared a high biomass contribution of bivalves and maldanid polychaetes. Yoldiids and maldanids, burrowing deeper into the sediment, are known to be effective conveyors which can either actively transfer sediment directly into deep layers from the surface, or into surface layers from deeper layers of the sediments (Bender and Davis, 1984; Smith and Schafer, 1984), respectively. This can explain high non-local transport in these areas.

The southern Barents Sea, AX/6, group C, had higher but strongly spatially variable Db and r by station within the group, with a relatively higher biomass and density of the organisms (*Spiochaetopterus typicus* (conveyor, Smith and Shafer, 1984) dominating in the density and *Astarte* sp. (biodiffusor, Queirós at al., 2013) dominating in the biomass. The reason for that was most likely earlier occurrence of the phytoplankton bloom due to the lack of sea ice, so at the time of the cruise, late spring/post-bloom conditions and abundant OM activated rapidly benthic organisms.

All deeper and sea ice covered stations in group D, including sea ice covered PS/32 (group C), were dominated by biodiffusors and conveyors (Table 4). Those stations were characterized by significant non-local transport and unmeasurable biodiffusion. This suggests that the sediment transport mode by conveyors dominated in the sampled deeper areas adapted to scarce fresh food availability despite the presence of biodiffusers. This implies a very low activity by biodiffusers undetectable at the time scale of 10 days of experiment, or an interfering of such activities with the conveyors species. Typically for communities living in OM limited environments, these benthic communities were characterized by a low number of species with low biomass. Giving the low bioturbation rates in the deeper stations, we

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

could actually suppose that time incubation with luminophores superior to 10 days could be tested in the future experiments in order to insure a more complete transport of tracers towards deep layers where the benthic community is less active. Since the bioturbation model takes into account in its calculation this time duration, the final bioturbation coefficient is however normalized to this time scale, signifying the similar relative comparison between stations for our experiment remains valid. If we were able to detect measurable biodiffusive coefficient for the deeper stations for a longer time scale, normalized to the same time unit, the biodiffusion would be still low because of weak benthic infauna dynamic in such environments. Our results are, however, similar to the patterns showed by Clough et al. (1997) who noted low biodiffusive transport (0.01 to 0.11 cm⁻² y⁻¹) by using radioactive tracer for its deep portions in relationships to the lower benthic biomass due to lower fresh OM inputs. They found, however, higher surficial sediment biological mixing rates than the natural sedimentation rates in the Arctic deep sediments, highlighting the importance of quantifying bioturbation in the Arctic Ocean taking into account its spatial variability. Also, Soltwedel et al. (2019), using luminophores for experiments that lasted 2 and 4 years, found low biodiffusion mixing rates at the Long-Term Ecological Research (LTER) observatory HAUSGARTEN in Fram Strait (~ 0.2 cm⁻² y⁻¹). They concluded that the meiofauna, and to a certain extent megafauna, were the main bioturbators in the deep sea environments. Although, only macrofauna (>500 µm) was identified and was presented as the main responsible of the bioturbation activities in our study, meiofaunal activities may also explain some of the patterns that could not be attributed to the changes in the environment or macrofaunal communities in the deep sea stations. Since the model quantifies bioturbation coefficients of the entire benthic community, it includes here also the meiofauna activities. Meiofauna is actually known as the most abundant infauna (Heip et al., 1985; Vanreusel et al., 2010; Rosli et al., 2016; own data) and as having impact on the bioturbation activities in the first few

centimeters of the sediment (Aller and Aller, 1992; Piot el al., 2014; Aschenbroich et al., 2017; Mäkelä et al., 2018). Therefore, we suggest that also the smaller benthic fractions should be identified in future studies on Arctic deep infaunal activity in order to find better infauna variables for explaining the bioturbation measurements.

788

784

785

786

787

4.3. Seasonal changes (Storfjorden station)

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

789

The highest values of non-local transport were reported for Storfjorden and remained stable during both spring and summer time. The biodiffusion coefficient measured in Storfjorden during summer was about fifteen times higher compared to measurements conducted during spring, probably because of the changes in species and functional groups between the two seasons associated with the more labile OM reaching the seafloor in summer (Chl a/Phaeo~52, Table 3). The dominant taxa in density were Cirratullidae (biodiffusor) both during spring and summer (31.2 % and 11 %, respectively) and Lumbrineris sp. (gallery diffusor) (14.1 % and 18.3 %, respectively) while in biomass, Yoldia hyperborea (convoyer) dominated during both seasons (57.4 % and 30.5 %, respectively) (Table 4). Such changes, i.e. replacement of one large specimen by another large specimen of different species, should be rather accounted to spatial variability of benthic communities than due to seasonal change in sampled communities. Also, species such as Nereis diversicolor or M. balthica are able to change their feeding mode (suspensive-feeder versus deposit feeder) depending on environmental conditions (De Goej and Luttikhuizen, 1998; Christensen et al., 2000). It is also possible that taxa such as Cirratulidae, Lumbrinereis, Yoldia and Nuculana change their feeding mode with increased OM input from the polynya during the summer just after the spring bloom, as was observed in other ecosystems or experiments (e.g., Bender and Davis, 1984 for *Yoldia* spp; Rouse and Pleijel, 2001; Kedra et al., 2012 for Cirratulidae).

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

Benthic activities are related to the supply of OM to the seabed (Grassle and Grassle, 1994; Levin and Gooday, 2003; Blake et al., 2009) and biodiffusion intensity can be strongly dependent on flux of fresh food from overlying waters (Gérino et al., 1998). In shallow sediments of temperate areas, Duport et al. (2007) found the highest intensity of sediment mixing (non-local and biodiffusion) during summer in the Thau Lagoon. Also Gérino et al. (2007) found more rapid non-local transport in spring than in autumn in the Venice Lagoon. Organic carbon supply generally increases when the PP starts in spring, and peaks with the bloom and afterwards, over the summer. In the polar areas, Morata et al. (2015) found minimum biodiffusive activity during the polar night, and high non-local transport after a pulse of fresh food in experiments conducted in high Arctic fjord in Svalbard. This result suggests that behavior of benthic species change with the OM input. Also, laboratory experiments showed that macrofauna can react quickly to food input by increasing their bioturbation activities (Nogaro et al., 2008). Furthermore, Dauwe et al. (1998) reported maximum sediment mixing with medium food quality in the study comparing macrofaunal benthic activity with contrasting food supply in the North Sea. They also showed that the minimal mixing was observed at the station with high quality OM, and no mixing when low quality OM was present. This can result from combination of physical and biochemical factors influencing bioturbation, or changes in species behavior. The other possible explanation is related to the oxygen conditions in different areas. Both North and Baltic Sea are areas with high PP and eutrophication. Higher amounts of new OM reaching the sea floor often result in low oxygen levels leading to anoxic conditions affecting faunal behavior or even survival (Carstensen et al., 2014). Svalbard fjords and adjacent areas are largely oligoand meso- trophic, and well oxygenated regardless the time of the year and intensity of the spring bloom deposition. We, thus, expect minimal negative impacts of OM deposition on

333	benthic communities. Our results from this limited seasonal comparison suggest that large
334	inputs of fresh OM to the seabed can trigger bioturbation activities.
335	

8

836

837

838

839

840

841

842

843

844

845

846

847

848

849

Acknowledgements

This work is a contribution to the Polish National Science Centre (project number 2015/19/B/NZ8/03945 (SeaIceFun) to MK) and the Norwegian Research Council (ARCEx project #228107). We would like to thank the crew and scientific team for support and assistance at the sea during the Arctic in Rapid Transition (ART) Network cruise TRANSSIZ (ARK XXIX/1; PS92) on R/V Polarstern, ARCEx cruise on R/V Helmer Hanssen and SteP cruise on R/V L'Atalante, especially to Maeve McGovern. We would like to thank Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the financial support. Thank you to Aleksandra Winogradow (IOPAN) and Jeremy Devesa (LEMAR) for their help during CHN analyses. Mobility grants of BO, NM and EM were supported by the French National Agency under the program "Investissements d'Avenir" (LabexMER: ANR-10-LABX-19) and by the scientific committee of IUEM to EM. We thank three anonymous reviewers for their comments, which significantly improved the paper. This paper is a Nereis Park number 41.

850

851

852

857

References:

853 Oceanography 37, 1018–1033. https://doi.org/10.4319/lo.1992.37.5.1018 Anderson, M.J., Gorley, R.N., Clarke, K.R., 2008. PERMANOVA for PRIMER: guide to 854 855 software and statistical methods. PRIMER-E Ltd., Plymouth, United Kingdom p. 214. 856 Andreassen, I., Wassmann, P., 1998. Vertical flux of phytoplankton and particulate biogenic

Aller, R.C., Aller, J.Y., 1992. Meiofauna and solute transport in marine muds. Limnology and

matter in the marginal ice zone of the Barents Sea in May 1993. Marine Ecology

858	Progress Series 170, 1–14. https://doi.org/10.3354/meps170001
859	Aschenbroich, A., Michaud, E., Gilbert, F., Fromard, F., Alt, A., Le Garrec, V., Bihannic, I.,
860	De Coninck, A., Thouzeau, G., 2017. Bioturbation functional roles associated with
861	mangrove development in French Guiana, South America. Hydrobiologia 794, 179-
862	202. https://doi.org/10.1007/s10750-017-3093-7
863	Bender, K., Davis, W.R., 1984. The effect of feeding by Yoldia limatula on bioturbation.
864	Ophelia 23, 91–100. https://doi.org/10.1080/00785236.1984.10426606
865	Bergmann, M., Dannheim, J., Bauerfeind, E., Klages, M., 2009. Trophic relationships along a
866	bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep Sea Research
867	Part I: Oceanographic Research Papers 56, 408–424.
868	https://doi.org/10.1016/j.dsr.2008.10.004
869	Berner, R.A., 1980. Early diagenesis. A theoretical approach. Princeton University Press,
870	Princeton, NJ.
871	Biles, C.L., Paterson, D.M., Ford, R.B., Solan, M., Raffaelli, D.G., 2002. Bioturbation,
872	ecosystem functioning and community structure. Hydrology and Earth System
873	Sciences 6, 999–1005. https://doi.org/10.5194/hess-6-999-2002
874	Blake, J.A., Maciolek, N.J., Ota, A.Y., Williams, I.P., 2009. Long-term benthic infaunal
875	monitoring at a deep-ocean dredged material disposal site off Northern California.
876	Deep Sea Research Part II: Topical Studies in Oceanography 56, 1775–1803.
877	https://doi.org/10.1016/j.dsr2.2009.05.021
878	Błaszczyk, M., Jania, J.A., Kolondra, L., 2013. Fluctuations of tidewater glaciers in Hornsund
879	Fjord (Southern Svalbard) since the beginning of the 20th century. Polish Polar
880	Research 34, 327–352. https://doi.org/10.2478/popore-2013-0024
881	Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the
882	analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26,

883	1237–1248. https://doi.org/10.1002/esp.261
884	Boetius, A., Albrecht, S., Bakker, K., Bienhold, C., Felden, J., Fernandez-Mendez, M.,
885	Hendricks, S., Katlein, C., Lalande, C., Krumpen, T., Nicolaus, M., Peeken, I., Rabe,
886	B., Rogacheva, A., Rybakova, E., Somavilla, R., Wenzhofer, F., RV Polarstern ARK27-
887	3-Shipboard Science Party, 2013. Export of Algal Biomass from the Melting Arctic Sea
888	Ice. Science 339, 1430–1432. https://doi.org/10.1126/science.1231346
889	Bouchet, V.M.P., Sauriau, PG., Debenay, JP., Mermillod-Blondin, F., Schmidt, S., Amiard,
890	JC., Dupas, B., 2009. Influence of the mode of macrofauna-mediated bioturbation on
891	the vertical distribution of living benthic foraminifera: First insight from axial
892	tomodensitometry. Journal of Experimental Marine Biology and Ecology 371, 20-33.
893	https://doi.org/10.1016/j.jembe.2008.12.012
894	Boudreau, B.P., 1986. Mathematics of tracer mixing in sediments. 2. Nonlocal mixing and
895	biological conveyor-belt phenomena. American Journal of Science 286, 199-238.
896	Boudreau, B.P., 1997. Diagenetic models and their implementation. Springer Verlag, 414 pp.
897	Bourgeois, T., Orr, J.C., Resplandy, L., Terhaar, J., Ethé, C., Gehlen, M., Bopp, L., 2016.
898	Coastal-ocean uptake of anthropogenic carbon. Biogeosciences 13, 4167-4185.
899	https://doi.org/10.5194/bg-13-4167-2016
900	Carroll, J., Zaborska, A., Papucci, C., Schirone, A., Carroll, M.L., Pempkowiak, J., 2008.
901	Accumulation of organic carbon in western Barents Sea sediments. Deep Sea Research
902	Part II: Topical Studies in Oceanography 55, 2361–2371.
903	https://doi.org/10.1016/j.dsr2.2008.05.005
904	Carstensen, J., Andersen, J.H., Gustafsson, B.G., Conley, D.J., 2014. Deoxygenation of the
905	Baltic Sea during the last century. Proceedings of the National Academy of Sciences
906	111, 5628–5633. https://doi.org/10.1073/pnas.1323156111
907	Christensen, B., Vedel, A., Kristensen, E., 2000, Carbon and nitrogen fluxes in sediment

inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (Nereis diversicolor)
virens) polychaetes. Marine Ecology Progress Series 192, 203–217
910 <u>https://doi.org/10.3354/meps192203</u>
Clarke, K.R., Gorley, R.N., 2006. PRIMER v6: User manual/tutorial. PRIMER-E, Plymout
912 UK.
Clough, L.M., Ambrose, W.G., Kirk Cochran, J., Barnes, C., Renaud, P.E., Aller, R.C., 1997
Infaunal density, biomass and bioturbation in the sediments of the Arctic Ocean. Dee
Sea Research Part II: Topical Studies in Oceanography 44, 1683–1704
916 <u>https://doi.org/10.1016/S0967-0645(97)00052-0</u>
Cochrane, S.K.J., Pearson, T.H., Greenacre, M., Costelloe, J., Ellingsen, I.H., Dahle, S
Gulliksen, B., 2012. Benthic fauna and functional traits along a Polar Front transect i
the Barents Sea – Advancing tools for ecosystem-scale assessments. Journal of Marin
920 Systems 94, 204–217. <u>https://doi.org/10.1016/j.jmarsys.2011.12.001</u>
Codispoti, L.A., Kelly, V., Thessen, A., Matrai, P., Suttles, S., Hill, V., Steele, M., Light, B
2013. Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphat
based estimates of net community production. Progress in Oceanography 110, 126
924 150. https://doi.org/10.1016/j.pocean.2012.11.006
D'Andrea, A.F., Lopez, G.R., Aller, R.C., 2004. Rapid physical and biological particle mixin
on an intertidal sandflat. Journal of Marine Research 62, 67–92
927 <u>https://doi.org/10.1357/00222400460744627</u>
Dauwe, B., Herman, P.M.J., Heip, C.H.R., 1998. Community structure and bioturbation
potential of macrofauna at four North Sea stations with contrasting food supply. Ma
Ecol Prog Ser 173, 67–8317. https://doi:10.3354/meps173067
De Goeij, P., Luttikhuizen, P., 1998. Deep-burying reduces growth in intertidal bivalves: fiel-
and mesocosm experiments with Macoma balthica. Journal of Experimental Marin

933	Biology and Ecology 228, 327–337. https://doi.org/10.1016/S0022-0981(98)00062-8
934	Drewnik, A., Węsławski, J.M., Włodarska-Kowalczuk, M., Łącka, M., Promińska, A.,
935	Zaborska, A., Gluchowska, M., 2016. From the worm's point of view. I: Environmental
936	settings of benthic ecosystems in Arctic fjord (Hornsund, Spitsbergen). Polar Biology
937	39, 1411–1424. https://doi.org/10.1007/s00300-015-1867-9
938	Duchêne, J., Rosenberg, R., 2001. Marine benthic faunal activity patterns on a sediment
939	surface assessed by video numerical tracking. Marine Ecology Progress Series 223,
940	113–119. https://doi.org/10.3354/meps223113
941	Duport, E., Gilbert, F., Poggiale, JC., Dedieu, K., Rabouille, C., Stora, G., 2007. Benthic
942	macrofauna and sediment reworking quantification in contrasted environments in the
943	Thau Lagoon. Estuarine, Coastal and Shelf Science 72, 522-533.
944	https://doi.org/10.1016/j.ecss.2006.11.018
945	Fauchald, K., Jumars, P.A., 1979. The diet of worms: a study of polychaete feeding guilds.
946	Oceanogr Mar Biol Annu Rev 17, 193–284.
947	Fernández-Méndez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., Flores,
948	H., Boetius, A., 2015. Photosynthetic production in the central Arctic Ocean during the
949	record sea-ice minimum in 2012. Biogeosciences 12, 3525–3549.
950	https://doi.org/10.5194/bg-12-3525-2015
951	Fetzer, I., Lønne, O.J., Pearson, T., 2002. The distribution of juvenile benthic invertebrates
952	in an Arctic glacial fjord. Polar Biol 25, 303-315.
953	Fisher, J.B., Lick, W.J., McCall, P.L., Robbins, J.A., 1980. Vertical mixing of lake sediments
954	by tubificid oligochaetes. Journal of Geophysical Research 85 (C7), 3997-4006.
955	https://doi.org/10.1029/JC085iC07p03997
956	François, F., Delegre, K., Gilbert, F., Stora G., 1999. Specific variability within functional
957	groups. Study of the sediment reworking of two Veneridae bivalves, Ruditapes

958	decussatus and Venerupis aurea. C. R. Acad. Sci. Paris, 322, 339-345.
959	François, F., Gérino, M., Stora, G., Durbec, J., Poggiale, J., 2002. Functional approach to
960	sediment reworking by gallery-forming macrobenthic organisms: modeling and
961	application with the polychaete Nereis diversicolor. Marine Ecology Progress Series
962	229, 127–136. https://doi.org/10.3354/meps229127
963	François, F., Poggiale, JC., Durbec, JP., Stora, G., 2001. A newmodel of bioturbation for a
964	functional approach to sedi-ment reworking resulting from macrobenthic communi-
965	ties. In: Aller JY, Woodin SA, Aller RC (eds) Organism-sediment interactions.
966	University of South Carolina Press, Columbia, p 73–86.
967	François, F., Poggiale, JC., Durbec, JP., Stora, G., 1997. A new approach for the modelling
968	of sediment reworking induced by a macrobenthic community. Acta Biotheor. 45, 295-
969	319.
970	Gage, J., Tyler, P., 1991. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea
971	Floor. Cambridge University Press, New York.
972	Gardner, L.R., Sharma, P., Moore, W.S., 1987. A regeneration model for the effect of
973	bioturbation by fiddler crabs on 210Pb profiles in salt marsh sediments. Journal of
974	Environmental Radioactivity 5, 25–36.
975	Gérino, M., 1992. Étude expérimentale de la bioturbation en milieu littoral et profond.
976	Doctoral dissertation, Université Aix-Marseille II. 196 pp.
977	Gérino, M., Aller, R.C., Lee, C., Cochran, J.K., Aller, J.Y., Green, M.A., Hirschberg, D., 1998.
978	Comparison of Different Tracers and Methods Used to Quantify Bioturbation During a
979	Spring Bloom: 234-Thorium, Luminophores and Chlorophylla. Estuarine, Coastal and
980	Shelf Science 46, 531–547. https://doi.org/10.1006/ecss.1997.0298
981	Gérino, M., Frignani, M., Mugnai, C., Bellucci, L.G., Prevedelli, D., Valentini, A., Castelli,
982	A., Delmotte, S., Sauvage, S., 2007. Bioturbation in the Venice Lagoon: Rates and

983	relationship to organisms. Acta Oecologica 32, 14–25.
984	https://doi.org/10.1016/j.actao.2007.02.003
985	Gilbert, F., Hulth, S., Grossi, V., Poggiale, JC., Desrosiers, G., Rosenberg, R., Gérino, M.,
986	François-Carcaillet, F., Michaud, E., Stora, G., 2007. Sediment reworking by marine
987	benthic species from the Gullmar Fjord (Western Sweden): Importance of faunal
988	biovolume. Journal of Experimental Marine Biology and Ecology 348, 133-144.
989	https://doi.org/10.1016/j.jembe.2007.04.015
990	Gingras, M.K., Pemberton, S.G., Dashtgard, S., Dafoe, L., 2008. How fast do marine
991	invertebrates burrow? Palaeogeography, Palaeoclimatology, Palaeoecology 270, 280-
992	286. https://doi.org/10.1016/j.palaeo.2008.07.015
993	Glud, R.N., Gundersen, J.K., Barker Jørgensen, B., Revsbech, N.P., Schulz, H.D., 1994.
994	Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic
995	Ocean:in situ and laboratory measurements. Deep Sea Research Part I: Oceanographic
996	Research Papers 41, 1767–1788. https://doi.org/10.1016/0967-0637(94)90072-8
997	Gogina, M., Morys, C., Forster, S., Gräwe, U., Friedland, R., Zettler, M.L., 2017. Towards
998	benthic ecosystem functioning maps: Quantifying bioturbation potential in the German
999	part of the Baltic Sea. Ecological Indicators 73, 574–588.
1000	https://doi.org/10.1016/j.ecolind.2016.10.025
1001	Gosselin, M., Levasseur, M., Wheeler, P.A., Horner, R.A., Booth, B.C., 1997. New
1002	measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea
1003	Research Part II: Topical Studies in Oceanography 44, 1623–1644.
1004	https://doi.org/10.1016/S0967-0645(97)00054-4
1005	Grassle, J.F., Grassle, J.P., 1994. Notes from the abyss: the effects of a patchy supply of
1006	organic material and larvae on soft-sediment benthic communities. In: Giller, P.S.,
1007	Hildrew, A.G., Raffacelli, D.G. (Eds.), Aquatic Ecology: Scale, Pattern and Process.

1008	Blackwell, Oxford, pp. 499–515.
1009	Grebmeier, J.M., 2012. Shifting Patterns of Life in the Pacific Arctic and Sub-Arctic Seas.
1010	Annual Review of Marine Science 4, 63-78. https://doi.org/10.1146/annurev-marine-
1011	<u>120710-100926</u>
1012	Grebmeier, J.M., Cooper, L.W., Feder, H.M., Sirenko, B.I., 2006. Ecosystem dynamics of the
1013	Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic.
1014	Progress in Oceanography 71, 331–361. https://doi.org/10.1016/j.pocean.2006.10.001
1015	Grebmeier, J.M, McRoy, C., Feder, H., 1988. Pelagic-benthic coupling on the shelf of the
1016	northern Bering and Chukchi Seas. I. Food supply source and benthic bio-mass. Marine
1017	Ecology Progress Series 48, 57–67. https://doi.org/10.3354/meps048057
1018	Haarpaintner, J., Haugan, P.M., Gascard, JC., 2001. Interannual variability of the Storfjorden
1019	(Svalbard) ice cover and ice production observed by ERS-2 SAR. Annals of Glaciology
1020	33, 430–436. https://doi.org/10.3189/172756401781818392
1021	Harvey, E., Séguin, A., Nozais, C., Archambault, P., Gravel, D., 2013. Identity effects
1022	dominate the impacts of multiple species extinctions on the functioning of complex
1023	food webs. Ecology 94, 169–179. https://doi.org/10.1890/12-0414.1
1024	Heip C, Vincx M, Vranken G. 1985. The ecology of marine nematodes. Oceanography and
1025	Marine Biology: An Annual Review 23, 399–489.
1026	Holm-Hansen, O., Lorenzen, C.J., Holms, R.W., Strickland, J.D., 1965. Fluorometric
1027	determination of chlorophyll. J Conseil Int pour l'Exploration de la Mer 30, 3–15.
1028	Jørgensen, L.L., Ljubin, P., Skjoldal, H.R., Ingvaldsen, R.B., Anisimova, N., Manushin, I.,
1029	2015. Distribution of benthic megafauna in the Barents Sea: baseline for an ecosystem
1030	approach to management. ICES Journal of Marine Science 72, 595-613.
1031	https://doi.org/10.1093/icesjms/fsu106
1032	Josefson, A., Norkko, J., Norkko, A., 2012. Burial and decomposition of plant pigments in

1033	surface sediments of the Baltic Sea: role of oxygen and benthic fauna. Marine Ecology
1034	Progress Series 455, 33–49. https://doi.org/10.3354/meps09661
1035	Kędra, M., Kuliński, K., Walkusz, W., Legeżyńska, J., 2012. The shallow benthic food web
1036	structure in the high Arctic does not follow seasonal changes in the surrounding
1037	environment. Estuarine, Coastal and Shelf Science 114, 183-191.
1038	https://doi.org/10.1016/j.ecss.2012.08.015
1039	Kędra, M., Pabis, K., Gromisz, S., Węsławski, J.M., 2013. Distribution patterns of polychaete
1040	fauna in an Arctic fjord (Hornsund, Spitsbergen). Polar Biology 36, 1463-1472.
1041	https://doi.org/10.1007/s00300-013-1366-9
1042	Kennedy, P., Kennedy, H., Papadimitriou, S., 2005. The effect of acidification on the
1043	determination of organic carbon, total nitrogen and their stable isotopic composition in
1044	algae and marine sediment. Rapid Communications in Mass Spectrometry 19, 1063-
1045	1068. https://doi.org/10.1002/rcm.1889
1046	Knaust, D., Bromley, R.G., 2012. Trace fossils as indicators of sedimentary environments.
1047	Developments in sedimentology, vol 64. Elsevier, Amsterdam.
1048	Konovalov, D., Renaud, P.E., Berge, J., Voronkov, A.Y., Cochrane, S.K.J., 2010.
1049	Contaminants, benthic communities, and bioturbation: potential for PAH mobilisation
1050	in Arctic sediments. Chemistry and Ecology 26, 197–208.
1051	https://doi.org/10.1080/02757541003789058
1052	Krause, J.W., Duarte, C.M., Marquez, I.A., Assmy, P., Fernández-Méndez, M., Wiedmann, I.,
1053	Wassmann, P., Kristiansen, S., Agustí, S., 2018. Biogenic silica production and diatom
1054	dynamics in the Svalbard region during spring. Biogeosciences Discussions 1-25.
1055	https://doi.org/10.5194/bg-2018-226
1056	Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C., Banta, G.,
1057	2012. What is bioturbation? The need for a precise definition for fauna in aquatic

1058	sciences. Marine Ecology Progress Series 446, 285–302.
1059	https://doi.org/10.3354/meps09506
1060	Kure, L.K., Forbes, T.L., 1997. Impact of bioturbation by Arenicola marina on the fate of
1061	particle-bound fluoranthene. Marine Ecology Progress Series 156, 157–166.
1062	Leu, E., Wiktor, J., Søreide, J., Berge, J., Falk-Petersen, S., 2010. Increased irradiance reduces
1063	food quality of sea ice algae. Marine Ecology Progress Series 411, 49-60.
1064	https://doi.org/10.3354/meps08647
1065	Levin, L.A., Gooday, A.J., 2003. The Deep Atlantic Ocean Chapter 5. In: Tyler, P.A. (Ed.),
1066	Ecosystems of the Deep Oceans. Ecosystems of the World 28. Elsevier, Amsterdam,
1067	pp. 111–178.
1068	Link, H., Piepenburg, D., Archambault, P., 2013. Are Hotspots Always Hotspots? The
1069	Relationship between Diversity, Resource and Ecosystem Functions in the Arctic.
1070	PLoS ONE 8, e74077. https://doi.org/10.1371/journal.pone.0074077
1071	Linke, P., Altenbach, A.V., Graf, G., Heeger, T., 1995. Response of deep-sea benthic
1072	foraminifera to a simulated sedimentation event. Journal of Foraminiferal Research 25,
1073	75-82. https://doi.org/10.2113/gsjfr.25.1.75
1074	Maire, O., Duchêne, J.C., Grémare, A., Malyuga, V.S., Meysman, F.J.R., 2007. A comparison
1075	of sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during
1076	summertime and wintertime, with a comparison between two models of sediment
1077	reworking. Journal of Experimental Marine Biology and Ecology 343, 21-36.
1078	https://doi.org/10.1016/j.jembe.2006.10.052
1079	Maiti, K., Carroll, J., Benitez-Nelson, C.R., 2010. Sedimentation and particle dynamics in the
1080	seasonal ice zone of the Barents Sea. Journal of Marine Systems 79, 185-198.
1081	https://doi.org/10.1016/j.jmarsys.2009.09.001
1082	Mäkelä, A., Witte, U., Archambault, P., 2018. Short-term processing of ice algal- and

phytoplankton-derived carbon by Arctic benthic communities revealed through isotope
labelling experiments. Marine Ecology Progress Series 600, 21–39
1085 <u>https://doi.org/10.3354/meps12663</u>
Mazik, K., Elliott, M., 2000. The effects of chemical pollution on the bioturbation potential o
estuarine intertidal mudflats. Helgoland Marine Research 54, 99–109
1088 <u>https://doi.org/10.1007/s101520050008</u>
McClintic, M.A., DeMaster, D.J., Thomas, C.J., Smith, C.R., 2008. Testing the
FOODBANCS hypothesis: Seasonal variations in near-bottom particle flux
bioturbation intensity, and deposit feeding based on 234Th measurements. Deep Sea
Research Part II: Topical Studies in Oceanography 55, 2425–2437
https://doi.org/10.1016/j.dsr2.2008.06.003
McMeans, B.C., McCann, K.S., Humphries, M., Rooney, N., Fisk, A.T., 2015. Food Wel
Structure in Temporally-Forced Ecosystems. Trends in Ecology & Evolution 30, 662-
1096 672. https://doi.org/10.1016/j.tree.2015.09.001
McMinn, A., Pankowskii, A., Ashworth, C., Bhagooli, R., Ralph, P., Ryan, K., 2010. In situ
net primary productivity and photosynthesis of Antarctic sea ice algal, phytoplanktor
and benthic algal communities. Marine Biology 157, 1345–1356
https://doi.org/10.1007/s00227-010-1414-8
Mermillod-Blondin, F., Marie, S., Desrosiers, G., Long, B., de Montety, L., Michaud, E.
Stora, G., 2003. Assessment of the spatial variability of intertidal benthic communities
by axial tomodensitometry: importance of fine-scale heterogeneity. Journal o
Experimental Marine Biology and Ecology 287, 193–208
https://doi.org/10.1016/S0022-0981(02)00548-8
Meysman, F.J.R., Boudreau, B.P., Middelburg, J.J., 2003. New developments in the modelling
of bioturbation in aquatic sediments: relations between local, non-local, discrete and

1108	continuous models. Terramare 12, 91-93.
1109	Michaud E., 2006. Effet of the Functional ecology of Macoma balthica community (St
1110	Lawrence estuary, Quebec, Canada) on biogeochemical fluxes at the sediment-water
1111	interface and on sediment mixing. PhD Thesis. University of du Québec à Rimouski et
1112	Université de la Méditerranée, Aix-Marseille II, 237p.
1113	Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B., Stora, G., 2005. The
1114	functional group approach to bioturbation: The effects of biodiffusers and gallery-
1115	diffusers of the Macoma balthica community on sediment oxygen uptake. Journal of
1116	Experimental Marine Biology and Ecology 326, 77–88.
1117	https://doi.org/10.1016/j.jembe.2005.05.016
1118	Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B., Stora, G., 2006. The
1119	functional group approach to bioturbation: II. The effects of the Macoma balthica
1120	community on fluxes of nutrients and dissolved organic carbon across the sediment-
1121	water interface. Journal of Experimental Marine Biology and Ecology 337, 178-189.
1122	https://doi.org/10.1016/j.jembe.2006.06.025
1123	Montserrat, F., Van Colen, C., Provoost, P., Milla, M., Ponti, M., Van den Meersche, K.,
1124	Ysebaert, T., Herman, P.M.J., 2009. Sediment segregation by biodiffusing bivalves.
1125	Estuarine, Coastal and Shelf Science 83, 379–391.
1126	https://doi.org/10.1016/j.ecss.2009.04.010
1127	Morata, N., Michaud, E., Włodarska-Kowalczuk, M., 2015. Impact of early food input on the
1128	Arctic benthos activities during the polar night. Polar Biology 38, 99-114.
1129	https://doi.org/10.1007/s00300-013-1414-5
1130	Morata, N., Renaud, P.E., 2008. Sedimentary pigments in the western Barents Sea: A
1131	reflection of pelagic-benthic coupling? Deep Sea Research Part II: Topical Studies in
1132	Oceanography 55, 2381–2389. https://doi.org/10.1016/j.dsr2.2008.05.004

1133	Mulsow, S., Landrum, P., Robbins, J., 2002. Biological mixing responses to sublethal
1134	concentrations of DDT in sediments by Heteromastus filiformis using a 137Cs marker
1135	layer technique. Marine Ecology Progress Series 239, 181–191.
1136	https://doi.org/10.3354/meps239181
1137	Näkki, P., Setälä, O., Lehtiniemi, M., 2017. Bioturbation transports secondary microplastics to
1138	deeper layers in soft marine sediments of the northern Baltic Sea. Marine Pollution
1139	Bulletin 119, 255–261. https://doi.org/10.1016/j.marpolbul.2017.03.065
1140	Needham, H.R., Pilditch, C.A., Lohrer, A.M., Thrush, S.F., 2011. Context-Specific
1141	Bioturbation Mediates Changes to Ecosystem Functioning. Ecosystems 14, 1096–1109.
1142	https://doi.org/10.1007/s10021-011-9468-0
1143	Nogaro, G., Charles, F., de Mendonça, J.B., Mermillod-Blondin, F., Stora, G., François-
1144	Carcaillet, F., 2008. Food supply impacts sediment reworking by Nereis diversicolor.
1145	Hydrobiologia 598, 403–408. https://doi.org/10.1007/s10750-007-9135-9
1146	Olli, K., Wexels Riser, C., Wassmann, P., Ratkova, T., Arashkevich, E., Pasternak, A., 2002.
1147	Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the
1148	central Barents Sea. Journal of Marine Systems 38, 189–204.
1149	https://doi.org/10.1016/S0924-7963(02)00177-X
1150	Ouellette, D., Desrosiers, G., Gagne, J., Gilbert, F., Poggiale, J., Blier, P., Stora, G., 2004.
1151	Effects of temperature on in vitro sediment reworking processes by a gallery
1152	biodiffusor, the polychaete Neanthes virens. Marine Ecology Progress Series 266, 185-
1153	193. https://doi.org/10.3354/meps266185
1154	Ozhigin, V. K., Ingvaldsen, R. B., Loeng, H., Boitsov, V., Karsakov, A., 2011. Introduction to
1155	the Barents Sea. In The Barents Sea. Ecosystem, resources, management. Half a
1156	century of Russian-Norwegian cooperation, pp. 315-328. Ed. by T. Jakobsen, and V. K.
1157	Ozhigin, Tapir Academic Press, Trondheim.

1158	Pathirana, I., Knies, J., Felix, M., Mann, U., 2013. Towards an improved organic carbon
1159	budget for the Barents Sea shelf, marginal Arctic Ocean. Climate of the Past
1160	Discussions 9, 4939–4986. https://doi.org/10.5194/cpd-9-4939-2013
1161	Peeken, I., 2016. The Expedition PS92 of the Research Vessel POLARSTERN to the Arctic
1162	Ocean in 2015, Berichte zur Polar und Meeresforschung =Reports on polar and marine
1163	research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research 694,
1164	153 p. https://doi.org/10.2312/BzPM_0694_2016
1165	Petch, D.A., 1986. Selective deposit-feeding by Lumbrineris cf. latreilli (Polychaeta:
1166	Lumbrineridae), with a new method for assessing selectivity by deposit-feeding
1167	organisms. Marine Biology 93, 443-448.
1168	Piot, A., Nozais, C., Archambault, P., 2014. Meiofauna affect the macrobenthic biodiversity-
1169	ecosystem functioning relationship. Oikos 123, 203–213.
1170	https://doi.org/10.1111/j.1600-0706.2013.00631.x
1171	Queirós, A.M., Birchenough, S.N.R., Bremner, J., Godbold, J.A., Parker, R.E., Romero-
1172	Ramirez, A., Reiss, H., Solan, M., Somerfield, P.J., Van Colen, C., Van Hoey, G.,
1173	Widdicombe, S., 2013. A bioturbation classification of European marine infaunal
1174	invertebrates. Ecology and Evolution 3, 3958–3985. https://doi.org/10.1002/ece3.769
1175	Quintana, C.O., Tang, M., Kristensen, E., 2007. Simultaneous study of particle reworking,
1176	irrigation transport and reaction rates in sediment bioturbated by the polychaetes
1177	Heteromastus and Marenzelleria. Journal of Experimental Marine Biology and Ecology
1178	352, 392–406. https://doi.org/10.1016/j.jembe.2007.08.015
1179	Rasmussen, T.L., Thomsen, E., 2014. Brine formation in relation to climate changes and ice
1180	retreat during the last 15,000 years in Storfjorden, Svalbard, 76-78°N.
1181	Paleoceanography 29, 911–929. https://doi.org/10.1002/2014PA002643
1182	Renaud, P.E., Morata, N., Carroll, M.L., Denisenko, S.G., Reigstad, M., 2008. Pelagic-

1183	benthic coupling in the western Barents Sea: Processes and time scales. Deep Sea
1184	Research Part II: Topical Studies in Oceanography 55, 2372-2380.
1185	https://doi.org/10.1016/j.dsr2.2008.05.017
1186	Rosli, N., Leduc, D., Rowden, A.A., Clark, M.R., Probert, P.K., Berkenbusch, K., Neira, C.,
1187	2016. Differences in meiofauna communities with sediment depth are greater than
1188	habitat effects on the New Zealand continental margin: implications for vulnerability to
1189	anthropogenic disturbance. PeerJ 4, e2154. https://doi.org/10.7717/peerj.2154
1190	Rouse, G.W., Pleijel, F., 2001. Polychaetes. Oxford University Press, New York, 354 pp.
1191	Sakshaug, E., 2004. Primary and Secondary Production in the Arctic Seas. In: Stein R.,
1192	MacDonald R.W. (eds) The Organic Carbon Cycle in the Arctic Ocean. Springer,
1193	Berlin, Heidelberg.
1194	Sandnes, J., Forbes, T., Hansen, R., Sandnes, B., 2000. Influence of particle type and faunal
1195	activity on mixing of di(2-ethylhexyl)phthalate (DEHP) in natural sediments. Marine
1196	Ecology Progress Series. 197, 151–167.
1197	Shick, J.M., 1976. Physiological and behavioral responses to hypoxia and hydrogen sulfide in
1198	the infaunal asteroid Ctenodiscus crispatus. Marine Biology 37, 279-289.
1199	https://doi.org/10.1007/BF00387613
1200	Shields, M.A., Kedra, M., 2009. A deep burrowing sipunculan of ecological and geochemical
1201	importance. Deep Sea Research Part I: Oceanographic Research Papers 56, 2057-2064.
1202	https://doi.org/10.1016/j.dsr.2009.07.006
1203	Skarðhamar, J., Svendsen, H., 2010. Short-term hydrographic variability in a stratified Arctic
1204	fjord. Geological Society, London, Special Publications 344, 51-60.
1205	https://doi.org/10.1144/SP344.5
1206	Skogseth, R., Fer, I., Haugan, P.M., 2005. Dense-water production and overflow from an
1207	arctic coastal polynya in Storfjorden, in: Drange, H., Dokken, T., Furevik, T., Gerdes,

1208	R., Berger, W. (Eds.), Geophysical Monograph Series. American Geophysical Union,
1209	Washington, D. C., pp. 73–88. https://doi.org/10.1029/158GM07
1210	Smith, J.N., Schafer, C.T., 1984. Bioturbation processes in continental slope and rise
1211	sediments delineated by Pb-210, microfossil and textural indicators. Journal of Marine
1212	Research 42, 1117–1145. https://doi.org/10.1357/002224084788520738
1213	Smoła, Z.T., Tatarek, A., Wiktor, J.M., Wiktor, J.M.W., Kubiszyn, A., Węsławski, J.M., 2017.
1214	Primary producers and production in Hornsund and Kongsfjorden - comparison of two
1215	fjord systems. Polish Polar Research 38, 351–373. https://doi.org/10.1515/popore-
1216	<u>2017-0013</u>
1217	Soltwedel, T., Hasemann, C., Vedenin, A., Bergmann, M., Taylor, J., Krauß, F., 2019.
1218	Bioturbation rates in the deep Fram Strait: Results from in situ experiments at the arctic
1219	LTER observatory HAUSGARTEN. Journal of Experimental Marine Biology and
1220	Ecology 511, 1–9. https://doi.org/10.1016/j.jembe.2018.11.001
1221	Søreide, J.E., Falk-Petersen, S., Hegseth, E.N., Hop, H., Carroll, M.L., Hobson, K.A.,
1222	Blachowiak-Samolyk, K., 2008. Seasonal feeding strategies of Calanus in the high-
1223	Arctic Svalbard region. Deep Sea Research Part II: Topical Studies in Oceanography
1224	55, 2225–2244. https://doi.org/10.1016/j.dsr2.2008.05.024
1225	Søreide, J.E., Hop, H., Falk-Petersen, S., Hegseth, E.N., Carroll, M.L., 2006. Seasonal food
1226	web structures and sympagic-pelagic coupling in the European Arctic revealed by
1227	stable isotopes and a two-source food web model. Progress in Oceanography 71, 59-
1228	87. https://doi.org/10.1016/j.pocean.2006.06.001
1229	Stead, R.A., Thompson, R.J., 2006. The influence of an intermittent food supply on the
1230	feeding behaviour of Yoldia hyperborea (Bivalvia: Nuculanidae). Journal of
1231	Experimental Marine Biology and Ecology 332, 37–48.
1232	https://doi.org/10.1016/j.jembe.2005.11.001

1233	Svendsen, H., Beszczynska-Møller, A., Hagen, J.O., Lefauconnier, B., Tverberg, V., Gerland,
1234	S., Ørb, J.B., Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, JG.,
1235	Dallmann, W., 2002. The physical environment of Kongsfjorden-Krossfjorden, an
1236	Arctic fjord system in Svalbard. Polar Research 21, 133-166.
1237	Tamelander, T., Reigstad, M., Hop, H., Carroll, M.L., Wassmann, P., 2008. Pelagic and
1238	sympagic contribution of organic matter to zooplankton and vertical export in the
1239	Barents Sea marginal ice zone. Deep Sea Research Part II: Topical Studies in
1240	Oceanography 55, 2330–2339. https://doi.org/10.1016/j.dsr2.2008.05.019
1241	Tamelander, T., Renaud, P.E., Hop, H., Carroll, M.L., Ambrose Jr., W.G., Hobson, K.A., 2006.
1242	Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea
1243	Marginal Ice Zone revealed by stable carbon and nitrogen isotope measurements.
1244	Marine Ecology Progress Series 310, 33–46.
1245	Teal, L., Bulling, M., Parker, E., Solan, M., 2008. Global patterns of bioturbation intensity
1246	and mixed depth of marine soft sediments. Aquatic Biology 2, 207-218.
1247	https://doi.org/10.3354/ab00052
1248	Van Leeuwe, M.A., Tedesco, L., Arrigo, K.R., Assmy, P., Campbell, K., Meiners, K.M.,
1249	Rintala, JM., Selz, V., Thomas, D.N., Stefels, J., Deming, J.W., 2018. Microalgal
1250	community structure and primary production in Arctic and Antarctic sea ice: A
1251	synthesis. Elem Sci Anth 6. https://doi.org/10.1525/elementa.267
1252	Vanreusel, A., Fonseca, G., Danovaro, R., Da Silva, M.C., Esteves, A.M., Ferrero, T., Gad, G.,
1253	Galtsova, V., Gambi, C., Da Fonsêca Genevois, V., Ingels, J., Ingole, B., Lampadariou,
1254	N., Merckx, B., Miljutin, D., Miljutina, M., Muthumbi, A., Netto, S., Portnova, D.,
1255	Radziejewska, T., Raes, M., Tchesunov, A., Vanaverbeke, J., Van Gaever, S., Venekey,
1256	V., Bezerra, T.N., Flint, H., Copley, J., Pape, E., Zeppilli, D., Martinez, P.A., Galeron,
1257	J., 2010. The contribution of deep-sea macrohabitat heterogeneity to global nematode

1258	diversity: Nematode diversity and habitat heterogeneity. Marine Ecology 31, 6-20.
1259	https://doi.org/10.1111/j.1439-0485.2009.00352.x
1260	Venturini, N., Pires-Vanin, A.M.S., Salhi, M., Bessonart, M., Muniz, P., 2011. Polychaete
1261	response to fresh food supply at organically enriched coastal sites: Repercussion on
1262	bioturbation potential and trophic structure. Journal of Marine Systems 88, 526-541.
1263	https://doi.org/10.1016/j.jmarsys.2011.07.002
1264	Viitasalo-Frösén, S., Laine, A., Lehtiniemi, M., 2009. Habitat modification mediated by
1265	motile surface stirrers versus semi-motile burrowers: potential for a positive feedback
1266	mechanism in a eutrophied ecosystem. Marine Ecology Progress Series 376, 21-32.
1267	https://doi.org/10.3354/meps07788
1268	Vinje, T., 2001. Anomalies and Trends of Sea-Ice Extent and Atmospheric Circulation in the
1269	Nordic Seas during the Period 1864–1998. Journal of Climate 14, 255–267.
1270	https://doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2
1271	Vinje, T., 2009. Sea-ice. In Ecosystem Barents Sea, pp. 65-82. Ed. by E. Sakshaug, K.
1272	Kovacs, and G. Johnsen. Tapir Academic Press, Trondheim, Norway. 62-82 p.
1273	Winkelmann, D., Knies, J., 2005. Recent distribution and accumulation of organic carbon on
1274	the continental margin west off Spitsbergen. Geochemistry, Geophysics, Geosystems 6,
1275	1-22. https://doi.org/10.1029/2005GC000916
1276	Włodarska-Kowalczuk, M., Pawłowska, J., Zajączkowski, M., 2013. Do foraminifera mirror
1277	diversity and distribution patterns of macrobenthic fauna in an Arctic glacial fjord?
1278	Marine Micropaleontology 103, 30–39.
1279	https://doi.org/10.1016/j.marmicro.2013.07.002
1280	Włodarska-Kowalczuk, M., Pearson, T.H., 2004. Soft-bottom macrobenthic faunal
1281	associations and factors affecting species distributions in an Arctic glacial fjord
1282	(Kongsfjord, Spitsbergen). Polar Biology 27, 155–167. https://doi.org/10.1007/s00300-

1283	<u>003-0568-y</u>
1284	WoRMS Editorial Board, 2019. World Register of Marine Species. Available from
1285	http://www.marinespecies.org at VLIZ. Accessed 2019-05-08.
1286	https://doi.org/10.14284/170
1287	Zaborska, A., Pempkowiak, J., Papucci, C., 2006. Some Sediment Characteristics and
1288	Sedimentation Rates in an Arctic Fjord (Kongsfjorden, Svalbard). Ann. Environ. Prot.,
1289	8, 79-96.
1290	Zanzerl, H., Dufour, S.C., 2017. The burrowing behavior of symbiotic and asymbiotic
1291	thyasirid bivalves. Journal of Conchology 42, 299–308.
1292	
1293	Figures and tables:
1294	List of tables:
1295	Table 1. Main characteristics of the sampling stations.
1296	Table 2. Bottom water (BW) characteristics for each sampling station: C_{org} , N_{tot} , $\delta^{13}C$, $\delta^{15}N$ (in
1297	%) and C/N values (mean \pm SD, n=3).
1298	Table 3. Sediment variables for each sampling station: sediment type, C_{org} , N_{tot} , $\delta^{13}C$, $\delta^{15}N$,
1299	OM (in %), C/N, Chl a (µg DW g^{-1}) and Chl a /Phaeo values (mean \pm SD, n=no of cores).
1300	Table 4. Functional traits, relative density and biomass of the three dominant taxa for each
1301	sampling station. Class: P – Polychaeta, B – Bivalvia, An – Anthozoa, As – Asteroidea, O –
1302	Ophiuroidea, S – Sipunculidea. Mobility and feeding groups (M/F) are marked by codes:
1303	mobility type (D - Discretely mobile, M - Mobile, S - Sessile) and feeding type (car -
1304	carnivore, omn - omnivore, sub - subsurface feeder, sur - surface feeder, sus - suspension
1305	feeder). Burrowing depth (BT): 1 – surface burrowing, 2 – subsurface burrowing, 3 – deep
1306	burrowing. Tubes (T): "+" - I-shaped tube, "-" - no tube. Sediment mixing types (SMix):
1307	biodiffusor (B), upward conveyor (UC), gallery diffusor (GD), downward conveyor (DC).

1308 Table 5. PERMANOVA results for the multivariate descriptors of benthic communities with 1309 significant pair-wise comparisons results for different groups. 1310 Table 6. SIMPER analysis B/D ratio faunal percentage contribution to the average similarity 1311 for different sampling stations groups. Species that contributed more than 5% are listed. 1312 Table 7. Results of DistLM procedure for fitting environmental variables to the macofauna 1313 community data. %Var - percentage of explained variance; %Cum - cumulative percentage 1314 explained by the added variable. Significance level p < 0.05. Environmental factors: D -1315 depth, S – salinity, T – temperature, types of sediment (mud, sand, gravel), BW C_{org} – bottom water C_{org} , BW N_{tot} – bottom water N_{tot} , BW $\delta^{13}C$ – bottom water $\delta^{13}C$ BW, BW $\delta^{15}N$ – 1316 bottom water $\delta^{15}N$, BW C/N – bottom water C/N, Sed C_{org} – C_{org} concentration in sediment, 1317 Sed N_{tot} – sediment N_{tot} , Sed $\delta^{13}C$ – sediment $\delta^{13}C$, Sed $\delta^{15}N$ – sediment $\delta^{15}N$, Sed C/N – 1318 sediment C/N, SOM – sediment organic matter, Chl a – sediment Chlorophyll a and Chl 1319 1320 a/Phaeo – sediment Phaeopigments. Table 8. Spearman's rank correlation analyses among biological and physical parameters. 1321 1322 Significant values are marked in bold (p<0.05). 1323 1324 List of figures: 1325 Fig. 1. Geographical location of the study region (A) and (B) sampling locations during two 1326 cruises (AX – ARCEx, PS – TRANSSIZ) with two major currents surrounding Svalbard: WSC - West Spitsbergen Current, warm Atlantic waters (black) and the ESC - East 1327 1328 Spitsbergen Current, cold Arctic waters (gray) (after Svendsen et al., 2002). Fig. 2. Percentages of mobility and feeding groups at different sampling stations. Station ST/8 1329 marked with * was sampled in summer season. Functional traits codes: mobility type (D -1330 1331 Discretely mobile (yellow), M – Mobile (green), S – Sessile (blue)) and feeding type (car -

1332	carnivore, omn - omnivore, sub - subsurface feeder, sur - surface feeder, sus - suspension
1333	feeder).
1334	Fig. 3. PCO analysis for macrobenthic communities based on species biomass to density ratio,
1335	and the Bray-Curtis similarity among four sampling areas: A (Hornsund, Van Mijenfjorden);
1336	B (Storfjorden); C (Barents Sea shelf); D (northern Barents Sea and Nansen Basin).
1337	Significantly correlated species with the PCO coordinates (r>0. 5) are shown on the plot.
1338	Fig. 4. Mean density (ind./m $^{-2}$) (A) and biomass (g/m $^{-2}$) (B); \pm SE, n= no of cores (Table 1) at
1339	stations sampled in Van Mijenfjorden, Hornsund (group A); Storfjorden (group B); Barents
1340	Sea shelf (group C); northern Barents Sea and Nansen Basin (group D). Station ST/8 marked
1341	with * was sampled in summer season. Kruskal - Wallis results for differences between
1342	sampling sites are given; significant test results are marked with ** (p<0.05).
1343	Fig. 5. Distance-based Redundancy Analysis (dbRDA) plot of the DistLM model visualizing
1344	the relationships between the environmental parameters and the biomass/density ratio of
1345	species between four sampling areas: A (Hornsund, Van Mijenfjorden); B (Storfjorden); C
1346	(Barents Sea shelf); D (northern Barents Sea and Nansen Basin). Environmental variables
1347	with Pearson rank correlations with dbRDA axes > 0.5 are shown. Environmental factors: D $-$
1348	$depth,S-salinity,T-temperature,typesofsediment(mud,sand,gravel),BWC_{org}-bottom$
1349	$water~C_{org},~BW~N_{tot}-bottom~water~N_{tot},~BW~\delta^{15}N-bottom~water~\delta^{15}N,~BW~C/N-bottom$
1350	water C/N, Sed C_{org} – C_{org} concentration in sediment, Sed $\delta^{13}C$ – sediment $\delta^{13}C$, Sed C/N –
1351	sediment C/N, Chl a – sediment Chlorophyll a and Chl a/Phaeo – sediment Phaeopigments.
1352	Fig. 6. Mean bioturbation coefficients: Db - biodiffusion (cm $^{-2}$ y $^{-1}$) (A) and r - non-local (y $^{-1}$)
1353	(B); ± SE, n=no of cores (Table 1) at stations sampled in Van Mijenfjorden, Hornsund (group
1354	A); Storfjorden (group B); Barents Sea shelf (group C); northern Barents Sea and Nansen
1355	Basin (group D). Station ST/8 marked with * was sampled in summer season. Kruskal -

- Wallis results for differences between sampling sites are given; significant test results are
- 1357 marked with ** (p<0.05).

Appendix 1. Spearman's rank correlation analyses among physical and biogeochemical variables. Significant values are marked in bold (p<0.05).

	Depth	Salinity	Temperature	Gravel	Sand	Mud	BW Corg	BW Ntot	BW 8 ¹³ C	BW 8 ¹⁵ N	BW C/N	Sed Corg	Sed N _{tot}	Sed δ^{13} C	Sed δ^{15} N	Sed C/N	SOM	Chi a	Chl a/Phaeo
Depth	-	0.8	0.8	0.7	-0.2	-0.0	-0.1	0.3	0.1	-0.5	-0.6	-0.6	-0.3	0.4	-0.2	-0.5	-0.4	-0.2	-0.5
Salinity	0.8	-	0.7	0.3	-0.4	0.4	0.2	0.3	-0.0	-0.3	-0.3	-0.2	0.3	0.8	-0.1	-0.5	0.1	0.2	-0.3
Temperature	0.8	0.7	-	0.6	-0.3	-0.0	-0.0	0.1	-0.2	-0.2	-0.3	-0.3	-0.2	0.5	0.0	-0.3	-0.2	-0.1	-0.5
Gravel	0.7	0.3	0.6	-	-0.2	-0.0	-0.1	0.2	0.3	-0.5	-0.6	-0.7	-0.5	-0.0	-0.3	-0.5	-0.7	-0.4	-0.4
Sand	-0.2	-0.4	-0.3	-0.2	-	-0.9	-0.8	-0.7	-0.6	-0.1	0.2	-0.2	-0.5	-0.5	0.5	0.2	-0.2	-0.3	0.0
Mud	-0.0	0.4	-0.0	-0.0	-0.9	-	0.7	0.6	0.6	0.2	0.0	0.3	0.7	0.5	-0.4	-0.3	0.4	0.5	0.1
BW C _{org}	-0.1	0.2	-0.0	-0.1	-0.8	0.7	-	0.8	0.6	0.1	-0.2	0.4	0.4	0.4	-0.7	0.2	0.3	0.4	0.3
BW N _{tot}	0.3	0.3	0.1	0.2	-0.7	0.6	0.8	-	0.7	-0.4	-0.7	-0.1	0.1	0.4	-0.8	-0.1	0.1	0.4	0.4
BW δ^{13} C	0.1	-0.0	-0.2	0.3	-0.6	0.6	0.6	0.7	-	-0.1	-0.4	-0.1	0.1	-0.1	-0.5	-0.2	-0.1	0.0	0.1
$BW \; \delta^{15} N$	-0.5	-0.3	-0.2	-0.5	-0.1	0.2	0.1	-0.4	-0.1	-	0.8	0.8	0.5	-0.2	0.5	0.5	0.5	-0.2	-0.3
BW C/N	-0.6	-0.3	-0.3	-0.6	0.2	0.0	-0.2	-0.7	-0.4	0.8	-	0.7	0.5	-0.1	0.6	0.3	0.4	-0.0	-0.1
Sed C _{org}	-0.6	-0.2	-0.3	-0.7	-0.2	0.3	0.4	-0.1	-0.1	0.8	0.7	-	0.7	0.1	0.3	0.6	0.8	0.1	0.0
Sed N _{tot}	-0.3	0.3	-0.2	-0.5	-0.5	0.7	0.4	0.1	0.1	0.5	0.5	0.7	-	0.5	0.2	-0.1	0.8	0.5	0.0
Sed $\delta^{13}C$	0.4	0.8	0.5	-0.0	-0.5	0.5	0.4	0.4	-0.1	-0.2	-0.1	0.1	0.5	-	-0.2	-0.5	0.3	0.7	0.1
Sed $\delta^{15}N$	-0.2	-0.1	0.0	-0.3	0.5	-0.4	-0.7	-0.8	-0.5	0.5	0.6	0.3	0.2	-0.2	-	0.2	0.3	-0.4	-0.6
Sed C/N	-0.5	-0.5	-0.3	-0.5	0.2	-0.3	0.2	-0.1	-0.2	0.5	0.3	0.6	-0.1	-0.5	0.2	-	0.3	-0.4	0.0
SOM	-0.4	0.1	-0.2	-0.7	-0.2	0.4	0.3	0.1	-0.1	0.5	0.4	0.8	0.8	0.3	0.3	0.3	-	0.3	-0.0
Chl a	-0.2	0.2	-0.1	-0.4	-0.3	0.5	0.4	0.4	0.0	-0.2	-0.0	0.1	0.5	0.7	-0.4	-0.4	0.3	-	0.7
Chl a/Phaeo	-0.5	-0.3	-0.5	-0.4	0.0	0.1	0.3	0.4	0.1	-0.3	-0.1	0.0	0.0	0.1	-0.6	0.0	-0.0	0.7	_

1359

1358

- This is the first complex report on bioturbation in spring to summer transition conducted over a large depth gradient in the Arctic Ocean.
- Benthic community structure and related biodiffusion and non-local transport varied in Svalbard fjords, Barents Sea and Nansen Basin.
- Changes in environmental conditions, and related changes in quality and quantity of available organic matter, had impact on benthic communities and bioturbation.
- Large inputs of fresh OM to the seabed can trigger bioturbation activities.