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1 Introduction

This document provides supplementary material to our study on Baffin Bay hydrography and the
environmental constraints during a phytoplankton bloom at the retreating ice edge. It provides more
detail on some of the methods, but mostly shows more variables that may help the interested reader in
getting a better overview over the immense dataset the Green Edge campaign has produced. All data are
accessible at the Green Edge database (http://www.obs-vlfr.fr/proof/php/GREENEDGE/greenedge.
php).

1.1 Acknowledgments

This document was created as a Jupyter Lab notebook and exported to pdf partly using Chris Sewell’s
ipypublish template.

1.2 More overview maps

The following true color images are meant to provide more context for the campaign, especially with
regards to floe sizes and general impressions of the ice cover that are hard to capture in sea ice concentra-
tion charts. Surface chlorophyll-a and sea temperature show the phytoplankton growth and warming
trailing behind the retreating ice edge.

Figure 1.1: MODIS true color image from 26 April 2016. Markers show hydrographic stations.
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Figure 1.2: MODIS true color image from 1 June 2016. Markers show hydrographic stations.

Figure 1.3: MODIS true color image from 11 July 2016. Markers show hydrographic stations.
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Figure 1.4: Monthly averages of chlorophyll-a and sea surface temperature (SST) in Baffin Bay; the black
line shows the ice edge.
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2 Hydrography – Some additional figures

Some additional maps of various hydrographic properties, akin to Fig.~6 of the main paper.

Figure 2.1: Density Mixed Layer depth (m) (at the time of sampling). For completeness’ sake and to
make our results comparable with other studies, notably the study by Peralta-Ferriz and
Woodgate (2015) mentioned above and Oziel et al.’s companion paper (Oziel et al., 2018, this
issue), we here computed a mixed layer depth as the shallowest depth where potential
density exceeds the surface density by 0.1 kg m−3. Note, however, that this yields a density
mixed layer and is therefore extremely shallow under the conditions presented here.

Figure 2.2: Sea ice concentration (%) (at the time of sampling).
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Figure 2.3: Temperature max (◦C) (at the time of sampling).

Figure 2.4: Nitracline depth (m) (at the time of sampling).
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Figure 2.5: NO−3 conc. at surface (µM) (at the time of sampling).

Figure 2.6: Chl-a max. depth (m) (at the time of sampling).
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Figure 2.7: ∆ σθ (kg m−3) (at the time of sampling).

Figure 2.8: OWD: Open water days, ODS-IDU (at the time of sampling).
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Figure 2.9: ODS: Days of open water since ice retreat (at the time of sampling).

Figure 2.10: IDU: Days until ice retreat (at the time of sampling).
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Figure 2.11: TChl-a, vertically integrated (mg m−2) (at the time of sampling).

Figure 2.12: Isolume (z at 0.415 mol photons m−2 d−1) (at the time of sampling).
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Figure 2.13: NO−3 conc. at overturning depth (µM) (at the time of sampling).

Figure 2.14: T-S plot. The color scale represents Depth.
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Figure 2.15: T-S plot. The color scale represents the ANP tracer.

Figure 2.16: The depth of maximum N2 compared to (left) the equivalent mixed layer depth hBD, and
(right) a classical mixed layer depth defined by a 0.1 kg m−3 threshold. Solid black line: 1:1
relation.
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3 Sea Ice and Open Water Days

The “open water days” (OWD) parameter is defined as follows. First, we fix a time interval that captures
the full sea ice variability in the region of interest, say from a date T0 (here, taken to be doy 120, April
29) before the melt starts, to a later date Te when the ice extent has disappeared from the study area
(here, doy 210, July 28). We then define the number of “open water days since sea ice retreat” (ODS)
at a given location at time T0 < t < Te by simply summing the days where c < 15% since T0, and the
number of “Ice days until sea ice retreat” (IDU) by summing the days where c > 15% until Te. Then
OWD≡ ODS−IDU. Because the ice edge retreats steadily (does not meander much or go back and forth),
there are very few sampling stations where IDU and ODS are both non-zero (Fig. S3.1). This was one of
the reasons to conduct the experiment there in the first place and facilitates the analysis of the ice edge
bloom. An instance where IDU and ODS are both non-zero will occur whenever a location has open
water one day, but later on becomes ice covered again before the end of the melt season.

The steady retreat of the ice edge is demonstrated mainly by two facts: 1) ODS (Open water Days Since
ice retreat) vs. IDU (Ice cover Days Until ice retreat) did not have much overlap where both are non-zero,
and 2) there is a good correlation between distance from the ice edge and OWD (Open Water Days,
defined as OWD ≡ ODS−IDU)

The plot immediately below also demonstrates that as a consequence, an alternative definition of
OWD, namely OWD=IDS when ice concentration is smaller than 15%, and OWD = −IDU when ice
concentration is larger than 15%, leads to largely identical values.

Figure 3.1: Left: Days until the ice retreats vs. days since the ice has retreated. Right: Comparison of two
different criteria to define the OWD variable.
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4 Light

4.1 Underwater light measurements using the C-OPS

The C-OPS is an oceanographic instrument composed of a surface reference downwelling irradiance
sensor, E0+

d (λ), as well as a set of two free-fall profiling radiometers (maximum depth of 125 m), namely
a downwelling irradiance one, Ed(z, λ), and either a upwelling irradiance one, Eu(z, λ), or an upwelling
radiance one, Lu(z, λ, φ). Here, z denotes the depth, λ the wavelength and φ the viewing angle (nadir
in our case). These sensors record their respective radiometric quantity along nineteen wavelengths,
spread in the visible spectrum, from 320 nm to 875 nm. An ice floe version of this instrument, the
so-called IcePRO, has been designed for deployment through an auger hole in an ice floe. (Once the
IcePRO has been deployed in the hole, fresh snow is shoveled back in the hole before the profiling starts.
This prevents any artificial bright spot just above the sensors.) Both versions have been used during
the Green Edge project. The sensors have been factory calibrated before the cruise (January 2015 and
February 2016), and a custom R code following the well recognized methodology originally published
by Smith and Baker (1984) has been used to process the data. Furthermore, a PAR was computed from
all the available multispectral irradiances values (in and above surface, downwelling and upwelling),
following

PARd(z) =
∫ λ=700 nm

λ=400 nm
Ed(z, λ)

λ

hc
dλ

Here, h is Planck’s constant and c is the speed of light in vacuum, and the summing is performed using a
trapezoidal method.

When the data acquisition was performed in open water, the in-water radiometric quantities were
extrapolated until z = 0−, i.e. up to just under the surface, and when the data acquisition was performed
under the ice, no extrapolation was performed, and the shallowest valid data point has been kept.

From the derived PARd(z) and PAR0+ quantities, a transmission profile was computed as

t(z) =
PARd(z)
PAR0+

This transmission profile includes the transmission loss due to the snow/sea ice layer, plus any water
layer being between surface sensor and the profiling sensor when it is at the depth z.

For no C-OPS station was it the case that it was both 1) sampled on ice and 2) AMSR2 indicated
ice concentrations below 80%, indicating a good match between in-situ sampling conditions and ice
concentrations inferred by AMSR2.
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Figure 4.1: The 0.415 mol photons m−2 d−1 isolume plotted against the 1 % PAR level, a common
definition of the euphotic zone depth. The slope as determined by a linear regression is not
significantly different from one.

Figure 4.2: The combined ice+snow transmittance where available; empty circles mean that
measurements were not done from the ice. Estimated from C-OPS measurements as the ratio
between downwelling PAR irradiance directly under sea ice and the simultaneously
measured incoming above-surface PAR.
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Figure 4.3: Isolumes compared between the 0.1 and the 0.415 mol photons m−2 d−1 light levels.

Figure 4.4: PAR irradiance averaged over the equivalent mixed layer depth hBD.
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4.2 Above-surface PAR irradiance

Figure 4.5: Scatterplot for the Amundsen cruise and a period of 3h prior to sampling (left),
model/measurement ratio sorted by sea ice concentration (center), and boxplot of the
model/measurement ratio sorted by five sea ice concentration categories (right)
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5 “Arctic” vs. “Atlantic” domains

The fuzzy c-means clustering algorithm (Ross, 2010) (implemented in python’s skfuzzy library(scikit-
image team)) assigns a membership value ∈[0,1] to each data point. All data points, characterized by a
number of properties, are sorted into a pre-defined number of clusters (here, two).

Consequently, based on a few select properties, each hydrographic station is assigned a value between 0
and 1, where 0 and 1 themselves correspond to exclusive membership in either cluster, and values in
between represent the statistical uncertainty in the attribution (fuzziness).

The following properties were included, centered and normalized: (1) maximum temperature in the
AW layer, (2) salinity at the estimated convection depth, and (3) ANP at 20~m depth, which summarize
the strength of Atlantic inflow and the resulting hydrography and nutrient composition. The clustering
reproduced as expected the longitudinal gradient present in the majority of all variables.

Figure 5.1: Salinity, temperature, and ANP tracer averaged in bins 0 < 0.1 < 0.9 < 1 of the clustering
coefficient.
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6 Winter overturning depth and the associated pre-bloom
nutrient inventory

Figure 6.1: Left: Freezing point deviation plotted against salinity, split by hydrographic domain. For
individual profiles, see Figs. S6.2 and S6.3. Right: Nitrate concentrations against salinity split
by hydrographic domain. Although somewhat skewed because surface nitrate consumption
had progressed more in the Atlantic than the Arctic domain, it shows how winter
overturning to more saline layers gives access to more pre-bloom nitrate.

Figure 6.2: Temperature-salinity diagram showing detected temperature minima (black) in the "Arctic"
domain.
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Figure 6.3: Temperature-salinity diagram showing detected minima (black) in the "Atlantic" domain.

Figure 6.4: Winter surface concentration of nitrate taken as nitrate concentration at the estimated winter
overturning salinity, plotted against the number of open water days. Note that in the
easternmost stations (high OWD values), phytoplankton growth may have decreased nitrate
concentrations at the winter overturning depth, and there winter surface concentrations may
be more in the 10 µM range.
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Figure 6.5: The chl-a maximum stayed below the nitracline at most stations.
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7 Pacific and Atlantic water masses as separated by the
phosphorus-nitrogen signature

Figure 7.1: Nitrate vs phosphate, also showing regression relations by Jones et al. (1998).
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8 Chlorophyll-a

Integrating only over the full HPLC profile will underestimate integrated chl-a whenever the last HPLC
value did not cover the entire fluorescence profile. In other words, integrating the calibrated chl-a
fluorescence profile until the depth where fluorescence reaches 1% of its maximum value will yield a
somewhat larger value.

The following two figures demonstrate that uniformly integrating HPLC-determined total chlorophyll-a
to a depth of 80 m misses little overall biomass.

Figure 8.1: Vertical profiles of total chlorophyll-a as measured by HPLC, showing that very little biomass
is lost by uniformly integrating from 0 to 80 m depth.
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Figure 8.2: Underestimation of total chlorophyll by integration of HPLC-determined profiles to 80 m, vs.
closing them using CTD/rosette-based fluorescence sensor. Left panel: Two exemplary
profiles of HPLC-determined total chlorophyll, and the corresponding CTD fluorescence
sonde output (bias removed and smoothed using a 5-point running median filter followed by
a 7-point running mean filter). The horizontal dashed black line marks the depth of the
deepest TChla measurement while the dashed grey line marks the depth where only 1% of
the maximum value of the Chla profile remains. Right panel: The underestimation of
vertically integrated total chl-a by only integrating the HPLC profile, compared to integrating
the complete fluorescence profile, as a function of open water days (OWD). The differences
are small, which is why we used the simple vertical integration of HPLC total chl-a in this
study. The underestimation is then given by the difference between the rosette chl-a
fluorescence integrated down to the maximum HPLC sampling depth, and the rosette chl-a
fluorescence integrated down to the 1% fluorescence level.
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