

## Supplementary Material

1 SUPPLEMENTARY DATA

| Table S1. Si and trace metal | concentrations in high resolution | pore water samples. | No measurements were made | where data are not available. |
|------------------------------|-----------------------------------|---------------------|---------------------------|-------------------------------|
|                              | 0                                 | 1 1                 |                           |                               |

|         | Denth    | Ge           | Si     | Ge/Si    | Fe       | Mn     |
|---------|----------|--------------|--------|----------|----------|--------|
| Core    | cm       | pmol/L       | µmol/L | umol/mol | µmol/L   | nmol/L |
| MC-1D   | 1        | 380          | 249    | 1.53     | 63       | 57     |
| MC-1D   | 3        | 696          | 324    | 2.15     | 106      | 90     |
| MC-1D   | 3        | 707          | 308    | 2.30     | 128      | 100    |
| MC-1D   | 5        | 471          | 352    | 1.34     | 118      | 124    |
| MC-1D   | 7        | 356          | 367    | 0.97     | 40       | 161    |
| MC-1D   | 9        | 379          | 391    | 0.97     | 87       | 183    |
| MC-1D   | 13       | 203          | 390    | 0.52     | 55       | 202    |
| MC-1D   | 13       | 249          | 422    | 0.59     | 60       | 228    |
| MC-1D   | 16       | 262          | 452    | 0.58     | 59       | 265    |
| MC-1D   | 24       | 199          | 462    | 0.43     | 53       | 375    |
| MC-1D   | 29       | 180          | 492    | 0.37     | 39       | 321    |
| MC-1D   | 33       | 181          | 517    | 0.35     | 39       | 398    |
|         |          |              |        |          |          |        |
| MC-2A   | 0        | 531          | 297    | 1.78     | 88       | 36     |
| MC-2A   | 1        | 730          | 340    | 2.15     | 156      | 54     |
| MC-2A   | 2        | 1177         | 363    | 3.24     | 159      | 75     |
| MC-2A   | 4        | 432          | 353    | 1.22     | 118      | 226    |
| MC-2A   | 8        | 380          | 356    | 1.07     | 83       | 123    |
| MC-2A   | 15       | 214          | 440    | 0.49     | 72       | 217    |
| MC-2A   | 29       | 117          | 517    | 0.23     | 43       | 354    |
| MC-2A   | 33       | 111          | 525    | 0.21     |          |        |
|         | 0        | 226          | 220    | 1 46     | 10       | 2      |
|         | 0        | 614          | 200    | 1.40     | 10       | 70     |
|         | 5        | 251          | 270    | 0.05     | 112      | 110    |
|         | 5        | 206          | 370    | 0.95     | 01       | 113    |
|         | 10       | 200          | 469    | 0.72     | 04       | 222    |
| MC-2D   | 20       | 200          | 400    | 0.37     | 94<br>62 | 223    |
| NIC-2D  | 20       | 171          | 457    | 0.37     | 03       | 200    |
| MC-3D   | 1        | 859          | 273    | 3.15     | 128      | 66     |
| MC-3D   | 2        | 695          | 320    | 2.17     | 117      | 83     |
| MC-3D   | 2        | 556          | 282    | 1.97     | 97       | 102    |
| MC-3D   | 15       | 540          | 451    | 1.20     | 77       | 259    |
| MC-3D   | 22       | 196          | 447    | 0.44     | 38       | 250    |
| MC-3D   | 30       |              | 464    |          | 46       | 619    |
| MC-3D   | 35       | 139          | 508    | 0.27     | 29       | 374    |
| MC-5C-1 | 1        | 518          | 309    | 1 67     | 1        | 0      |
| MC-5C-1 | 2        | 531          | 514    | 1.07     | 261      | 175    |
| MC-5C-1 | 4        | 522          | 546    | 0.96     | 201      | 352    |
| MC-5C-1 | 8        | 446          | 463    | 0.96     | 306      | 321    |
| MC-5C-1 | 13       | 315          | 426    | 0.30     | 79       | 218    |
| MC-5C-1 | 10       | 252          | 420    | 0.74     | 67       | 258    |
| MC-5C-1 | 23       | 177          | 460    | 0.38     | 51       | 200    |
| MC-5C-1 | 23       | 120          | 400    | 0.38     | 30       | 230    |
| MC-5C-2 | 21<br>15 | 120          |        | 0.27     | 50       | 210    |
| MC-5C-2 | 6.5      | -+ 13<br>525 |        |          |          |        |
| MC-5C-2 | 1/5      | 2/1          |        |          |          |        |
| MC-5C-2 | 25.5     | 130          |        |          |          |        |
| MC-5C-2 | 34.5     | 89           |        |          |          |        |

| Table S2.  | Ammonia concentrations in high resolution pore water samples and overlying water. Cores MC-1B, MC-2B, and MC-4B are distinct from corr | es |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|----|
| analyzed f | or Ge and Si, but were collected alongside the cores discussed above.                                                                  |    |

| Core  | Depth,<br>cm | NH <sub>3</sub> , | Core  | Depth,<br>cm | NH <sub>3</sub> , |
|-------|--------------|-------------------|-------|--------------|-------------------|
| MC-1B | 0.5          | 24                | MC-1B |              | 8                 |
| MC-1B | 2.5          | 51                | MC-2B | OL W         | 8                 |
| MC-1B | 4.5          | 78                | MC-4B | OLW          | 24                |
| MC-1B | 6.5          | 93                | -     |              |                   |
| MC-1B | 8.5          | 120               | MC-2A | 0            | 44                |
| MC-1B | 12.5         | 158               | MC-2A | 1            | 37                |
| MC-1B | 16           | 187               | MC-2A | 2            | 33                |
| MC-1B | 20.5         | 217               | MC-2A | 3            | 59                |
| MC-1B | 27           | 276               | MC-2A | 4            | 62                |
|       |              |                   | MC-2A | 5            | 83                |
| MC-2B | 0.5          | 29                | MC-2A | 7            | 102               |
| MC-2B | 3.5          | 63                | MC-2A | 8            | 97                |
| MC-2B | 5.5          | 116               | MC-2A | 9            | 127               |
| MC-2B | 10.5         | 136               | MC-2A | 10           | 123               |
| MC-2B | 15.5         | 176               | MC-2A | 11           | 160               |
| MC-2B | 20.5         | 203               | MC-2A | 12           | 137               |
| MC-2B | 25.5         | 238               | MC-2A | 14           | 169               |
| MC-2B | 30.5         | 263               | MC-2A | 15           | 172               |
| MC-2B | 36           | 302               | MC-2A | 17           | 209               |
| MC-2B | 42.5         | 337               | MC-2A | 20           | 234               |
|       |              |                   | MC-2A | 24           | 261               |
| MC-4B | 0.5          | 17                | MC-2A | 27           | 264               |
| MC-4B | 3.5          | 57                | MC-2A | 29           | 274               |
| MC-4B | 6.5          | 86                | MC-2A | 30           | 294               |
| MC-4B | 9.5          | 139               | MC-2A | 33           | 297               |
| MC-4B | 15.5         | 201               |       |              |                   |
| MC-4B | 18.5         | 222               | MC-4B | 34           | 339               |
| MC-4B | 22.5         | 273               | MC-4B | 40           | 379               |
| MC-4B | 28.5         | 299               | MC-4B | 43           | 430               |

 Table S3.
 Sulfate concentrations in seawater, high resolution pore water samples, and overlying water. Measurement uncertainty is 4 %.

| Sampla               | Depth, | SO <sub>4</sub> , |
|----------------------|--------|-------------------|
| Sample               | m      | mmol/L            |
| SPOT SSW             | 0      | 27.4              |
| SPOT 885m            | 885    | 27.2              |
| MC-5B-1 (Core inc.)  | 885    | 26.4              |
| 5B-Final (Core inc.) | 885    | 26.5              |
| MC-2C OLW            | 885    | 29.6              |
| MC-2D OLW            | 885    | 27.2              |
| MC-5C OLW            | 885    | 27.8              |
| MC-1D OLW            | 885    | 26.5              |
| MC-2A OLW            | 885    | 26.1              |
| Coro                 | Depth, | SO <sub>4</sub> , |
| COIE                 | cm     | mmol/L            |
| MC-1D                | 1      | 26.5              |
| MC-1D                | 3      | 24.4              |
| MC-1D                | 5      | 26.1              |
| MC-1D                | 9      | 26.3              |
| MC-1D                | 16     | 26.0              |
| MC-1D                | 24     | 24.5              |
| MC-1D                | 29     | 24.9              |
| MC-1D                | 33     | 23.5              |
|                      |        |                   |
| MC-2A                | 0      | 26.1              |
| MC-2A                | 4      | 25.6              |
| MC-2A                | 12     | 25.4              |
| MC-2A                | 20     | 24.7              |
| MC-2A                | 29     | 25.4              |

Table S4. Ge and Si concentrations during San Pedro Basin core incubations.

|              |         | Corr. time. | Ge.    | Si.    | Ge/Si.   |
|--------------|---------|-------------|--------|--------|----------|
| Sample       | Time, h | d/m *       | pmol/L | µmol/L | µmol/mol |
| MC-3A        |         |             |        | -      |          |
| 1            | 0       | 0           | 73     | 103    | 0.71     |
| 2            | 8.0     | 2.8         | 83     | 112    | 0.74     |
| 3            | 17.5    | 6.2         | 86     | 125    | 0.69     |
| 4            | 40.3    | 14.5        | 104    | 130    | 0.80     |
| 5            | 64.3    | 23.5        | 116    | 145    | 0.81     |
| Final        | 65.8    | 24.1        | 118    | 142    | 0.83     |
| <u>MC-5D</u> |         |             |        |        |          |
| 1            | 0       | 0           | 83     | 105    | 0.79     |
| 2            | 6.0     | 1.8         | 86     | 108    | 0.79     |
| 3            | 23.4    | 7.2         | 88     | 115    | 0.76     |
| 4            | 45.4    | 14.2        | 87     | 120    | 0.73     |
| 5            | 68.4    | 21.7        | 94     | 127    | 0.74     |
| Final        | 68.4    | 21.7        | 98     | 129    | 0.76     |
| <u>MC-4C</u> |         |             |        |        |          |
| 1            | 0       | 0           | 83     | 106    | 0.78     |
| 2            | 3.3     | 1.0         | 83     | 110    | 0.75     |
| 3            | 3.5     | 1.1         | 85     | 109    | 0.77     |
| 4            | 23.0    | 7.3         | 88     | 120    | 0.74     |
| 5            | 46.0    | 14.9        | 87     | 122    | 0.71     |
| 6            | 69.8    | 22.9        | 92     | 130    | 0.71     |
| 7            | 92.8    | 30.8        | 101    | 136    | 0.74     |
| 8            | 118.5   | 39.8        | 102    | 143    | 0.72     |
| 9            | 140.5   | 47.6        | 109    | 147    | 0.74     |
| <u>MC-5A</u> |         |             |        |        |          |
| 1            | 0       | 0           | 81     | 105    | 0.77     |
| 2            | 5.5     | 1.9         | 82     | 112    | 0.73     |
| 3            | 23.0    | 8.1         | 84     | 120    | 0.70     |
| 4            | 45.0    | 16.1        | 84     | 125    | 0.67     |
| 5            | 70.0    | 25.3        | 87     | 134    | 0.65     |
| 6            | 93.0    | 34.0        | 83     | 140    | 0.60     |
| 7            | 117.5   | 43.4        | 86     | 147    | 0.58     |
| 8            | 139.5   | 52.1        | 85     | 155    | 0.55     |
| <u>MC-5B</u> |         |             |        |        |          |
| 1            | 0       | 0           | 74     | 104    | 0.71     |
| 2            | 5.5     | 1.5         | 74     | 108    | 0.69     |
| 3            | 23.0    | 6.4         | 69     | 114    | 0.61     |
| 4            | 45.0    | 12.6        | 78     | 120    | 0.66     |
| 5            | 70.0    | 19.9        | 78     | 126    | 0.62     |
| 6            | 93.0    | 26.8        | 86     | 131    | 0.65     |
| 7            | 117.5   | 34.2        | 84     | 139    | 0.61     |
| 8            | 139.0   | 40.8        | 87     | 142    | 0.61     |

\* Calculated as sum of incubation time in days divided by height of the overlying incubated water column in m at a given time. The height of the water column decreases throughout the incubation due to water removal by sampling. This calculation corrects for the effect of decreasing water volume, and is used to calculate the Ge and Si fluxes reported in Table 3 of main text.

Table S5. Ge and Si concentrations during Santa Monica Basin core incubations. No measurements were made where data are not available.

| Sample       | Time, h | Corr. time,<br>d/m * | Ge,<br>pmol/L | Si,<br>µmol/L | Ge/Si,<br>µmol/mol |
|--------------|---------|----------------------|---------------|---------------|--------------------|
| D3-S2        |         |                      | -             | -             | -                  |
| 1            | 11.5    | 4.9                  | 96            | 126           | 0.76               |
| 2            | 24.6    | 10.6                 | 104           | 131           | 0.79               |
| 3            | 31.2    | 13.6                 | 107           | 133           | 0.80               |
| 4            | 49.7    | 22.2                 | 114           | 140           | 0.81               |
| 5            | 119.2   | 56.0                 | 145           | 154           | 0.94               |
| <u>D4-S1</u> |         |                      |               |               |                    |
| 1            | 9.8     | 3.5                  | 95            | 129           | 0.74               |
| 2            | 22.7    | 8.3                  |               | 134           |                    |
| 3            | 29.6    | 10.9                 | 105           | 137           | 0.76               |
| 4            | 48.5    | 18.3                 |               | 143           |                    |
| 5            | 118.4   | 46.4                 | 147           | 165           | 0.89               |
| <u>D4-S4</u> |         |                      |               |               |                    |
| 1            | 9.8     | 4.4                  | 99            | 129           | 0.76               |
| 2            | 22.8    | 10.5                 |               | 135           |                    |
| 3            | 29.6    | 13.9                 | 102           | 138           | 0.74               |
| 4            | 48.5    | 23.4                 |               | 146           |                    |
| 5            | 118.2   | 59.7                 | 147           | 170           | 0.86               |
| <u>D5-S1</u> |         |                      |               |               |                    |
| 1            | 8.5     | 2.9                  | 91            | 131           | 0.70               |
| 2            | 21.6    | 7.4                  |               | 136           |                    |
| 3            | 28.3    | 9.8                  | 96            | 138           | 0.69               |
| 4            | 46.8    | 16.6                 |               | 139           |                    |
| 5            | 116.9   | 42.9                 | 151           | 189           | 0.80               |
| <u>D5-S4</u> |         |                      |               |               |                    |
| 1            | 8.6     | 2.4                  | 88            | 131           | 0.67               |
| 2            | 23.0    | 6.4                  |               | 134           |                    |
| 3            | 28.3    | 8.0                  | 90            | 136           | 0.66               |
| 4            | 46.9    | 13.5                 |               | 145           |                    |
| 5            | 116.8   | 34.6                 | 116           | 163           | 0.71               |

\* Calculated as sum of incubation time in days divided by height of the overlying incubated water column in m at a given time. The height of the water column decreases throughout the incubation due to water removal by sampling. This calculation corrects for the effect of decreasing water volume, and is used to calculate the Ge and Si fluxes reported in Table 3 of main text.

## SUPPLEMENTARY TABLES AND FIGURES 2

## 2.1 **Tables**

Table S6. Core incubation model input parameters.

| Parameter                                                 | Range       | PDF     | Source |
|-----------------------------------------------------------|-------------|---------|--------|
| F <sub>lith</sub> (nmol m <sup>-2</sup> d <sup>-1</sup> ) | 0.70 ± 0.26 | normal  | 1      |
| Ge/Si <sub>bSi</sub> (µmol/mol)                           | 0.70 ± 0.10 | normal  | 2      |
| δ <sup>74</sup> Ge <sub>initial</sub> (‰)                 | 3.06 ± 0.17 | normal  | 3      |
| δ <sup>74</sup> Ge <sub>bSi</sub> (‰)                     | 3.28 ± 0.52 | normal  | 4      |
| δ <sup>74</sup> Ge <sub>lith</sub> (‰)                    | 0.58 ± 0.21 | normal  | 5      |
| δ <sup>74</sup> Ge <sub>pw</sub> (‰)                      | 2.13 ± 0.25 | normal  | 6      |
| $\Delta^{74}\text{Ge}_{\text{FeOx-diss}}$ (‰)             | -4.61.6     | uniform | 7      |
| $\Delta^{74}\text{Ge}_{\text{auth-diss}}$ (‰)             | -0.3 - 0.3  | uniform | 8      |

(1) Calculated from FeOx flux reported by Leslie et al. (1990) and UCC Ge/Fe ratio (Rudnick & Gao, 2014) - see supp. text; (2) Baronas et al. (2016); (3) Mean of all measured pre-incubation overlying water values (Table 1); (4) Mean of meaured seawater values (Table 1); (5) Rouxel & Luais (2017); (6) Mean of all pore water values below 5 cm depth (incl. the single SMB measurement); (7) Pokrovsky et al. (2014); (8) Based on the negligible  $\delta^{74}$ Ge<sub>pw</sub> gradient in SPB sediments (Fig. 1)

Table S7. Core incubation model results for San Pedro and Santa Monica Basin cores. Values are reported as median with 25-75th percentiles in parentheses.

|                                                             | San Pedro Basin      |                      |                    |                     |                    |                    | Santa Monica Basin |                     |
|-------------------------------------------------------------|----------------------|----------------------|--------------------|---------------------|--------------------|--------------------|--------------------|---------------------|
| Core                                                        | MC-3A                | MC-5D                | MC-4C              | MC-5A               | MC-5B              | D3S2               | D4S4               | D5S1                |
| n <sub>initial</sub> (nmol)                                 | 62 (59 - 66)         | 81 (77 - 85)         | 82 (78 - 86)       | 69 (65 - 73)        | 80 (77 - 84)       | 67 (63 - 72)       | 60 (55 - 65)       | 73 (69 - 78)        |
| n <sub>inc</sub> (nmol)                                     | 34 (32 - 36)         | 8.1 (7.5 - 8.6)      | 20 (19 - 22)       | 1.01 (0.94 - 1.07)  | 17 (16 - 18)       | 18 (17 - 19)       | 17 (16 - 18)       | 30 (28 - 32)        |
| f <sub>lith</sub>                                           | 0.39 (0.35 - 0.42)   | 0.49 (0.45 - 0.53)   | 0.56 (0.52 - 0.6)  | 0.57 (0.53 - 0.6)   | 0.55 (0.51 - 0.59) | 0.65 (0.62 - 0.69) | 0.57 (0.53 - 0.61) | 0.4 (0.37 - 0.44)   |
| f <sub>bSi</sub>                                            | 0.61 (0.58 - 0.65)   | 0.51 (0.47 - 0.55)   | 0.44 (0.4 - 0.48)  | 0.43 (0.4 - 0.47)   | 0.45 (0.41 - 0.49) | 0.35 (0.31 - 0.38) | 0.43 (0.39 - 0.47) | 0.6 (0.56 - 0.63)   |
| f <sub>auth</sub>                                           | -0.81 (-1.320.43)    | -0.22 (-0.440.09)    | -0.2 (-0.370.08)   | -0.23 (-0.430.1)    | -0.16 (-0.310.07)  | -0.11 (-0.220.05)  | -0.1 (-0.20.04)    | -0.19 (-0.360.08)   |
| f <sub>FeOx</sub>                                           | 0.8 (0.41 - 1.32)    | -0.48 (-0.610.26)    | -0.38 (-0.50.2)    | -0.75 (-0.880.55)   | -0.48 (-0.580.33)  | 0 (-0.12 - 0.16)   | -0.17 (-0.270.04)  | 0.07 (-0.07 - 0.25) |
| f <sub>released</sub>                                       | 0.98 (0.89 - 1.08)   | 0.29 (0.26 - 0.32)   | 0.41 (0.37 - 0.46) | 0.02 (0.02 - 0.02)  | 0.34 (0.31 - 0.38) | 0.86 (0.77 - 0.97) | 0.71 (0.63 - 0.79) | 0.85 (0.77 - 0.93)  |
| F <sub>bSi</sub> (nmol m <sup>−2</sup> d <sup>−1</sup> )    | 1.11 (1.02 – 1.21)   | 0.71 (0.65 - 0.76)   | 0.53 (0.49 - 0.57) | 0.52 (0.48 - 0.57)  | 0.55 (0.51 - 0.6)  | 0.35 (0.33 - 0.38) | 0.51 (0.47 - 0.55) | 1.02 (0.94 - 1.1)   |
| F <sub>supply</sub> (nmol m <sup>-2</sup> d <sup>-1</sup> ) | 1.81 (1.69 - 1.94)   | 1.39 (1.29 - 1.5)    | 1.21 (1.11 - 1.31) | 1.2 (1.11 – 1.3)    | 1.23 (1.13 - 1.33) | 1.03 (0.94 - 1.12) | 1.19 (1.09 - 1.29) | 1.71 (1.6 – 1.84)   |
| F <sub>auth</sub> (nmol m <sup>-2</sup> d <sup>-1</sup> )   | -1.46 (-2.380.78)    | -0.31 (-0.610.13)    | -0.24 (-0.450.1)   | -0.28 (-0.520.12)   | -0.2 (-0.390.09)   | -0.12 (-0.230.05)  | -0.12 (-0.240.05)  | -0.33 (-0.620.14)   |
| F <sub>FeOx</sub> (nmol m <sup>-2</sup> d <sup>-1</sup> )   | 1.43 (0.74 - 2.35)   | -0.65 (-0.850.35)    | -0.45 (-0.620.24)  | -0.88 (-1.060.64)   | -0.58 (-0.730.39)  | 0 (-0.13 - 0.15)   | -0.2 (-0.330.04)   | 0.11 (-0.12 - 0.41) |
| F <sub>inc</sub> (nmol m <sup>-2</sup> d <sup>-1</sup> )    | 1.77 (1.65 - 1.89)   | 0.41 (0.38 - 0.43)   | 0.5 (0.46 - 0.53)  | 0.02 (0.02 - 0.03)  | 0.42 (0.4 - 0.45)  | 0.89 (0.83 - 0.95) | 0.84 (0.78 - 0.9)  | 1.45 (1.36 - 1.55)  |
| δ <sup>74</sup> Ge <sub>supply</sub> (‰)                    | 2.24 (2.09 - 2.39)   | 1.98 (1.85 – 2.13)   | 1.79 (1.66 - 1.92) | 1.78 (1.65 - 1.92)  | 1.83 (1.7 - 1.97)  | 1.54 (1.42 - 1.66) | 1.79 (1.66 - 1.92) | 2.21 (2.07 - 2.36)  |
| δ <sup>74</sup> Ge <sub>FeOx</sub> (‰)                      | -0.85 (-1.60.11)     | -0.42 (-1.02 - 0.01) | -0.73 (-1.350.26)  | -0.47 (-0.860.15)   | -0.47 (-0.920.12)  | -1.29 (-2.080.64)  | -0.69 (-1.390.2)   | -0.72 (-1.490.03)   |
| ∆ <sup>74</sup> Ge <sub>FeOx-diss</sub> (‰)                 | -3.1 (-3.852.35)     | -2.39 (-3.011.95)    | -2.51 (-3.152.02)  | -2.23 (-2.651.9)    | -2.27 (-2.761.91)  | -2.83 (-3.642.17)  | -2.46 (-3.21.97)   | -2.94 (-3.722.24)   |
| δ <sup>74</sup> Ge <sub>inc</sub> (‰)                       | -0.16 (-1.41 - 0.92) | 3.08 (1.37 - 4.67)   | 1.54 (0.66 - 2.38) | 27.2 (13 - 41.46) * | 2.76 (1.98 - 3.52) | 1.09 (0.67 - 1.4)  | 1.7 (1.27 – 2.09)  | 1.78 (1.33 - 2.16)  |

ue highly uncertain and likely inacurrate due to the extremely low Ge incubation flux (Finc) for this core. This value is therefore excluded from the summary table and figures in the main text

**Table S8.** Input parameters used to calculate  $\delta^{74}Ge_{shelf-PW}$ , the average global isotope composition of dissolved Ge in continental margin pore waters.

| Parameter                                                                         | Symbol                        | Value        | Units                   | Source                       |
|-----------------------------------------------------------------------------------|-------------------------------|--------------|-------------------------|------------------------------|
| Ge concentration in riverine sediments                                            | [Ge] <sub>UCC</sub>           | 1.4 ± 0.2    | ppm                     | Rudnick & Gao (2014)         |
| Dissolved riverine Ge flux                                                        | $FGe^{riv}_{diss}$            | 3.2 ± 1.2    | Mmol/y                  | Baronas et al. (2017)        |
| Fraction Ge released during continental weathering taken up into secondary phases | 1- f <sub>diss</sub> Ge       | 90-99%       |                         | Baronas et al. (2018)        |
| Ge isotope composition of riverine sediments                                      | $\delta^{74}Ge_{\text{lith}}$ | 0.58 ± 0.21‰ |                         | Rouxel & Luais (2017)        |
| bSi dissolving in global continental margin sediments                             | FSi <sup>bSi</sup> shelf      | 12.7-83.7    | Tmol/y                  | Treguer & De La Rocha (2013) |
| Detrital rain to the seafloor (San Pedro<br>Basin)                                | F <sup>detrital</sup> SPB     | 350 ± 30     | mg/(m <sup>2</sup> d)   | Collins et al. (2011)        |
| Reducible Fe(OH) <sub>3</sub> flux (San Pedro Basin)                              | F <sup>FeOx</sup> SPB         | 26           | µmol/(m <sup>2</sup> d) | Leslie et al. (1990)         |
| Ge/Si ratio of biogenic silica                                                    | Ge/Si <sub>bSi</sub>          | 0.5-0.7      | µmol/mol                | Rouxel & Luais (2017)        |
| Ge isotope composition of biogenic silica                                         | $\delta^{74}Ge_{bSi}$         | 2.5 - 3.5‰   |                         | Guillermic et al. (2017)     |

## 2.2 Figures



Figure S1. Summary of core incubation model results, showing the probability distributions of calculated values for each core.