Primer sequences and PCR protocol

DraI/Sh73

DNA amplifications were performed in a TechneTC-Plus Thermal Cycler. The PCRs were carried out in a total volume of 9 μ l using 1 μ l of 1/10 diluted DNA template, 0.2mMdNTP, 1.5mMMgCl₂, 0.32 μ M of each primer (see below), 1 U GoTaqG2 (Hotstart, Promega). The PCR conditions were: initial denaturing 3 min at 95°C; 40 cycles of 20 sec at 95°C, 30 sec at 56°C and 10 sec at 72°C; followed by final extension period of 2 min at 72°C. PCR products were visualized on 2.5% agarose gel.

COI and ITS

DNA amplifications were performed in a TechneTC-Plus Thermal Cycler. The PCRs were carried out in a total volume of 25 μ l using 2 μ l of 1/10 diluted DNA template, 0.2mMdNTP, 1.5mMMgCl₂, 0.32 μ M of each primer (see below), 1 U GoTaqG2 (Hotstart, Promega). The PCR conditions were: initial denaturing 3 min at 95°C; 40 cycles of 30 sec at 95°C, 40 sec at 50°C and 1 min 10 sec at 72°C; followed by final extension period of 2 min at 72°C. PCR products were visualized on 2.5% agarose gel. PCR products were sent to Genoscreen (France) for sequencing in both directions using dilutions of the original PCR primers.

	Sequence	Reference
Forward	CCTTGGTCACGTGATTTTC	[1]
Reverse	TCACAACGATACGACCAAC	[1]
	Sequence	Reference
Forward	TCCTCCGCTTATTGATATGC	[2]
Reverse	GGAAGTAAAAGTCGTAACAAG	[2]
	Sequence	Reference
Forward	TCTTTRGATCATAAGCG	[3]
Reverse	TAATGCATMGGAAAAAAACA	[3]
	Reverse Forward Reverse	Forward CCTTGGTCACGTGATTTTC Reverse TCACAACGATACGACCAAC Sequence Forward TCCTCCGCTTATTGATATGC Reverse GGAAGTAAAAGTCGTAACAAG Sequence Forward TCTTTRGATCATAAGCG

- 1. Abbasi, I., et al., Differentiating Schistosoma haematobium from related animal schistosomes by PCR amplifying inter-repeat sequences flanking newly selected repeated sequences. Am J Trop Med Hyg, 2012. **87**(6): p. 1059-64.
- 2. Barber, K.E., G.M. Mkoji, and E.S. Loker, *PCR-RFLP analysis of the ITS2 region to identify Schistosoma haematobium and S. bovis from Kenya*. Am J Trop Med Hyg, 2000. **62**(4): p. 434-40.

2	Lockyon A.F. of al. The phylogogy of the Cabiatasamertides has a three services ""
3.	Lockyer, A.E., et al., <i>The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858.</i> Parasitology, 2003. 126 (Pt 3): p. 203-24.