FN Archimer Export Format PT J TI Comparing temperature data sources for use in species distribution models: From in‐situ logging to remote sensing BT AF Lembrechts, Jonas J. Lenoir, Jonathan Roth, Nina Hattab, Tarek Milbau, Ann Haider, Sylvia Pellissier, Loïc Pauchard, Aníbal Ratier Backes, Amanda Dimarco, Romina D. Nuñez, Martin A. Aalto, Juha Nijs, Ivan Bates, Amanda AS 1:1;2:2;3:3;4:2,4;5:5;6:6,7;7:8,9;8:10,11;9:6,7;10:12;11:13;12:14,15;13:1;14:; FF 1:;2:;3:;4:PDG-RBE-MARBEC-LHM;5:;6:;7:;8:;9:;10:;11:;12:;13:;14:; C1 Centre of Excellence Plants and Ecosystems (PLECO) University of Antwerp Wilrijk, Belgium UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, UMR 7058 CNRS‐UPJV) Université de Picardie Jules Verne Amiens Cedex 1 ,France Biogeography and Geomatics, Department of Physical Geography Stockholm University Stockholm ,Sweden MARBEC (IRD, Ifremer, Université de Montpellier, CNRS) Sète Cedex ,France Research Institute for Nature and Forest – INBO Brussels, Belgium Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Halle (Saale) ,Germany German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig, Germany Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science ETH Zürich Zürich ,Switzerland Swiss Federal Research Institute WSL Birmensdorf ,Switzerland Laboratorio de Invasiones Biológicas, Facultad de Ciencias Forestales Universidad de Concepción Concepción ,Chile Institute of Ecology and Biodiversity (IEB) Santiago, Chile Grupo de Ecología de Poblaciones de Insectos INTA‐CONICET Bariloche, Argentina Grupo de Ecología de Invasiones INIBIOMA, CONICET‐Universidad Nacional del Comahue Bariloche ,Argentina The Department of Geosciences and Geography FIN‐00014 University of Helsinki Helsinki, Finland Finnish Meteorological Institute Helsinki, Finland C2 UNIV ANTWERP, BELGIUM UNIV PICARDIE JULES VERNE, FRANCE UNIV STOCKHOLM, SWEDEN IFREMER, FRANCE INBO, BELGIUM UNIV HALLE WITTENBERG, GERMANY IDIV, GERMANY ETH ZURICH, SWITZERLAND SWISS FED RES INST WSL, SWITZERLAND UNIV CONCEPCION, CHILE UNIV CHILE, CHILE INTA, ARGENTINA CONICET, ARGENTINA UNIV HELSINKI, FINLAND FINNISH METEOROL INST, FINLAND SI SETE SE PDG-RBE-MARBEC-LHM UM MARBEC IN WOS Ifremer UMR copubli-france copubli-europe copubli-univ-france copubli-int-hors-europe copubli-sud IF 6.446 TC 90 UR https://archimer.ifremer.fr/doc/00508/61954/85718.pdf LA English DT Article DE ;bioclimatic envelope modelling;bioclimatic variables;climate change;growth forms;land surface temperature;microclimate;mountains;soil temperature;species distribution modelling AB Aim Although species distribution models (SDMs) traditionally link species occurrences to free‐air temperature data at coarse spatio‐temporal resolution, the distribution of organisms might instead be driven by temperatures more proximal to their habitats. Several solutions are currently available, such as downscaled or interpolated coarse‐grained free‐air temperatures, satellite‐measured land surface temperatures (LST) or in‐situ‐measured soil temperatures. A comprehensive comparison of temperature data sources and their performance in SDMs is, however, currently lacking. Location Northern Scandinavia. Time period 1970–2017. Major taxa studied Higher plants. Methods We evaluated different sources of temperature data (WorldClim, CHELSA, MODIS, E‐OBS, topoclimate and soil temperature from miniature data loggers), differing in spatial resolution (from 1″ to 0.1°), measurement focus (free‐air, ground‐surface or soil temperature) and temporal extent (year‐long versus long‐term averages), and used them to fit SDMs for 50 plant species with different growth forms in a high‐latitudinal mountain region. Results Differences between these temperature data sources originating from measurement focus and temporal extent overshadow the effects of temporal climatic differences and spatio‐temporal resolution, with elevational lapse rates ranging from −0.6°C per 100 m for long‐term free‐air temperature data to −0.2°C per 100 m for in‐situ soil temperatures. Most importantly, we found that the performance of the temperature data in SDMs depended on the growth forms of species. The use of in‐situ soil temperatures improved the explanatory power of our SDMs (R2 on average +16%), especially for forbs and graminoids (R2 +24 and +21% on average, respectively) compared with the other data sources. Main conclusions We suggest that future studies using SDMs should use the temperature dataset that best reflects the ecology of the species, rather than automatically using coarse‐grained data from WorldClim or CHELSA. PY 2019 PD NOV SO Global Ecology And Biogeography SN 1466-822X PU Wiley VL 28 IS 11 UT 000477231600001 BP 1578 EP 1596 DI 10.1111/geb.12974 ID 61954 ER EF