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Abstract The “signal-to-noise paradox” implies that climate models are better at predicting
observations than themselves. Here, it is shown that this apparent paradox is expected when the relative
level of predicted signal is weaker in models than in observations. In the presence of model error, the
paradox only occurs in the range of small signal-to-noise ratio of the model, occurring for even smaller
model signal-to-noise ratio with increasing model error. This paradox is always a signature of the
prediction unreliability. Applying this concept to noninitialized simulations of Surface Atmospheric
Temperature (SAT) of the CMIP5 database, under the assumption that prediction skill is associated with
persistence, shows that global mean SAT is marginally less persistent in models than in observations.
However, at a local scale, the analysis suggests that ∼70% of the globe exhibits the signal-to-noise paradox
for local SAT interannual forecasts and that the Signal-to-Noise Paradox occurs especially over the oceans.

1. Introduction
There is an increasing demand for accurate and reliable climate predictions on time scales from seasons to
decades. This has led to the development of operational climate prediction systems with multiple models
(Meehl et al., 2015), which allow for skillful seasonal predictions of hydrology (Svensson et al., 2015), energy
supply (Clark et al., 2017), transport system disruption (Palin et al., 2016), and hurricane activity (Smith
et al., 2010).

However with these promising results came along a somehow unexpected property: Climate prediction sys-
tems can be more accurate at predicting the real climate than predicting themselves (Kumar et al., 2014).
Scaife et al. (2014) found that seasonal North Atlantic Oscillation predictions are inclined to develop this
apparent paradox. Eade et al. (2014) also described this paradox for interannual predictions of Surface Atmo-
spheric Temperature (SAT), mean sea level pressure, and precipitation in decadal predictions from DePreSys
(Decadal Prediction System from the UK MetOffice, Smith et al., 2007). Similarly, Dunstone et al. (2016)
verified its existence in interannual predictions of the North Atlantic Oscillation index. This behavior has
been interpreted as a higher level of unpredictable components being present in the model than in observa-
tions (Siegert et al., 2016). Using an independent operational prediction system (PROCAST), Sévellec and
Drijfhout (2018) observed the same property in interannual predictions of global-mean SAT. This discrep-
ancy between model and real world prediction capability has been named the signal-to-noise paradox (see
review by Scaife & Smith, 2018, for further details). To explain the paradox, a range of hypotheses has
been put forward, such as the nonstationarity and the sampling uncertainty of predictions (Weisheimer
et al., 2019).

2. Idealized Statistical Model
2.1. Definition and Prediction Accuracy Metrics
In this study we rationalize this behavior using an idealized statistical model. For that we consider a stochas-
tic model for pseudo-observations (o) and model variables (mi, where i denotes the index of ensemble
members). Both have strictly identical statistics (following a centered and normal distribution with a stan-
dard deviation of 1), so no difference can be drawn from their statistical behavior (Figure 1), which avoids
trivial conclusions regarding the signal-to-noise paradox (Boer et al., 2019). The pseudo-observations are
split in two components: a predictable part (p) and a noise part (no). The model is also split in two com-
ponents: A predictable part and a noise part (ni, which differs for all model ensemble members). The
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Figure 1. Model statistics. (a) Time series of pseudo-observations composed from a predictable component (gray) and
noise. (b) Time series of the model ensemble composed from a predictable component (gray) and noise, the former
having a systematic error (black). (c) Probability density function for (black) systematic error and (gray) predictable
components, as well as (red) pseudo-observations and (blue) the model ensemble members. By construction all
ensemble members and the pseudo-observations have strictly identical statistics (regardless of the level of systematic
model error or predictable components). To get accurate statistics 50,000 time iterations and 4,000 members for the
ensemble were used.

predictable part of the model is composed of two parts: a part common with the pseudo-observations (p) and
a systematic model error (e, which is common to all model ensemble members). All parts (p, e, no, and ni)
consist of centered, normally distributed random variables. The pseudo-observations and model time series
read as follows:

o(t) = Ao
(
𝛼op(t) + no(t)

)
, (1)

mi(t) = Am
[
𝛼mAp (𝛽e(t) + p(t)) + ni(t)

]
, (2)

respectively, where t is time; Ao, Am, and Ap are the amplitudes of the pseudo-observations, model simula-
tions, and predictable component of the model simulations, respectively, so that their variance is 1; 𝛼o and
𝛼m are the signal-to-noise ratios (SNRs) of pseudo-observations and model simulations, respectively; and
𝛽 is the ratio of systematic model error within the predictable component of the model simulations. With
these definitions we explicitly choose an error which scales with the signal (through coefficient 𝛼0 or 𝛼m).
This allows for a direct test on the importance of the SNR. Note that the addition of an arbitrary model error
will have no impact on our analyses and results. The arbitrary error can be decomposed into a component
scaling with the signal and a constant systematic bias. The latter has no net effect because of the linearity of
(2) and of the measures of prediction skill (which only deal with anomaly/variations, as described below).
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To the contrary, it is worthwhile acknowledging that this argument does not hold for typical short-term
predictions which deal with variations in which the signal has a nonzero mean. For such predictions, the
analysis presented here would have to be adjusted.

This stochastic model closely follows the one suggested by Siegert et al. (2016) with a small but crucial mod-
ification. Here the difference between observations and model is explicitly incorporated into the predictable
component of the model rather than implicitly incorporated into the unpredictable component (i.e., noise)
of the observations. Hence, in our analysis the observations are split in two terms representing their pre-
dictable and unpredictable components by nature; whereas in Siegert et al. (2016), observations are split
in two terms representing components predictable and unpredictable by the model. It means that the Pre-
dictable Component defined by Eade et al. (2014) or Siegert et al. (2016) is actually the predicted component
(i.e., what is predictable by the model), which is by construction smaller or equal to the Predictable Com-
ponent by nature. (Indeed, what is predictable by the model is smaller or equal to what is predictable by
nature.) This modification that we introduce to our stochastic model allows us for a more fundamental
approach independent of model skills (i.e., independent of the model ability to accurately predict the full
predictable component).

We use two diagnostics to measure the accuracy of the prediction: the skill and the reliability. The former is
measured through the Coefficient of Determination or R2 score. In the context of predicting the observations
these read

R2
obs = 1 −

(
mi(t)

i
− o(t)

)2
t

o(t)2
t , (3a)

Reliabilityobs =

√√√√√√√√√√
⎡⎢⎢⎢⎢⎣

(
mi(t)

i
− o(t)

)2

(
mi(t)

i
− mi(t)

)2
i

⎤⎥⎥⎥⎥⎦

t

, (3b)

where the overline corresponds to an average over either time (with the t superscript) or ensemble members
(with i superscript). To obtain robust statistics we use 50,000 iterations for the time (t) together with a model
ensemble of 4,000 members (i).

The Coefficient of Determination measures the similarity between the pseudo-observations and the model
outputs (i.e., the predicted component). Multiplied by 100, it indicates the percentage of variance of the
observations explained by the prediction. This means that a Coefficient of Determination of 1 indicates a
perfect prediction, whereas a value of 0 indicates no prediction skill, equivalently a value of 0.5 indicates that
50% of the variance of the observations is represented by the prediction. On the other hand, the Reliability
measures the consistency between the error and the model standard deviation (i.e., whether the unpredicted
component is well captured by the ensemble member spread). Our formulation of Reliability follows the
definition of Ho et al. (2013) but is generalized for nonstationary statistics following Sévellec and Drijfhout
(2018). A value of 1 suggests a perfect consistency between the intrinsic prediction error (numerator) and the
assessed prediction uncertainty (measured by the ensemble member spread, denominator). Values different
from 1 indicate the unreliability of the prediction system. Hence, a value of 2 suggests that the prediction
uncertainty is twice as small as the prediction error (corresponding to an overconfident prediction system),
equivalently a value of 0.5 suggests that the prediction uncertainty is twice as big as the prediction error
(corresponding to an underconfident prediction system).

To test the ability of the model to predict its own simulations (i.e., perfect model approach), these diagnostics
are used after replacing the pseudo-observations by a certain model realization (a single member of the
ensemble). The choice of the realization does not matter since all the model ensemble members have the
same statistical behavior (and statistics have converged for our choice of time iterations).

2.2. Results
2.2.1. Impact of SNR on Prediction Accuracy
Using this statistical model, the prediction skills are diagnosed for a variety of SNR of both model and
pseudo-observations (𝛼m and 𝛼o, respectively). We first assume the absence of a systematic model error
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Figure 2. Prediction skill. (a, c, e) Coefficient of determination (the predicted component, R2) for a pseudo-observation prediction following (3a) as a function
of the predictable components of pseudo-observations and model (i.e., 𝛼o and 𝛼m, respectively), with systematic model error ratio (𝛽) of 0, 1, and 2. (b, d, f) Skill
difference between pseudo-observation prediction and perfect model approach, with systematic model error ratio (𝛽) of 0, 1, and 2. Positive values show a
parameter range leading to the signal-to-noise paradox (i.e., lower prediction skill in perfect model approach). The thick solid black lines show zero values,
black thin solid and dashed lines show higher and lower values than zero, respectively, with contour intervals of 0.2. The thick dashed red lines show the
reliability of 1, red thin solid and dashed lines show higher and lower reliability values than 1, respectively, with contour intervals of power of 10.
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between model and pseudo-observations (i.e., 𝛽 = 0), so they only differ through their relative level of
predictable signal. In this case, the predictable and predicted components are equal, hence we recover the
results from Siegert et al. (2016), which are summarized below for completeness.

Hence, within a perfect model approach, the skill, R2, increases as a function of the model SNR through a
𝛼2

m/(1 + 𝛼2
m) law (Figure S1a), implying that increasing the relative amplitude of the predictable component

leads to more skillful predictions. We also find that the reliability is always 1 (i.e., the model is perfectly
reliable to predict itself, Figure S1b in the supporting information), showing that the model behavior is
accurately sampled in a statistical sense.

For predicting pseudo-observations, the skill is always improved by increasing the pseudo-observation SNR,
regardless of the model SNR (Figure 2a). However, the skill decreases when increasing the model SNR
beyond that of the pseudo-observation SNR, which is clearly visible in case the pseudo-observation SNR < 1.
In such cases, the prediction can have absolutely no skill (R2 < 0).

The skill improvement when predicting pseudo-observations instead of the model itself can be expressed
as the difference between the two coefficients of determinations (R2

obs − R2
mod, Figure 2b). An improvement

of skill (R2
obs > R2

mod) always occurs when the pseudo-observation SNR is higher than the model SNR, as
suggested by Eade et al. (2014), because the Ratio of Predictable Components (RPC) is larger than 1. This
means that the signal-to-noise paradox is a natural outcome for models featuring a weaker signal in the
prediction than is present in the observations, as long as model and (pseudo-)observations share the same
predictable signal, that is, the model error is zero (𝛽 = 0).

To further understand the impact of the model SNR and the pseudo-observation SNR being different, we
computed the prediction reliability (red contours in Figure 2b). An important property emerges from this
diagnostic: a reliability of 1 can only be achieved if the RPC = 1. If the signal-to-noise paradox occurs
(RPC > 1), the reliability of the prediction is decreased. In this case, the prediction of the ensemble spread is
overdispersive (Figure 2b, Scaife et al., 2014; Siegert et al., 2016). This is a crucial result of the signal-to-noise
paradox since, by measuring the plausibility and consistency of the prediction error, the reliability is arguably
the most important property of a prediction system, in particular, if one wants to achieve probabilistic
predictions and to provide risk assessments (Weisheimer & Palmer, 2014).
2.2.2. Impact of Systematic Model Error
These results change in the presence of a systematic model error (Figures 2c–2f). When 𝛽 ≠ 0, the pre-
dictable components (𝛼o and 𝛼m for observations and model simulations, respectively) differ from the
predicted components.

The role of systematic model error is illustrated by setting 𝛽 in (2) to 1 and 2 (i.e., an error as big as and
twice as big as the predictable component in model and pseudo-observations, respectively). For these two
different levels of systematic model error, we find that the signal-to-noise paradox (R2

obs > R2
mod) is still

possible (Figures 2d and 2f), but the regime of its occurrence becomes smaller for larger model error. Sim-
ilar to the case without systematic model error, this occurs when the model SNR (𝛼m) is larger than the
pseudo-observation SNR (𝛼o), but now with a threshold (upper bound), limiting the paradox to cases of
low model SNR depending on the level of model error (Figures 2d and 2f). These upper bounds move to
lower model SNR and larger RPC for increasing model error. This threshold/upper-bound breaks down the
direct relation between the signal-to-noise paradox and the RPC. However, even in case of a strong model
error (twice as big as the predictable component) a regime exists where the signal-to-noise paradox occurs.
Since models always have some kind of systematic error (potentially significant), we can conclude that the
signal-to-noise paradox is both a signature of a relatively too low model SNR (i.e., high RPC) and a signature
that the model SNR is weak (i.e., <1).

The reliability of an erroneous model can still be 1, but this occurs only for RPC values larger than 1. In such
cases, while the condition (𝛼o > 𝛼m) applies, the prediction uncertainty and the model ensemble uncertainty
can become statistically equivalent. Like in the case without systematic model error, the most accurate reli-
ability is achieved when the signal-to-noise paradox is absent (Figures 2b, 2d, and 2f), regardless of the level
of model error. We also find that, even under a significant level of systematic model error, the occurrence of
the signal-to-noise paradox corresponds to an overdispersive regime in terms of ensemble spread prediction.
Hence, the conclusion that the signal-to-noise paradox is the signature of an underconfident and unreli-
able prediction system is robust to the level of model error, even in cases of a large error of two (twice the
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predictable component) where the prediction skill is very weak (Figure 2e). It also appears that, in the pres-
ence of model error, a perfect RPC (= 1) corresponds to an underdispersive ensembles and so to a signature
of an unreliable, overconfident prediction system.

3. Application to Climate Models
We now apply the framework of the signal-to-noise paradox to evaluate models from CMIP5 (5th Coupled
Model Intercomparison Project) archive through their long forced historical simulations. Such simulations
are not initialized with observations and not designed for interannual prediction. However, ideally they
still feature similar statistical behavior as the observations. The question we want to answer is whether the
signal-to-noise paradox occurs in models used in predictive systems. To this end, we compute the persistence
of their annual-mean SAT between 1881 and 2004 for global and local spatial averages. The persistence is
often used as the null-hypothesis of climate prediction and corresponds to assuming that the temperature
will not change. Hence, the rate of persistence is an underestimation of the predicted component, and we
will assume that the former can be used to approximate the latter to diagnose the signal-to-noise paradox (as
suggested by Strommen & Palmer, 2018). In reality, predictability and the role of the SNR in this will depend
on the state of the system. To investigate this in detail, one has to address initialized predictions, which is
beyond the scope of the present study. Here, our main focus is an illustration of the concept developed above
in coupled climate models. However, it is worth noting that the signal-to-noise paradox has been shown for
global mean SAT with two different state-of-the-art prediction systems (DePreSys and PROCAST from Eade
et al., 2014 and Sévellec & Drijfhout, 2018, respectively). Hence, we apply our analysis of persistence to 1-
to 5-year hindcast lags (beyond 5 years persistence in models and observations becomes unskillful).

As described in the previous section, the predicted component or prediction skill is estimated by the coef-
ficient of determination (R2), reformulated for real observations and CMIP5 models. Hence, the global and
local coefficients of determination for persistence read

R2
Global(𝜏) = 1 − [GMT(t + 𝜏) − GMT(t)]2

t

[
GMT(t) − GMT(t)

t]2
t , (4a)

R2
Local(x, 𝑦, 𝜏) = 1 − [SAT(x, 𝑦, t + 𝜏) − SAT(x, 𝑦, t)]2

t

[
SAT(x, 𝑦, t) − SAT(x, 𝑦, t)

t]2
t , (4b)

where GMT is the Global Mean Temperature corresponding to the global spatial averaged SAT, 𝜏 is the
hindcast lag set from 0 to 5 years with 1 year timesteps, x and y are the zonal and meridional coordinates,
t is time going from 1881 to 2004. Thus, these two formulae are applied to three sets of observations and
all members (with a minimum of three) of the nine climate models tested (see Appendix A: Method for
details). In particular, applying the diagnostic to the full range of model-ensemble members and a range of
observational reconstructions allows us to estimate the robustness of the results.

Focusing on the global scale and using (4a), we find that for GMT on average observations are more persis-
tent than models (Figure 3a), with a good consistency between the three sets of observations. However, the
model-observation difference becomes only significant after 2 years of prediction. Looking in more detail
at individual models (Figures 3b and 3c), it appears that in the three models (CCSM4, IPSL-CM5A-LR,
and MPI-ESM-LR), and to a lesser degree (FIO-ESM), persistence of GMT is comparable to observations.
This leaves five other models with a too weak persistence in GMT, suggesting these models exhibit the
signal-to-noise paradox for globally averaged SAT. This means that prediction systems for GMT based on
these models are potentially underconfident and so unreliable. This also implies a GMT spectrum that is
less red in these five models than in the observations. However, our analysis in general reveals a rather good
agreement between observations and climate models (Figure 3a, with a relative error of 34% on average),
suggesting a rather weak signal-to-noise paradox for GMT-predictions.

To characterize the signal-to-noise paradox on local scales we computed the skill of local persistence fol-
lowing (4b) for 𝜏 = 1, 2, and 5 years (Figure 4 and S2). Because the local persistence for 2 and 5 years is
extremely weak, we mainly concentrate on 𝜏 = 1 year. The results of the local coefficients of determina-
tion (R2

Local) are summarized by two indices. The first one is the Level of Agreement and measures for each

SÉVELLEC AND DRIJFHOUT SIGNAL-TO-NOISE PARADOX FOR INTERANNUAL PREDICTIONS 9036



Geophysical Research Letters 10.1029/2019GL083855

Figure 3. Global mean surface atmospheric temperature persistence in observations and CMIP5 models.
(a) Persistence hindcast skills, measured through the coefficient of determination (R2), averaged from 1 to 5-year
hindcast lags. Hindcasts are annual averages from 1881 to 2004. Individual model values are shown for (b) 1-year,
(c) 2-year, and (d) 5-year hindcast lags. Models with a lower prediction skill than observations are prone to exhibit the
signal-to-noise paradox. Models have been sorted from the closest to observations to farther away, over the 5-year time
lags tested.

climate model the relative area of the globe (in %) that has a local R2 within ±10% of each of the three obser-
vational ones. The second index is the level of paradox and measures for each climate model the relative
area of the globe (in %) that has a local R2 smaller than each of the three observational ones, suggesting the
occurrence of the signal-to-noise paradox.

The analysis shows a Level of Agreement that is extremely low, with a value below 10% for all nine models
(Figure 4m). Analyses made with each of the three different observational data sets show excellent consis-
tency. This suggests that climate models do not represent accurately the observational SAT persistence at
local scales (grid box size). Consistently, the Level of Paradox is extremely high (Figure 4n), with 60% to
80% of the globe exhibiting a weaker persistence in climate models than in observations (i.e., featuring the
signal-to-noise paradox). Again, this analysis is consistent between the three observational data sets. Hence,
the high level of paradox suggests that prediction systems based on these models would be mainly under-
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Figure 4. Local mean surface atmospheric temperature persistence in observations and CMIP5 models. Hindcasts are
annually averages from 1881 to 2004 with a lag of 1 year. Surface Atmospheric Temperature persistence hindcast skills
in (a–c) three observation data sets and (d–l) nine CMIP5 climate models (as the ensemble mean of member
persistence). Gray indicates insufficient data for observations and a higher standard deviation than mean for models.
(m) Level of Agreement (LoA) measures the relative area of the globe for which the models reproduces the observation
persistence skills within a relative error of ±10%. (n) Level of Paradox (LoP) measures the relative area of the globe
where the paradox occurs (i.e., weaker persistence skills in models than in observations). Red, purple, and blue indicate
model comparisons with the GISS, NOAA, and HadCRUT4 observation data sets, respectively. Models have been sorted
from the closest to observations to further away, over the 5-year time lags tested for GMT (following Figure 3).
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confident and so unreliable. The 1-year persistence in observations (Figures 4a–4c) is mainly localized over
the ocean. This suggests that the signal-to-noise paradox takes its source from the ocean rather than from
land where the spectrum is less red. This means that models are relatively too noisy over the ocean (not
enough variance on annual and longer time scales relative to shorter time scales) compared to observations
over the ocean and feature a too white spectrum in SAT. Because longer time scales in SAT over the ocean
dominantly arise from ocean variability, this suggests that ocean variability or ocean-to-atmosphere forcing
are too weak in models. On longer time scales, the absence of persistence in both observations and models
mechanically increases the level of agreement (models and observations having no-skill in more regions).
This leads to the trivial solution that with weaker prediction skill the level of paradox is also weaker (Figure
S3). However, there is still a nonnegligible level of paradox of between 30% and 70% of the globe at longer
time scales.

4. Summary and Conclusions
In this analysis, we first tested the signal-to-noise paradox through a simple stochastic statistical rep-
resentation of observations and model simulations. In particular, we set the statistical properties of
pseudo-observations and model outputs to be virtually indistinguishable. The analysis confirmed that, in
the absence of model error, the signal-to-noise paradox occurs when the relative part of the predictable
component is weaker in the model than in observations. However, when systematic error is explicitly
acknowledged, this relation breaks down. Indeed, a perfect Ratio of Predictable Components (RPC = 1)
leads to an unreliable, overconfident prediction system. It also restricts the signal-to-noise paradox to low
model SNR. Hence, the weaker predictable component in models relative to observations becomes a nec-
essary condition for the signal-to-noise paradox to occur but is no longer a sufficient condition anymore.
Indeed, the necessary and sufficient condition becomes that the relative part of the predicted component is
weaker in the model than in observations.

Hence, by adapting the RPC, we introduce the Ratio of Predicted Components: RΠC = ΠCobs/ΠCmod
(= Robs/Rmod), where ΠCobs and ΠCmod are the predicted components in observations and in the model,
respectively. This leads to the trivial result, since it is its definition, that RΠC > 1, and so ΠCobs > ΠCmod,
is a signature of the signal-to-noise paradox. Since ΠCmod = PCmod(i.e., a model can estimate its own pre-
dictability) and ΠCobs ≤PCobs (i.e., models underestimate the actual predictability of the observations), we
have RPC ≥ RΠC, so that RPC overestimates the actual occurrence of the signal-to-noise paradox. (Note that
in the absence of systematic model error the predictable component and predicted component are strictly
identical.) The accuracy of RΠC over RPC, demonstrates that the signal-to-noise paradox is a consequence
of a given prediction system, rather than a fundamental property of the observations and their predictability.
Our analysis also confirms the result from Eade et al. (2014) that the signal-to-noise paradox is a signature
of an underconfident (overdispersive) prediction system. Hence, predictions can still be accurate but need
a large number of members for the noisy unpredictable component to average out (Kumar, 2009). This also
means that the signal-to-noise paradox is a sign of the weak reliability of a prediction system and could be
used to estimate the system reliability.

Applying this new definition to previous work of Eade et al. (2014) on the North Atlantic Oscillation with
a seasonal prediction system (GloSea5), we have ΠCobs = 0.6 and RΠC=ΠCobs/ΠCmod = 2.3. This leads to
PCmod = ΠCmod = 0.26 and to 𝛼m =

√
R2

mod∕(1 − R2
mod) = 0.27. However it remains impossible to estimate

PCobs, but we know PCobs ≥ 0.6 (because PCobs ≥ ΠCobs), which leads to 𝛼o=
√

R2
obs∕(1 − R2

obs) ≥ 0.75.
From our analysis (Figure 2) this regime leads to the paradox for all tested errors and the conclusion that
GloSea5 is an underconfident prediction system (consistently with Eade et al., 2014; Scaife et al., 2014).

Despite this nice result, it is however important to note that our stochastic model and the subsequent analysis
of persistence only deal with anomalies. Hence, more common interannual prediction methods, which deal
with short-term variations in which the signal has a nonzero mean, have also other sources of error, which
were not considered here (e.g., systematic bias). To acknowledge these other types of error, the stochastic
model presented here will have to be adjusted. This will be part of a follow-up study.

To diagnose the signal-to-noise paradox in state-of-the-art climate models, we computed the SAT persistence
in nine climate models from CMIP5 and compared it to the SAT persistence in three observational data
sets. We find that CMIP5 models have an important tendency to underestimate SAT persistence, conducive
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to the signal-to-noise paradox. This is particularly true over oceanic regions and at smaller spatial scales.
This low level of persistence suggests that models can be improved by improving (enhancing) SAT-variance
at longer time scales, especially over the ocean. Such improvement would most likely also lead to more
reliable forecasts for the associated prediction systems. In light of this CMIP5 model analysis, investigating
the SNR through initialized predictions in a range of state-of-the-art prediction systems would be a sensible
and worthwhile effort.

The weaker persistence in models compared to the observations can be due to inaccurate observations
showing too much persistence. Indeed, the three sets of observations tested are reconstructed from sparse
and irregular in situ and remote observations. The reconstruction methods, which heavily depend on large
spatial and temporal scale correlations to fill gaps and to extrapolate/interpolate missing data, can lead
to overweighting slow variability and persistence in reconstructed observational products. This should be
investigated in the future.

Another hypothesis to explain the signal-to-noise paradox, especially visible over the ocean, is the lack of
SAT persistence in climate models. The ocean dynamics and ocean-atmosphere coupling are the most likely
sources of this lack of persistence and should be targeted to improve the agreement between climate models
and observations. To test the robustness of our analysis regarding the lack of persistence in SAT, we com-
puted the 10 main empirical orthogonal functions (EOFs) of SAT in observations and in CMIP5 models.
This analysis reveals that the models with more variance explained by their 10 main EOFs are less inclined
to exhibit signal-to-noise paradox (Figure S4), especially when focusing on longer time scales. This suggests
that the signal-to-noise paradox may come from the lack of coherent large-scale modes of SAT variability
in the models and from the models featuring too much small-scale variability. A too weak ocean feedback
onto the atmosphere has been found before (e.g., Haarsma et al., 2016) and since this aspect improves sig-
nificantly in higher resolution models (Foussard et al., 2019; Minobe et al., 2008; Su et al., 2018), the next
generation of climate models and their associated predictions system may suffer less from the signal-to-noise
paradox, becoming more reliable, and more useful for operational probabilistic forecasts. However, it should
be emphasized that the signal-to-noise paradox is not only due to a lack of model resolution and also points
to more fundamental shortcomings in terms of physical processes incomplete or inadequately represented
in those models.

Appendix A: Method
The model SAT was estimated from nine CMIP5 historical simulations restricted from 1881 to 2004
(Taylor et al., 2012). The nine models, with their number of members used in square brackets, are as
follows: “CCSM4” [6], “CNRM-CM5” [10], “CSIRO-Mk3-6-0” [10], “CanESM2” [5], “HadGEM2-ES” [5],
“IPSL-CM5A-LR” [6], “FIO-ESM” [3], “MPI-ESM-LR” [3], and “MIROC5” [5]. These models have been
selected from the CMIP5 database because they have at least three members and the required data fields.
We have set three ensemble members as the minimum for obtaining model result uncertainties and so to
test their robustness. For observations, the GISS, NOAA, and HadCRUT4 temperature data sets were used.
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