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Figure S1: Prediction Skill within a Perfect Model Approach. (a) Coefficient of Determi-
nation (R2) and (b) Reliability for predictions within a perfect model approach.
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Figure S2: Surface Atmospheric Temperature Persistence Hindcast skills in observa-

tions and CMIP5 models. Hindcasts are annually averages from 1881 to 2004 with delay of
1-yr (a-j1), 2-yr (a-j2), and 5-yr (a-j3). Gray indicates insufficient data for observations and higher
ensemble standard deviation than mean for models. Models have been sorted from the closest to
observations to further away, over the 5-yr time lags tested for GMT (following Fig. 3).
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Figure S3: Level of Agreement with observations and Level of Paradox for the Surface

Atmospheric Temperature in CMIP5 models. Hindcasts are annually averages from 1881
to 2004 with lag of 1-yr (a, d), 2-yr (b, e) and 5-yr (c, f). (a-c) Level of Agreement measured
the relative area of the globe who reproduced the observation persistence skills within a relative
error of ±10%. (d-f) Level of Paradox measured the relative area of the globe where the para-
dox occurred (i.e., signal in models is lower than in observations or weaker persistence skills in
models than observations). Red, purple, and blue indicate models comparison with GISS, NOAA,
and HadCRUT4 observation datasets, respectively. Models have been sorted from the closest to
observations to further away, over the 5-yr time lags tested for GMT (following Fig. 3).
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Figure S4: Variance Contribution of the 10 main Empirical Orthogonal Functions

of Surface Atmospheric Temperature for observations and CMIP5 models. Empirical
Orthogonal Functions have been computed for (a) annual, (b) 2-yr, and (c) 5-yr time averages from
1881 to 2004. Models have been sorted from the closest to observations to further away, over the
5-yr time lags tested for GMT (following Fig. 3).
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