

[Paleoceanography and Paleoclimatology]

Supporting Information for

Atmosphere-Ocean CO<sub>2</sub> Exchange Across the Last Deglaciation

from the Boron Isotope Proxy

Jun Shao<sup>1</sup>, Lowell D. Stott<sup>1</sup>, William R. Gray<sup>2, 3</sup>, Rosanna Greenop<sup>2</sup>, Ingo Pecher<sup>4</sup>, Helen L. Neil<sup>5</sup>, Richard B. Coffin<sup>6</sup>, and Bryan Davy<sup>7</sup>, James W.B. Rae<sup>2</sup>

<sup>1</sup> Department of Earth Science, University of Southern California, Los Angeles, USA

<sup>2</sup> School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK

<sup>3</sup> Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), Gif-sur-Yvette, France

<sup>4</sup> School of Environment, University of Auckland, Auckland, New Zealand

<sup>5</sup> Department of Marine Geology, the National Institute of Water and Atmospheric Research, New Zealand

<sup>6</sup> Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, USA

<sup>7</sup> Department of Marine Geosciences, GNS Science, New Zealand

Corresponding author: Jun Shao (junshao@usc.edu)

## Contents of this file

Figures S1 to S10 Table S1 to S7

## Additional Supporting Information (Files uploaded separately)

Captions for Figures S1 to S10

Captions for Tables S1 to S7



**Figure S1.** Meridional sections of  $\Delta pCO_2$  and  $CO_2$  flux reanalysis data at at 177°E (year 2008-2012) from biogeochemical-sea ice-ocean state estimate (B-SOSE) as part of the SOCCOM

project (Verdy & Mazloff, 2017). The black (red) lines are 5-year 'climatology' of  $\Delta pCO_2$  and  $CO_2$  flux between September to February (March to August).



**Figure S2:** left panel: PC75-1 and PC75-2 raw planktic radiocarbon dates versus depth; right panel: PC75-1 and PC75-2 *G. inflata* oxygen isotope versus depth.



**Figure S3:** PC75-2 and PC83-1 *G. inflata* stable oxygen and carbon isotope. Based on the planktic stable isotope stratigraphy, we aligned the age of 88cm of PC83-1 to 88cm of PC75-2, the age of which is 11850 yrBP (the vertical black lines).



Figure S4. Mg/Ca and boron isotope data plotted with Al/Ca.



**Figure S5.** Individual uncorrected pH reconstructions (i.e.  $pH_{boron}$ ) plotted against the composite pH built upon  $pH_{final}$ . The red dots represent  $pH_{site_preind}$  calculated from GLODAP V2 2016b (Lauvset et al., 2016).

Surface pCO<sub>2</sub> Seasonality at Core Sites



**Figure S6.** The climatology of seasonal and annual mean surface  $pCO_2$  (year 2001-2015) (Landschützer et al., 2017) for each core site. The data is averaged over a 10° by 10° box around the core site. The black bars represent 1 standard error over the 15-year time period. Among these cores, JM11, Rapid 15 and MD01-2416 from high latitude oceans are characterized with strong seasonality. Rapid 15 is not included in our composite because it does not cover the LGM. For JM11, sediment trap data (Jonkers & Kučera, 2015) near the Norwegian Sea suggest that these is no *N. pachyderma* flux during winter, while for the rest of the year, the *N. pachyderma* flux is evenly distributed. Thus the geochemical signature of *N. pachyderma* would be an underestimate of the surface pCO<sub>2</sub>. For MD01-2416, sediment trap data (Jonkers & Kučera, 2015) in the modern northwest Pacific display two abundance peaks during the spring (with high pCO<sub>2</sub>) and autumn (with low pCO<sub>2</sub>), the two seasonal fluxes are roughly equal and the average pCO<sub>2</sub> during the two seasons are close to the annual mean.



**Figure S7.** pCO<sub>2</sub> gradient between surface and the average of the first 50m at the core sites, the station data from GLODAP V2 (Olsen et al., 2016) is averaged over a 15°by 15°box around the core sites. For most of the cores in our composite, the depth difference is minimal (i.e. even though the foraminifera may not calcify not strictly at the surface, but the seawater carbonate chemistry state they record may still represent the surface condition). At the site of NIOP464, the surface-subsurface difference is up to 50 ppm on average, however the station data were all taken in a single cruise in Aug 1995, thus it is not clear of those station data are truly representative to the long term condition. The site of ODP1238 is affected by El-Niño, the station data were taken between year 1992-1994 when El-Niño was in the positive phase (i.e. the eastern equatorial Pacific is more stratified). Thus the 100~150 ppm of surface-subsurface  $\Delta pCO_2$  should be taken as a maximum.



**Figure S8.** PC75 benthic - atmospheric  $\Delta^{14}$ C offset ( $\Delta\Delta^{14}$ C) and Tasman Sea coral (43°S-47°S 144°E-152°E) – atmospheric  $\Delta\Delta^{14}$ C (Hines et al., 2015). The dotted blue line assumes a constant reservoir age (~ 400 yrs) over the entire PC75 record.



**Figure S9**, panel a: benthic  $\delta^{13}$ C records from the South Pacific that show first rapid increase and then decline between 16.5-14 kyrBP (this study; Pahnke & Zahn, 2005; Rose et al., 2010; Siani et al., 2013). Panel b: benthic  $\delta^{13}$ C records from the South Pacific that show a general increase between 16.5-14 kyrBP (Ronge et al., 2015; Sikes et al., 2016). The lines are 3-point running average.



Figure S10,  $\Delta pCO_2$  composite with all 12 cores included (magenta), and with PC75-1 and PC83-

| core<br>name | mid-<br>depth(cm) | <sup>14</sup> C ages<br>(yr BP) | <sup>14</sup> C age<br>error | Species         | Accession Number  |
|--------------|-------------------|---------------------------------|------------------------------|-----------------|-------------------|
| PC75-1       | 0                 | 2267                            | 20                           | mixed planktics | NZA58474/R40687-1 |
| PC75-1       | 25                | 3947                            | 29                           | mixed planktics | NZA58940/R40701-1 |
| PC75-1       | 25                | 4005                            | 54                           | mixed benthics  | NZA58503/R40687-3 |
| PC75-1       | 55                | 7776                            | 31                           | mixed planktics | NZA58475/R40687-4 |
| PC75-1       | 110               | 12630                           | 59                           | mixed planktics | NZA58941/R40701-2 |

2 from this study excluded (black).

| PC75-1 | 165   | 15371 | 319  | mixed planktics | NZA58504/R40687-6 |
|--------|-------|-------|------|-----------------|-------------------|
| PC75-1 | 165   | 16102 | 176  | mixed benthics  | NZA58929/R40693-1 |
| PC75-1 | 230   | 19955 | 708  | mixed benthics  | NZA58505/R40687-7 |
| PC75-1 | 350   | 22904 | 1221 | mixed planktics | NZA58507/R40687-9 |
| PC75-1 | 350   | 22959 | 446  | mixed benthics  | NZA58931/R40693-3 |
|        |       |       |      |                 |                   |
| PC75-2 | 17.5  | 3670  | 20   | G. inflata      | UCIAMS-189011     |
| PC75-2 | 17.5  | 3414  | 20   | mixed benthics  | UCIAMS-189012     |
| PC75-2 | 57    | 7505  | 25   | G. inflata      | UCIAMS-189013     |
| PC75-2 | 57    | 7800  | 25   | mixed benthics  | UCIAMS-189014     |
| PC75-2 | 77.5  | 9160  | 40   | G. inflata      | UCIAMS-189016     |
| PC75-2 | 77.5  | 9630  | 100  | mixed benthics  | UCIAMS-189015     |
| PC75-2 | 97.5  | 12255 | 50   | G. inflata      | UCIAMS-189017     |
| PC75-2 | 97.5  | 12200 | 70   | mixed benthics  | UCIAMS-189018     |
| PC75-2 | 117.5 | 13240 | 140  | mixed benthics  | UCIAMS-189021     |
| PC75-2 | 137   | 14175 | 45   | G. inflata      | UCIAMS-189022     |
| PC75-2 | 137   | 15090 | 190  | mixed benthics  | UCIAMS-189023     |
| PC75-2 | 137   | 14195 | 45   | mixed benthics  | UCIAMS-189024     |
| PC75-2 | 157   | 16520 | 140  | mixed benthics  | UCIAMS-189017     |
| PC75-2 | 157   | 15850 | 110  | mixed benthics  | UCIAMS-189026     |
| PC75-2 | 197   | 16880 | 250  | G. bulloides    | UCIAMS-190039     |
| PC75-2 | 197   | 17610 | 370  | mixed benthics  | UCIAMS-190040     |
|        |       |       |      |                 |                   |
| PC83-1 | 13    | 2610  | 25   | G. inflata      | UCIAMS-189028     |
| PC83-1 | 68    | 7135  | 25   | G. inflata      | UCIAMS-189029     |
| PC83-1 | 178.5 | 14790 | 170  | G. inflata      | UCIAMS-189030     |

Table S1. Planktic and benthic radiocarbon dates

| core   | mid-      | δ <sup>18</sup> O(‰) | δ <sup>13</sup> C(‰) |
|--------|-----------|----------------------|----------------------|
| name   | depth(cm) |                      |                      |
| PC75-1 | 0         | 1.84                 | 1.05                 |
| PC75-1 | 5         | 1.13                 | 1.22                 |
| PC75-1 | 10        | 1.86                 | 1.3                  |
| PC75-1 | 15        | 1.88                 | 1.47                 |
| PC75-1 | 20        | 1.64                 | 1.41                 |
| PC75-1 | 25        | 1.91                 | 1.45                 |
| PC75-1 | 30        | 1.78                 | 1.31                 |
| PC75-1 | 35        | 1.95                 | 1.19                 |
| PC75-1 | 40        | 1.72                 | 1.32                 |
| PC75-1 | 45        | 1.31                 | 1.41                 |
| PC75-1 | 55        | 2.01                 | 1.36                 |
| PC75-1 | 65        | 2.1                  | 1.17                 |
| PC75-1 | 75        | 1.12                 | 0.83                 |
| PC75-1 | 85        | 1.3                  | 0.5                  |
| PC75-1 | 95        | 2.47                 | 0.98                 |
| PC75-1 | 100       | 1.91                 | 0.63                 |
| PC75-1 | 105       | 2.18                 | -0.01                |
| PC75-1 | 115       | 2.76                 | 0.81                 |
| PC75-1 | 120       | 2.61                 | 0.7                  |
| PC75-1 | 125       | 2.87                 | 0.71                 |
| PC75-1 | 130       | 2.84                 | 0.89                 |
| PC75-1 | 140       | 2.85                 | 0.38                 |
| PC75-1 | 145       | 3.34                 | 0.76                 |
| PC75-1 | 150       | 3.27                 | 1.01                 |
| PC75-1 | 155       | 3.46                 | 0.59                 |
| PC75-1 | 160       | 3.78                 | 0.54                 |
| PC75-1 | 165       | 3.53                 | 1.17                 |
| PC75-1 | 175       | 3.65                 | 0.33                 |
| PC75-1 | 180       | 3.89                 | 1.08                 |
| PC75-1 | 185       | 3.63                 | 0.93                 |
| PC75-1 | 195       | 3.67                 | 0.54                 |
| PC75-1 | 205       | 3.73                 | 0.7                  |
| PC75-1 | 215       | 3.72                 | 0.82                 |
| PC75-1 | 220       | 3.95                 | 0.91                 |
| PC75-1 | 225       | 3.2                  | 0.17                 |
| PC75-1 | 230       | 3.29                 | 0.11                 |
| PC75-1 | 235       | 3.53                 | 0.28                 |
| PC75-1 | 240       | 2.79                 | 0.89                 |
| PC75-1 | 245       | 3.49                 | 0.82                 |

| PC75_1   | 250        | 3 00  | 0.72  |
|----------|------------|-------|-------|
| DC75_1   | 250        | 1.00  | 1.07  |
| PC75-1   | 255        | 4.00  | 0.57  |
| PC75-1   | 200        | 2.03  | 0.57  |
| PC75-1   | 203        | 3.80  | 0.62  |
| PC75-1   | 283        | 3.72  | 0.74  |
| PC75-1   | 290        | 3.78  | 0.87  |
| PC75_1   | 300        | 3.0   | 1.09  |
| PC75_1   | 300        | 3.44  | 0.67  |
| PC75-1   | 310        | 3.72  | 0.07  |
| PC75-1   | 315        | 3.70  | 0.97  |
| PC75_1   | 313        | 3.09  | 0.97  |
| PC75-1   | 320        | 3.72  | 0.54  |
| $PC75_1$ | 330        | 3.52  | 0.54  |
| PC75-1   | 340        | 3.68  | 0.05  |
| PC75_1   | 340        | 3.00  | 0.75  |
| PC75-1   | 350        | 3.61  | 1 17  |
| DC75 1   | 255        | 2.02  | 0.82  |
| PC75-1   | 333        | 2.65  | 0.82  |
| PC75-1   | 303        | 2.03  | 0.24  |
| PC75-1   | 370        | 3.0   | 0.03  |
| PC75-1   | 373        | 2.71  | 0.30  |
| PC75-1   | 205        | 2.66  | 0.73  |
| PC75-1   | 300        | 2.70  | 0.27  |
| PC75-1   | 390        | 2.19  | 0.18  |
| DC75_1   | 405        | 3.50  | 0.43  |
| 1075-1   | 403        | 5.0   | 0.5   |
| PC75_2   | 17.5       | 2.26  | 1 573 |
| PC75-2   | 28         | 1.89  | 1.575 |
| PC75-2   | 38.5       | 1.87  | 1.31  |
| PC75-2   | 57         | 2.12  | 1.51  |
| PC75_2   | 57<br>77 5 | 2:12  | 1 3/  |
| PC75-2   | 87.5       | 1 98  | 0.74  |
| PC75-2   | 97.5       | 2 73  | 0.74  |
| PC75_2   | 107.5      | 2.15  | 1.02  |
| PC75-2   | 117.5      | 3.215 | 1.097 |
| PC75-2   | 137        | 3.139 | 1.055 |
| PC75-2   | 157        | 3.715 | 0.744 |
| PC75-2   | 177        | 3.575 | 0.938 |
| PC75-2   | 197        | 3.129 | 1.077 |
| PC75-2   | 219        | 3.22  | 1.14  |
| PC75-2   | 239        | 3.21  | 0.99  |
| PC75-2   | 269        | 2.43  | 1.33  |
| PC75-2   | 299        | 3.75  | 0.75  |
|          |            | 20    |       |

| PC75-2 | 329   | 3.49 | 0.84 |
|--------|-------|------|------|
| PC75-2 | 365   | 3.25 | 1.10 |
| PC75-2 | 395   | 3.11 | 1.12 |
|        |       |      |      |
| PC83-1 | 13    | 2.11 | 1.58 |
| PC83-1 | 28    | 2.15 | 1.72 |
| PC83-1 | 38    | 2.15 | 1.7  |
| PC83-1 | 48.5  | 2.32 | 1.59 |
| PC83-1 | 68    | 2.42 | 1.38 |
| PC83-1 | 88    | 2.13 | 0.92 |
| PC83-1 | 108   | 2.93 | 1.44 |
| PC83-1 | 148   | 3.24 | 1.22 |
| PC83-1 | 168.5 | 3.45 | 1.24 |
| PC83-1 | 178.5 | 3.47 | 1.18 |

 Table S2. G.inflata oxygen and carbon stable isotope results.

| core   | mid-      | δ <sup>18</sup> O(‰) | δ <sup>13</sup> C(‰) |
|--------|-----------|----------------------|----------------------|
| name   | depth(cm) |                      |                      |
| PC75-1 | 0         | 2.08                 | 1.02                 |
| PC75-1 | 15        | 2.1                  | 1.28                 |
| PC75-1 | 20        | 2.05                 | 1.19                 |
| PC75-1 | 25        | 2.15                 | 1.4                  |
| PC75-1 | 30        | 2.13                 | 1.51                 |
| PC75-1 | 35        | 2.16                 | 1.36                 |
| PC75-1 | 40        | 2.14                 | 1.55                 |
| PC75-1 | 45        | 2.12                 | 1.43                 |
| PC75-1 | 50        | 2                    | 1.38                 |
| PC75-1 | 55        | 2.22                 | 1.22                 |
| PC75-1 | 60        | 2.22                 | 1.21                 |
| PC75-1 | 65        | 2.21                 | 1.19                 |
| PC75-1 | 70        | 2.13                 | 1.19                 |
| PC75-1 | 75        | 2.22                 | 1.14                 |
| PC75-1 | 80        | 2.51                 | 1.02                 |
| PC75-1 | 90        | 2.11                 | 1.16                 |
| PC75-1 | 95        | 2.52                 | 1.19                 |
| PC75-1 | 100       | 2.66                 | 1.37                 |
| PC75-1 | 105       | 3.05                 | 1.22                 |
| PC75-1 | 110       | 3.01                 | 1.19                 |
| PC75-1 | 115       | 2.85                 | 1.12                 |
| PC75-1 | 120       | 2.8                  | 0.91                 |
| PC75-1 | 125       | 2.99                 | 1.54                 |
| PC75-1 | 135       | 3.36                 | 1.44                 |
| PC75-1 | 140       | 3.65                 | 1.61                 |
| PC75-1 | 145       | 3.62                 | 1.27                 |
| PC75-1 | 155       | 3.8                  | 1.4                  |
| PC75-1 | 160       | 3.91                 | 1.24                 |
| PC75-1 | 165       | 4.08                 | 0.64                 |
| PC75-1 | 185       | 4.11                 | 1                    |
| PC75-1 | 205       | 3.94                 | 0.84                 |
| PC75-1 | 210       | 4.1                  | 0.71                 |
| PC75-1 | 235       | 3.78                 | 0.92                 |
| PC75-1 | 255       | 3.86                 | 0.81                 |
| PC75-1 | 265       | 3.94                 | 0.81                 |
| PC75-1 | 270       | 3.86                 | 0.63                 |
| PC75-1 | 285       | 3.82                 | 0.69                 |
| PC75-1 | 290       | 3.92                 | 0.55                 |
| PC75-1 | 295       | 3.68                 | 1.07                 |
| PC75-1 | 310       | 3.97                 | 0.54                 |
| PC75-1 | 315       | 3.67                 | 1.15                 |
| PC75-1 | 320       | 3.68                 | 0.69                 |

| PC75-1 | 345 | 3.69 | 1.11 |
|--------|-----|------|------|
| PC75-1 | 355 | 3.61 | 1.01 |

 Table S3. Cibicides oxygen and carbon stable isotope results.

| core<br>name | mid-<br>depth(cm) | dR (yr) | dR error<br>(1SE) | calibrated<br>age (yr) | calibrated age<br>error (1SE) |
|--------------|-------------------|---------|-------------------|------------------------|-------------------------------|
| PC75-1       | 0                 | 0       | 100               | 1894                   | 199                           |
| PC75-1       | 25                | 0       | 100               | 3945                   | 224                           |
| PC75-1       | 55                | 0       | 100               | 7973                   | 172                           |
| PC75-1       | 110               | 0       | 100               | 14385                  | 322                           |
|              |                   |         |                   |                        |                               |
| PC75-2       | 17.5              | 0       | 100               | 3609                   | 213                           |
| PC75-2       | 57                | 0       | 100               | 8283                   | 176                           |
| PC75-2       | 77.5              | 0       | 100               | 9935                   | 230                           |
| PC75-2       | 97.5              | 0       | 100               | 13729                  | 195                           |
| PC75-2       | 137               | 900     | 200               | 15190                  | 540                           |
| PC75-2       | 197               | 900     | 200               | 18879                  | 540                           |
|              |                   |         |                   |                        |                               |
| PC83-1       | 13                | 0       | 100               | 2299                   | 209                           |
| PC83-1       | 68                | 0       | 100               | 7621                   | 159                           |
| PC83-1       | 178.5             | 900     | 200               | 16280                  | 555                           |

Table S4. Reservoir ages and calibrated ages.

|        |          |                   | δ <sup>11</sup> <b>B</b> |            | pH<br>(total scale) | pCO <sub>2</sub> | Al/Ca<br>(umol/mol) |
|--------|----------|-------------------|--------------------------|------------|---------------------|------------------|---------------------|
| Core   | Age      | δ <sup>11</sup> Β | 2SD                      | Mg/Ca      | (total scale)       | (µatin)          | (µ1101/11101)       |
| name   | (kyr BP) | (‰)               | (‰)                      | (mmol/mol) |                     |                  |                     |
| PC75-2 | 3.61     | 15.0              | 0.6                      | 1.71       | 8.12                | 319.1            | 330.0               |
| PC75-2 | 9.92     | 16                | 0.27                     | 2.07       | 8.17                | 288.6            | 161.3               |
| PC75-2 | 11.81    | 15.7              | 0.28                     | 2.10       | 8.14                | 304.6            | 83.6                |
| PC75-2 | 13.73    | 14.9              | 0.26                     | 1.70       | 8.10                | 334.0            | 182.7               |
| PC75-2 | 14.25    | 13.9              | 0.29                     | 1.73       | 7.99                | 431.6            | 103.1               |
| PC75-2 | 14.61    | 14.9              | 0.29                     | 1.83       | 8.09                | 341.2            | 40.7                |
| PC75-2 | 15.2     | 16.6              | 0.25                     | 1.57       | 8.26                | 223.1            | 47.2                |
| PC75-2 | 16.42    | 15.6              | 0.5                      | 1.48       | 8.20                | 262.7            | 90.5                |
| PC75-2 | 17.65    | 16.0              | 0.41                     | 1.34       | 8.25                | 228.9            | 65.3                |
| PC75-2 | 18.88    | 16.6              | 0.34                     | 1.56       | 8.27                | 219.5            | 144.8               |
|        |          |                   |                          |            |                     |                  |                     |
| PC83-1 | 2.29     | 16.2              | 0.27                     | 1.74       | 8.20                | 266.9            | 108.4               |
| PC83-1 | 3.75     | 14.9              | 0.35                     | 1.75       | 8.08                | 358.2            | 220.3               |
| PC83-1 | 4.72     | 14.9              | 0.3                      | 1.7        | 8.08                | 358.5            | 83.0                |
| PC83-1 | 5.73     | 15.3              | 0.51                     | 1.67       | 8.13                | 320.7            | 164.1               |
| PC83-1 | 7.62     | 14.6              | 0.25                     | 1.78       | 8.05                | 392.3            | 235.3               |
| PC83-1 | 11.81    | 16.3              | 0.26                     | 2.03       | 8.18                | 276.4            | 106.1               |
| PC83-1 | 12.8     | 16.4              | 0.34                     | 1.9        | 8.20                | 265.6            | 49.8                |
| PC83-1 | 14.73    | 15.2              | 0.38                     | 1.79       | 8.11                | 335.0            | 42.4                |
| PC83-1 | 15.29    | 16.3              | 0.27                     | 1.68       | 8.22                | 251.8            | 41.3                |
| PC83-1 | 15.79    | 15.3              | 0.24                     | 1.5        | 8.15                | 300.6            | 60.9                |
| PC83-1 | 16.28    | 15.6              | 0.31                     | 1.2        | 8.21                | 250.9            | 23.0                |

Table S5. PC75-2 and PC83-1 boron isotope, trace element data, calculated  $pH_{boron}$  and  $pCO_{2boron}$ 

| Age      | pН            | pH error | pCO <sub>2</sub> | $\Delta pCO_2$ | $\Delta pCO_2$ error |
|----------|---------------|----------|------------------|----------------|----------------------|
| (kyr BP) | (total scale) | (2SE)    | (µatm)           | (µatm)         | (2SE)                |
| 1        | 8.192         | 0.047    | 262.35           | -15.65         | 60.66                |
| 2        | 8.190         | 0.058    | 271.76           | -3.73          | 64.64                |
| 3        | 8.183         | 0.042    | 272.48           | -1.71          | 40.75                |
| 4        | 8.178         | 0.045    | 277.28           | 8.10           | 42.46                |
| 5        | 8.174         | 0.037    | 279.08           | 12.39          | 44.79                |
| 6        | 8.175         | 0.038    | 280.41           | 22.53          | 52.55                |
| 7        | 8.173         | 0.044    | 280.14           | 19.55          | 57.56                |
| 8        | 8.178         | 0.037    | 276.06           | 15.77          | 47.85                |
| 9        | 8.194         | 0.027    | 261.08           | -3.11          | 29.27                |
| 10       | 8.186         | 0.032    | 267.39           | 0.73           | 36.59                |
| 11       | 8.176         | 0.025    | 275.58           | 22.97          | 38.82                |
| 12       | 8.188         | 0.022    | 268.80           | 29.50          | 42.27                |
| 13       | 8.188         | 0.027    | 269.83           | 33.77          | 50.16                |
| 14       | 8.168         | 0.036    | 284.48           | 56.45          | 67.26                |
| 15       | 8.202         | 0.032    | 257.78           | 33.50          | 49.76                |
| 16       | 8.229         | 0.024    | 235.20           | 31.00          | 42.53                |
| 17       | 8.249         | 0.032    | 220.30           | 31.63          | 50.32                |
| 18       | 8.263         | 0.033    | 209.50           | 16.86          | 45.94                |
| 19       | 8.280         | 0.029    | 200.90           | 6.86           | 31.94                |
| 20       | 8.284         | 0.048    | 197.87           | 7.85           | 51.87                |
| 21       | 8.292         | 0.038    | 194.27           | 5.56           | 43.05                |
| 22       | 8.286         | 0.043    | 192.50           | 2.76           | 47.44                |
| 23       | 8.273         | 0.043    | 202.27           | 18.18          | 55.70                |
| 24       | 8.285         | 0.044    | 193.76           | 13.10          | 55.99                |
| 25       | 8.310         | 0.054    | 171.97           | -12.69         | 51.69                |

Table S6. 12-core composite pH,  $pCO_2$  and  $\Delta pCO_2$  data

| Core<br>name | mid-<br>depth | cal age<br>(yr) | cal age<br>error 1SE | Δ <sup>14</sup> C<br>(‰) | $\Delta^{14}$ C error (‰) |
|--------------|---------------|-----------------|----------------------|--------------------------|---------------------------|
|              | (cm)          |                 | (yr)                 |                          |                           |
| PC75-1       | 25            | 3945            | 224                  | -21                      | 27                        |
| PC75-1       | 165           | 16500           | 100                  | -8                       | 25                        |
| PC75-1       | 230           | 20378           | 290                  | -19                      | 93                        |
| PC75-1       | 350           | 25650           | 40                   | 277                      | 71                        |
|              |               |                 |                      |                          |                           |
| PC75-2       | 17.5          | 3609            | 213                  | 12                       | 26                        |
| PC75-2       | 57            | 7973            | 176                  | -6                       | 21                        |
| PC75-2       | 77.5          | 9935            | 230                  | 3                        | 31                        |
| PC75-2       | 97.5          | 13729           | 195                  | 153                      | 29                        |
| PC75-2       | 117.5         | 14609           | 353                  | 126                      | 52                        |
| PC75-2       | 137           | 15190           | 512                  | -40                      | 64                        |
| PC75-2       | 137           | 15190           | 512                  | 73                       | 67                        |
| PC75-2       | 157           | 16126           | 356                  | -100                     | 42                        |
| PC75-2       | 157           | 16126           | 356                  | -22                      | 44                        |
| PC75-2       | 197           | 18879           | 540                  | 96                       | 88                        |



Supplement Reference:

Hines, S. K. V., Southon, J. R., & Adkins, J. F. (2015). A high-resolution record of Southern Ocean intermediate water radiocarbon over the past 30,000 years. *Earth and Planetary Science Letters*, 432, 46–58. https://doi.org/10.1016/j.epsl.2015.09.038

Jonkers, L., & Kučera, M. (2015). Global analysis of seasonality in the shell flux of extant planktonic

Foraminifera. Biogeosciences, 12(7), 2207–2226. https://doi.org/10.5194/bg-12-2207-2015

Landschützer, P., N. Gruber and D.C.E. Bakker (2017). An updated observation-based global monthly gridded

sea surface pCO2 and air-sea CO2 flux product from 1982 through 2015 and its monthly climatology (NCEI

Accession 0160558). Version 2.2. NOAA National Centers for Environmental Information. Dataset. [2017-07-

11]

- Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., et al. (2016). A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2, 16.
- Olsen, A., Key, R. M., Van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., et al. (2016). The global ocean data analysis project version 2 (GLODAPv2) - An internally consistent data product for the world ocean. *Earth System Science Data*, 8(2), 297–323. https://doi.org/10.5194/essd-8-297-2016
- Pahnke, K., & Zahn, R. (2005). Southern Hemisphere Water Mass Conversion Linked with North Atlantic Climate Variability. *Science*, *307*(5716), 1741–1746. https://doi.org/10.1126/science.1102163
- Ronge, T. A., Steph, S., Tiedemann, R., Prange, M., Merkel, U., Nürnberg, D., & Kuhn, G. (2015). Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years: Variability in SW-Pacific AAIW and UCDW. *Paleoceanography*, 30(2), 23–38. https://doi.org/10.1002/2014PA002727
- Rose, K. A., Sikes, E. L., Guilderson, T. P., Shane, P., Hill, T. M., Zahn, R., & Spero, H. J. (2010). Upperocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release. *Nature*, 466(7310), 1093–1097. https://doi.org/10.1038/nature09288
- Siani, G., Michel, E., De Pol-Holz, R., DeVries, T., Lamy, F., Carel, M., et al. (2013). Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. *Nature Communications*, 4(1). https://doi.org/10.1038/ncomms3758
- Sikes, E. L., Elmore, A. C., Allen, K. A., Cook, M. S., & Guilderson, T. P. (2016). Glacial water mass structure and rapid δ<sup>18</sup>O and δ<sup>13</sup>C changes during the last glacial termination in the Southwest Pacific. *Earth and Planetary Science Letters*, 456, 87–97. https://doi.org/10.1016/j.epsl.2016.09.043
- Verdy, A., & Mazloff, M. R. (2017). A data assimilating model for estimating Southern Ocean biogeochemistry: SOUTHERN OCEAN BIOGEOCHEMISTRY ESTIMATE. *Journal of Geophysical Research: Oceans*, 122(9), 6968–6988. https://doi.org/10.1002/2016JC012650