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Abstract :   
 
Advanced knowledge of spatio-temporal constraints on the Barents Sea Ice Sheet during the late 
Weichselian glaciation overshadows relatively limited understanding of seasonal sea ice (experiencing 
an annual advance-retreat cycle) and primary productivity trends accompanying massive, abrupt climate 
changes during glacial-deglacial cycles. Such paleo-reconstructions are crucial prerequisites for improved 
comprehension and prediction of current and future climate change. Here, we investigate sea ice and 
phytoplankton biomarker distributions in a Barents Sea sediment core covering ca. 25.8–15.4 cal kyr BP 
to elucidate abrupt shifts of spring–summer sea ice concentrations and relative sympagic–pelagic 
productivity trends at the southwestern continental slope. Despite significant presence of seasonal sea 
ice, the Last Glacial Maximum (LGM) and initial shelf edge deglaciation (SEDG) at the core site are 
characterised by occurrence of productive coastal polynya adjacent to the maximum ice sheet extent. The 
onset of perennial (i.e. multi-year) ice cover and near-zero productivity during Heinrich Stadial 1 (HS1; ca. 
18.0–16.3 cal kyr BP) accompanies significant meltwater fluxes from ice sheet debuttressing and the 
consequent stagnation of thermohaline circulation. Rapid sea ice retreat and unprecedented pelagic 
productivity observed after 16.3 cal kyr BP coincides with areal ice sheet deglaciation and is potentially 
linked to the release of sub-surface heat and nutrient reservoirs, together with reinvigorated deep water 
circulation following millennial heating of the deep ocean during HS1. We find that a multivariate 
fingerprinting approach involving assessment of both downcore and surface biomarker distributions is 
able to distinguish relative ice-algal and pelagic diatom productivity driven by sea ice dynamics. 
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Highlights 

► Seasonal sea ice and high sympagic productivity characterised the LGM. ► Abrupt decline of 
productivity coincided with perennial ice cover during the HS1. ► Unprecedented pelagic productivity 
dominated following the post-HS1 ice retreat. ► Multivariate HBI biomarker set can decouple sympagic 
and pelagic productivity. 

 

Keywords : Arctic Ocean, Quaternary, Sea ice, Marine biomarkers, HBI, IP25, PIP25, Barents Sea, 
Coastal polynya, Classification tree 
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23 1. Introduction

24 Arctic sea ice cover is an integral component of the climate system and exhibits complex 

25 interactions with the ocean and the atmosphere. High albedo allows sea ice to effectively 

26 reflect incoming solar radiation during the spring and summer months, while extensive areal 

27 coverage during winter prevents excessive oceanic heat loss, thus regulating the heat budget 

28 across the ocean-atmosphere interface (e.g. Smedsrud et al., 2013). Oceanic convection from 

29 brine expulsion during ice formation contributes to the thermohaline overturning circulation 

30 (Berger and Jansen, 1995), while occurrence of leads, polynya and seasonal ice melting 

31 stratifies the water column, facilitating between 10–55 % of all primary productivity in the 

32 Arctic Ocean (Gosselin et al., 1997; Wassmann et al., 1999, 2006). The decline of seasonal 

33 sea ice extent (Fetterer et al., 2017), thickness (Lindsay and Schweiger, 2015), and perennial 

34 (multi-year) ice fraction (Smedsrud et al., 2017) evident since ca. 1850 AD (Walsh et al., 

35 2017) has accelerated further over the last ca. 40 years. Such a precipitous decline is 

36 augmented via positive feedback (Smedsrud et al., 2013) and is likely caused by a 

37 combination of anthropogenic warming (Notz and Marotzke, 2012), as well as increasing 

38 inflow and temperature of Atlantic Water (AW) (Årthun et al., 2012). The latter is most 

39 evident in the seasonally ice-covered Barents Sea, where the North Atlantic Current (NAC) 

40 provides ample nutrients for spring-summer primary productivity blooms (e.g. Wassmann et 

41 al., 1999, 2006). Higher volume and temperature of AW and multi-decadal recession of the 

42 Barents Sea ice cover (Onarheim et al., 2018) are already contributing to earlier ice melt, 

43 increased lead/polynya incidence (Willmes and Heinemann, 2016), hastening of spring 

44 phytoplankton blooms (Stroeve et al., 2014), and northward intrusion of lower-energy, 

45 smaller pelagic species at the expense of ice-obligate algae (Hegseth and Sundfjord, 2008; 

46 Assmy et al., 2017; Hoppe et al., 2018) that likely affects survivability and biodiversity of 

47 pelagic and benthic communities in the region (Søreide et al., 2013). The motivation of 
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48 understanding such implications and forecasting development of high-latitude oceans in a 

49 warming climate implies paleo-reconstruction of sea ice conditions and associated responses 

50 of sympagic and pelagic biota over longer timescales.

51 Such paleo reconstructions can potentially be obtained through the analysis of proxy 

52 measures of sympagic and pelagic primary production in sedimentary records whose 

53 temporal coverage includes significant shifts in oceanographic and sea ice conditions. Sea ice 

54 reconstructions traditionally involve analysis of census data and isotopic composition of 

55 calcareous and siliceous microfossils, including foraminifer tests, dinocysts and diatom 

56 frustules (de Vernal et al., 2013, and references therein). However, microfossils are 

57 susceptible to carbonate and silicate dissolution in corrosive waters formed, for example, via 

58 brine rejection during ice formation (Zamelczyk et al., 2014). Such challenges may 

59 potentially be circumvented via analysis of certain geochemical lipid biomarkers, such as 

60 highly-branched isoprenoids (HBIs; Belt and Müller, 2013; Belt, 2018) and sterols (Volkman, 

61 1986), which are often more stable over geologically-significant timescales (e.g. Stein and 

62 Fahl, 2013) and can be source-specific (Belt and Müller, 2013; Belt, 2018). A suite of such 

63 biomarker proxies representing contrasting primary production sources (e.g. sympagic versus 

64 pelagic) may therefore be used to reconstruct environmental variability over temporal 

65 windows spanning significant climate shifts. For example, the LGM in the Barents Sea 

66 between ca. 26.5–19.0 cal kyr BP (Clark et al., 2009; Peltier and Fairbanks, 2006) and 

67 eventual collapse of the Barents Sea Ice Sheet (BSIS) between ca. 18.0–17.5 cal kyr BP 

68 (Bauch et al., 2001; Dokken and Jansen, 1999; Elverhøi et al., 1995; Knies et al., 2018) are 

69 relevant time intervals for investigating the interactions between AW inflow, Atlantic 

70 Meridional Overturning Circulation (AMOC), sea ice concentration, and primary 

71 productivity. Geochemical evidence suggests that the LGM and post-deglaciation intervals 

72 exhibited heavy seasonal sea ice and near ice-free conditions, respectively, and were 
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73 punctuated by the Heinrich Stadial 1 (HS1), when harsh glaciomarine conditions and 

74 weakened AW inflow prevented growth of biota (e.g. Jennings et al., 2018; Knies et al., 

75 2018; Müller et al., 2009; Müller and Stein, 2014). Such contrasting conditions that 

76 characterised these time intervals, coupled with the direct interaction of AW inflow with both 

77 the maximum-extent BSIS and the adjacent sea ice margin, make the Late Weichselian 

78 Barents Sea key for elucidating the interactions between oceanographic conditions, the sea 

79 ice regime, and the associated interplay of sympagic and pelagic primary productivity. Such 

80 an investigation could also aid the understanding of potential consequences associated with 

81 the projected debuttressing of the contemporary West Antarctic Ice Sheet (WAIS) (Hulbe, 

82 2017), for which the Late Weichselian BSIS was previously suggested as a close paleo-

83 analogue (Andreassen and Winsborrow, 2009; Bjarnadottir et al., 2014).

84 The focus of this study was, therefore, to reconstruct sea ice conditions and associated 

85 changes in primary productivity at the western Barents Sea continental slope throughout 

86 extreme climate shifts spanning ca. 25.8–15.4 cal kyr BP. To achieve this, we quantified a 

87 multivariate set of 10 geochemical biomarkers (Table 1) representing ice-algal and marine 

88 phytoplankton input (Fig. 1) in a marine sediment core (Fig. 2b) to assess the roles of ice 

89 cover and coastal polynya proximal to the BSIS in sustaining both sympagic and pelagic 

90 primary productivity from the LGM to the retreat of sea ice cover preceding the Bølling-

91 Allerød (BA) interstadial. Downcore biomarker distributions were compared to those of 

92 proximal surface sediments to identify paleo-analogues of contemporary sea ice and 

93 productivity settings or, alternatively, determine whether certain intervals within the 

94 downcore record represent unique conditions not reproduced in the current climate.

95

96 2. Biomarker background
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97 HBIs are unsaturated hydrocarbons produced exclusively by a relatively narrow range of 

98 marine and lacustrine diatoms (Belt and Müller, 2013; Belt, 2018). A C25 HBI discovered in 

99 Canadian Arctic sea ice and labelled IP25 (Belt et al., 2007) was confirmed as a seasonal sea 

100 ice proxy due to its accumulation during the spring diatom bloom in March–April (Brown et 

101 al., 2011) and Arctic sea ice diatom sources (Pleurosigma and Haslea spp.; Brown et al., 

102 2014b), all of which also contribute to Barents Sea spring blooms (von Quillfeldt, 2000). 

103 Notably, at least certain productive sea-ice diatom species abundant in multi-year ice 

104 (Syvertsen, 1991; Boetius et al., 2013), such as Melosira arctica, do not produce IP25 or any 

105 other HBIs. Accordingly, numerous analyses of surface sediments (n > 850) spanning the 

106 Arctic Ocean showed near-ubiquitous presence of IP25 in seasonally ice-covered locations, 

107 and either very low abundance or absence in regions of year-round open water or multi-year 

108 ice cover, such as that found in the central Arctic (Xiao et al., 2013). IP25 has since been 

109 extensively used for reconstructing past sea ice variability throughout the Arctic Ocean and 

110 the Nordic Seas (Belt, 2018, and references therein). An HBI diene (HBI II; Table 1) is co-

111 produced (Brown et al., 2014b) and usually highly correlated (e.g. Cabedo-Sanz et al., 2013; 

112 Xiao et al., 2013) with IP25. The latter is often combined with a marine phytoplankton 

113 biomarker (e.g. brassicasterol, dinosterol; Volkman, 1986) into the Phytoplankton–IP25 index 

114 (PIP25; Eq. 1 and Fig. 1) to obtain semi-quantitative descriptions of sea ice conditions (e.g. 

115 Müller et al., 2011; Stein et al., 2017; Xiao et al., 2015). More recently, the calculation of a 

116 PIIIIP25 index using a tri-unsaturated HBI (HBI III; Table 1 and Fig. 1) as the phytoplankton 

117 biomarker resulted in semi-quantitative spring sea ice concentration (SpSIC) estimates in the 

118 Barents Sea (Belt et al., 2015; Berben et al., 2017; Smik et al., 2016). Further, HBI III and its 

119 diastereoisomer (HBI IV; Table 1 and Fig. 1) were recently detected in the pelagic diatom 

120 Rhizosolenia setigera near Western Svalbard (Belt et al., 2017). Indeed, R. setigera is likely 

121 the most cosmopolitan among identified producers of trienes III and IV (Belt et al., 2000; 
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122 Brown et al., 2014a), given its identification as one of most globally abundant diatoms 

123 (Leblanc et al., 2012) and the capacity of certain Rhizosolenia spp. for active buoyancy 

124 control (Joseph et al., 1997) and formation of macroscopic mats under nutrient-replete 

125 conditions (Yoder, 1994). Together with high correlation and clear enhancement of both 

126 biomarkers near the receding spring sea ice edge (Belt et al., 2015), this supports the use of 

127 HBIs III and IV as indicators of pelagic diatom productivity in the Barents Sea. Thus, the 

128 availability of a multivariate HBI biomarker set in Barents Sea surface sediments (IP25, HBIs 

129 II, III and IV; Table 1 and Fig. 1) recently prompted the development of a classification tree 

130 (CT) model of HBI distributions (Fig. 1) in surface sediments as a viable method of 

131 categorising sea ice conditions over centennial to millennial timescales (Köseoğlu et al., 

132 2018a, 2018b). These investigations showed clear enhancement of pelagic HBIs III and IV 

133 relative to sympagic IP25 and HBI II in the productive Barents Sea MIZ, while the reverse 

134 was evident under heavy ice cover northeast off Svalbard. The database of HBI 

135 concentrations in Barents Sea surface sediments therefore provides an opportunity to 

136 determine whether, and to what extent, HBI distributions characteristic of different sea ice 

137 regimes in the modern Barents Sea are reproduced within the Late Weichselian sedimentary 

138 sequence.

139 To complement the HBI data, we also analysed several sterol lipids, which are ubiquitous 

140 components of eukaryotes (Volkman, 1986). In marine settings, the particular diversity of 

141 C27–C29 sterols among microorganisms, including microalgae and plankton (Volkman, 2003), 

142 has facilitated their use as chemotaxonomic biomarkers of organic matter sources in paleo-

143 environments, including high-latitude shelf seas (e.g. Belt et al., 2013; Knies, 2005). Despite 

144 this, few sterols are considered unambiguous biomarkers of specific algal groups as many 

145 classes of marine microorganisms contribute the same sterols to the sedimentary budget 

146 (Volkman, 1986). For instance, 24-methylcholesta-5,22E-dien-3β-ol (epibrassicasterol) and 
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147 24-methylcholesta-5,24(28)-dien-3β-ol (24-methylenecholesterol or chalinasterol) are often 

148 used as indicators of diatom primary production, despite the fact that the former is often not a 

149 major constituent of diatoms (Rampen et al., 2010) and is found in other clades of algae 

150 (Volkman, 1986; Volkman et al., 1999). Additionally, epibrassicasterol has been utilised as 

151 an indicator of pelagic phytoplankton productivity in ice-covered regions (e.g. Navarro-

152 Rodriguez et al., 2013), in spite of its abundance in sea ice (Belt et al., 2013, 2018) and 

153 pennate diatoms (e.g. Rampen et al., 2010). Moreover, diatoms often produce C29 sterols 

154 (Belt et al., 2013, 2018; Rampen et al., 2010), such as 24-ethylcholest-5-en-3β-ol (β-

155 sitosterol) and 24-methylcholest-5-en-3β-ol (campesterol) traditionally associated with 

156 vascular plants (Huang and Meinschein, 1976), which makes distinguishing between marine 

157 and terrigenous organic matter in sediments challenging. Even 4-methyl C30 sterols, such as 

158 4α,23,24-trimethyl-5α-cholesta-22-en-3β-ol (dinosterol), traditionally considered to be 

159 exclusive to dinoflagellates (Boon et al., 1979) and more specific to marine productivity (e.g. 

160 Knies, 2005), have been detected in both sea ice (Nichols et al., 1990) and diatom cultures 

161 (Navicula spp.; Volkman et al., 1993). Such factors underline the need to consider more 

162 source-specific biomarkers, such as HBIs representative of sympagic and pelagic sources, in 

163 addition to sterols when decoupling ice-covered and open water conditions in paleo-records 

164 (Belt et al., 2015; Smik et al., 2016). Despite their wide distribution across different biota, 

165 sterols remain useful indicators of both marine and terrigenous sedimentation, as well as 

166 general marine primary productivity, provided such inferences are drawn from a multivariate 

167 sterol record further contextualised using other proxy data (Volkman, 1986) or more source-

168 specific biomarkers (such as IP25 and other HBIs). Here, we focus on downcore relative 

169 abundance distributions of a multivariate sterol set (Table 1), and compare these with surface 

170 sediment sterol distributions representative of contrasting sea ice (and productivity) 

171 conditions in the modern Barents and Norwegian seas.
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172 3. Modern regional setting

173 The warm and saline NAC carries a significant amount of heat into the seasonally ice-

174 covered Barents Sea (Smedsrud et al., 2010), which continues along the western and northern 

175 continental margins as the largely sub-surface West Spitsbergen Current (WSC), while the 

176 North Cape Current (NCaC) branches out towards Novaya Zemlya and the central Barents 

177 Sea (Fig. 2a). Fresher coastal water (CW) from the Baltic Sea flows inshore of the NAC with 

178 the Norwegian Coastal Current (NCC). Southwest-bound Arctic Water (ArW) enters the 

179 Barents Sea with the East Spitsbergen and Persey Currents (ESC and PC, respectively), 

180 forming a fresher and colder surface layer around Svalbard (Loeng et al., 1991; Smedsrud et 

181 al., 2013). Effective turbulent mixing of warm AW towards the surface during the winter 

182 (October–March), when over half of the Barents Sea may be ice-covered (Fetterer et al., 

183 2017), facilitates selective thinning of the ice cover along the path of inflowing AW and 

184 keeps a significant portion of western and northern Svalbard shelves ice-free (Ivanov et al., 

185 2012). Ice recession towards the northern shelf break occurs throughout the insolation-

186 triggered melt season during spring and summer (April–September). The interplay of 

187 freshwater input and increased light penetration due to melting sea ice stabilises free-floating 

188 phytoplankton and AW-carried nutrients within the euphotic zone, developing extensive, but 

189 short-lived primary productivity blooms in the MIZ around the retreating ice margin 

190 (Wassmann et al., 1999, 2006). The resulting algal biomass fuels energy transfer to higher 

191 trophic levels (e.g. zooplankton) and eventually reaches the ocean floor, helping sustain 

192 benthic life (Søreide et al., 2013). Further, the development of leads and polynyas coupled 

193 with weak stratification from AW-induced melting of sea ice may trigger under-ice pelagic 

194 blooms even prior to the melt season (Assmy et al., 2017; Strass and Nöthig, 1996). 

195 Sympagic blooms of ice algae develop up to two months prior to seasonal ice retreat as they 

196 do not rely on stratification and are triggered by increasing solar insolation in March 
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197 (Signorini and McClain, 2009). Increasing temperature and volume of inflowing AW has 

198 already increased primary productivity by ca. 30% since the 1990’s by reducing sea ice 

199 extent and expanding that of the MIZ, prolonging and hastening the bloom season (Arrigo 

200 and van Dijken, 2015; Strong and Rigor, 2013). Nonetheless, average phytoplankton biomass 

201 at peak bloom is decreasing due to accelerated zooplankton grazing in a warming Barents Sea 

202 (Kvile et al., 2016).

203 4. Materials and methods

204 4.1 Sediment material

205 The 1384 cm long GS14-190-PC01 piston core (71.475° N, 16.165°E; 949 m water 

206 depth), hereafter GS14, was recovered aboard the RV “G.O. Sars” on June 3rd, 2014 at the 

207 southwestern Barents Sea slope (Fig. 2b). A detailed core chronology for the upper 694 cm 

208 of the core is available from Knies et al. (2018) and is based on six accelerator mass 

209 spectrometry (AMS) 14C measurements of planktonic and benthic microfossils, including 

210 foraminifera and Thyasira spp. bivalves. This is supported by an additional six radiocarbon 

211 dates transferred to a common depth scale from the gravity core 33-GC08 (hereafter GC08) 

212 sampled from the same location as core GS14 using five tie-points inferred from XRF Ca 

213 records. The radiocarbon ages were calibrated to calendar ages (cal kyr BP) using the 

214 Marine13 curve (Reimer et al., 2013), and no local reservoir age correction was applied 

215 (ΔR=0). Finally, Bayesian accumulation age-depth modelling (Bacon 2.2) was used to create 

216 the age model (Blaauw and Christen, 2011). 

217 In this study, core depths of 11.5–523 cm (ca. 25.8–15.4 cal kyr BP) were investigated, 

218 with the age model supported by four and five 14C AMS dates from cores GS14 and GC08, 

219 respectively (Fig. 3–5). A total of 131 one centimetre sediment horizons were sampled with 

220 10 mL cut-barrel plastic syringes, freeze-dried for 24–48 hours (1 µbar; -80°C) and frozen in 

221 plastic bags at -20°C to preserve sample integrity prior to lipid extraction. While HBIs were 
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222 extracted and analysed for all 131 horizons, sterol analysis was carried out separately using 

223 the same depth interval, but a lower sampling frequency (87 horizons) due to limited 

224 availability of material. Sedimentation rates ranged from 12.4 cm kyr-1 to 148.9 cm kyr-1 

225 (Knies et al., 2018), resulting in a mean temporal resolution between analysed horizons of 81 

226 ± 62 yr for HBIs and 115 ± 74 yr for sterols.

227 To supplement the GS14 downcore analysis, Barents and Norwegian Sea surface 

228 sediments (n = 144; Fig. 2b) representing contrasting contemporary sea ice conditions, and 

229 for a larger set of which (n = 198) HBI data was recently reported (Köseoğlu et al., 2018a), 

230 were re-extracted to obtain sterol distributions. Barents and Norwegian Seas were delineated 

231 using the International Council for the Exploration of the Sea (ICES) Ecoregions shapefiles 

232 (http://gis.ices.dk/geonetwork/srv/metadata/4745e824-a612-4a1f-bc56-b540772166eb). 

233 Surface and downcore absolute biomarker concentrations (ng g-1 dry sed.), downcore 

234 calibrated horizon ages (cal yr BP), and associated depths (cm) are available from Mendeley 

235 Data (doi: https://doi.org/10.17632/jx97c9nv3k.1). 

236 4.2 Lipid extraction and analysis

237 HBIs were extracted according to the methods of Belt et al. (2012), with certain 

238 modifications. Briefly, an internal standard (9-octylheptadec-8-ene; 0.1 µg) was added to 

239 freeze-dried and homogenized sediment (ca. 2 g), and the total organic extract (TOE) was 

240 obtained following repeated sonication and centrifugation with a DCM : MeOH solvent 

241 mixture (2:1 v/v; 3 × 2 mL). The solvent was evaporated to dryness at 25°C under N2, and the 

242 TOE was re-suspended in hexane (ca. 1 mL). Elemental sulphur was removed by repeatedly 

243 shaking the sample with ca. 1 mL of tetrabutylammonium sulphite reagent (3.39 g in 100 mL 

244 of milliQ water saturated with 25 g of anhydrous sodium sulphite) and 2 mL of isopropanol, 

245 followed by decanting the supernatant hexane layer into a separate vial (4 × 1 mL). The 

246 partially purified extracts were evaporated to dryness (N2; 25°C), re-suspended in hexane (1 
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247 mL) and transferred onto hexane-conditioned chromatography columns (3 × 1 mL of hexane; 

248 ca. 1 g of 60–200 µm silica). A hydrocarbon fraction containing HBIs was eluted via hexane 

249 (ca. 7 mL), which was evaporated to dryness under N2, re-suspended in hexane (ca. 300 µL) 

250 and further fractionated into saturated and unsaturated hydrocarbons on Ag-ion 

251 chromatography columns (Discovery® Ag-Ion; ca. 0.1 g) by successive elution with hexane 

252 (ca. 1 mL) and acetone (ca. 2 mL), respectively. The HBI-containing acetone fractions were 

253 evaporated to dryness and transferred to gas chromatographic (GC) vials (300 µL) in hexane.

254 Sterols were extracted following internal standard addition to sediments (5α-androstan-

255 3β-ol; 0.1 µg) and saponification with 5% (m/v) methanolic potassium hydroxide (KOH; 9:1 

256 v/v MeOH : milliQ water; 70°C for 60 min). Impurities were partially removed by elution via 

257 7:3 DCM : hexane (6 mL) on silica chromatography columns (ca. 1 g of hexane-conditioned 

258 silica) and sterols were subsequently collected using 4:1 (v/v) hexane : methyl acetate (ca. 7 

259 mL). Following N2 blowdown (25°C), sterol-containing fractions were derivatised with N,O-

260 bis(trimethylsilyl)trifluoroacetamide (BSTFA; 100 μL; 70°C for 60 min) and transferred to 

261 GC vials (300 µL) in DCM.

262 Analysis of HBIs and sterols was carried out via gas chromatography–mass spectrometry 

263 (GC–MS) using established methods (Belt et al., 2012, 2013) with an Agilent 7890 gas 

264 chromatograph equipped with the HP5MS fused-silica column (30 m; 0.25µm film thickness; 

265 0.25 mm internal diameter) coupled to an Agilent 5975 series mass spectrometric detector. 

266 All biomarkers were identified in total ion current (TIC) mode by comparison of peak 

267 retention indices (RIHP5-MS = 2081 for IP25, 2082 for HBI II, 2044 for HBI III and 2091 for 

268 HBI IV) (Belt, 2018, and references therein) and mass spectra to authentic standards and, in 

269 the case of sterols, to published data (Boon et al., 1979; Combaut, 1986). Quantification was 

270 carried out in single ion monitoring (SIM) and TIC modes for HBIs and sterols, respectively. 

271 The resulting peak areas were corrected according to internal standard responses, 

 “ Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published 
version for accuracy and citation.” 



13

272 instrumental response factors (RFs), and sediment mass. Re-calibration of RF values allowed 

273 us to quantify additional sterols, updating and extending the GS14 dinosterol record of Knies 

274 et al. (2018).

275 4.3 Statistical analysis

276  We used divisive changepoint analysis from the R package ECP (James and 

277 Matteson, 2013; R Core Team, 2018) on individual biomarker timeseries to identify 

278 significant shifts (p = 0.005) in biomarker profiles within the investigated temporal window 

279 (Fig. 3 and 4). PIIIIP25 values for each horizon were derived using a regional concentration 

280 balance factor for the Barents Sea (c-factor = 0.63; Eq. 1) with non-zero absolute 

281 concentrations (ng g-1 dry sed., shown in square brackets in all equations) of IP25 and HBI III. 

282 Semi-quantitative estimates of spring sea ice concentrations (SpSIC, %; April–June) were 

283 subsequently calculated using the Barents Sea SpSIC–PIIIIP25
 calibration (Eq. 2) of Smik et 

284 al. (2016). The occurrence of summer sea ice (SuSIC, %; July–September) was tentatively 

285 inferred using a PIIIIP25-based SpSIC threshold of ca. 70% (PIIIIP25>0.8; Smik et al., 2016). 

286 Semi-quantitative SpSIC estimates were supplemented with categorical classification of each 

287 horizon into marginal (near ice-free waters; <10% SpSIC), intermediate (MIZ conditions with 

288 ca. 10–50% SpSIC), and extensive (heavy ice cover characteristic of north-eastern Svalbard; 

289 >50% SpSIC) sea ice conditions using the multivariate CT model of Köseoğlu et al. (2018a). 

290 CT predictions were derived from percentage contributions of each HBI (IP25, HBIs II, III 

291 and IV) to the total (Eq. 3) and were not carried out for samples where no HBIs were 

292 detected.

293 𝑃𝐼𝐼𝐼𝐼𝑃25 =
[𝐼𝑃25]

([𝐼𝑃25] + [𝐼𝐼𝐼] × 0.63)#(1)

294 𝑆𝑝𝑆𝐼𝐶 (%) =
(𝑃𝐼𝐼𝐼𝐼𝑃25 ‒ 0.0692)

0.0107 #(2)
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295 𝐻𝐵𝐼 (%) =
[𝐻𝐵𝐼]

∑([𝐼𝑃25],[𝐼𝐼],[𝐼𝐼𝐼],[𝐼𝑉])
 × 100 #(3)

296 In addition to examining downcore profiles (Fig. 3 and 4), the absolute concentration (ng 

297 g-1 sed.) and compositional distributions (%; Eq. 3) of all biomarkers were examined to 

298 identify significant distributional shifts and further assess the general variability of each 

299 biomarker throughout the record (Fig. 6). Relative distributional changes were additionally 

300 compared to modern assemblages observed in Barents Sea surface sediments characterised by 

301 contrasting overlying SpSIC and annual open water duration (Fig. 7; Belt et al., 2015; 

302 Köseoğlu et al., 2018a). The SpSIC database represented April–June SIC spanning the 1988–

303 2007 period, previously used to build the CT model (Köseoğlu et al., 2018a).

304 5. Results

305 5.1 Biomarker temporal profiles and distributions in core GS14

306 Following an initial increase from ca. 25.8 cal kyr BP, IP25 and HBI II concentrations 

307 reached their respective peak values of 7.5 and 43.7 ng g-1 by ca. 23.7 cal kyr BP (Fig. 3a). 

308 This coincided with a similar increase of all six sterols during the same period, which 

309 culminated between 24.7–23.7 cal kyr BP. Both sympagic HBIs (i.e. IP25 and HBI II) and all 

310 sterols remained at relatively high, but variable concentrations until 18.0 cal kyr BP (Fig. 3, 

311 4, 6b), while concentrations of HBI trienes III and IV remained low (0.7 ± 0.5 ng g-1 and 0.6 

312 ± 0.5 ng g-1, respectively; Fig. 6a). Accordingly, the HBI assemblage was dominated by IP25 

313 and HBI II, with respective percentage contributions of 13 ± 2% and 80 ± 5%, while HBIs III 

314 and IV were only minor constituents throughout the 25.8–18.0 cal kyr BP interval (Fig. 7a). 

315 This was accompanied by average PIIIIP25 SpSIC estimates of 74 ± 9% and consistently 

316 extensive sea ice conditions predicted by the CT model (Fig. 3c). However, SpSIC values < 

317 60% with sporadic summer sea ice occurrence ca. 19.2–18.7 cal kyr BP and CT predictions 
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318 of intermediate (MIZ-like) sea ice conditions accompanied slight, but abrupt decreases in 

319 sympagic HBI and sterol concentrations, with the more distinct changes also highlighted by 

320 changepoint analysis (Fig. 3a, 4). Finally, examination of the sterol distribution revealed the 

321 prevalence of β-sitosterol (23 ± 6%) and epibrassicasterol (23 ± 5%), with moderate 

322 cholesterol (18 ± 3%) and chalinasterol (19 ± 4%), as well as relatively minor campesterol 

323 (10 ± 2%) and dinosterol (7 ± 2%) until 18.0 cal kyr BP (Fig. 7b).

324 Precipitous and abrupt decreases of all biomarker concentrations characterised the 

325 18.0–16.3 cal kyr BP interval  and were detected by changepoint analysis (Fig. 3 and 4). 

326 Thus, averaged HBI and sterol concentrations ranged from 0.2–2.2 ng g-1 and 57–182 ng g-1, 

327 respectively (Fig. 6) despite brief increases in IP25 and HBI II to ca. 2.9 ng g-1 and 10.9 ng g-1
, 

328 respectively (Fig. 3a). The interval was also characterised by the highest SpSIC estimates (ca. 

329 90%), summer sea ice occurrence, and CT predictions of extensive sea ice conditions (Fig. 

330 3c). Biomarker percentage distributions remained similar to those observed during the 25.8–

331 18.0 cal kyr BP interval, albeit with more variability and, in case of sterols, prevalence of β-

332 sitosterol alongside cholesterol (Fig. 7). 

333 An abrupt increase of biomarker concentrations, with significant shifts in percentage 

334 distributions and sea ice conditions are evident after ca. 16.3 cal kyr BP. PIIIIP25-derived 

335 SpSIC values dropped to a minimum of 4 ± 11%, and the CT model consistently predicted 

336 marginal ice cover or open water conditions (Fig. 3c). HBIs III and IV increased by ca. 2 

337 orders of magnitude to the highest values observed throughout the record (29.1 ± 24.4 ng g-1 

338 and 48.2 ± 41.8 ng g-1, respectively), while IP25 and HBI II remained at respective minimum 

339 values of 0.6 ± 0.3 ng g-1 and 3.2 ± 1.5 ng g-1 (Fig. 6a). Consequently, HBIs III and IV 

340 dominated the HBI distribution during this period, with relative abundances of 33 ± 8% and 

341 53 ± 14%, respectively (Fig. 7a). The sterols experienced a similar, but less pronounced 

342 resurgence, with most exhibiting concentrations similar to those observed prior to 18.0 cal 
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343 kyr BP (Fig. 4 and 6c). The greatest concentration increase was observed for cholesterol, 

344 which reached a mean value of ca. 2957 ± 930 ng g-1 (Fig. 4d and 6b), a factor ca. three 

345 higher than the 25.8–18.0 cal kyr BP average (904 ± 302 ng g-1). Cholesterol therefore 

346 dominated the sterol assemblage with 36 ± 1% relative abundance instead of epibrassicasterol 

347 and β-sitosterol, which contributed 22 ± 2% and 12 ± 1%, respectively. Consistently with the 

348 remained of the record, chalinasterol abundance (21 ± 2%) was comparable to that of 

349 epibrassicasterol, while campesterol (6 ± 1%) and dinosterol (5 ± 1%) remained minor 

350 components (Fig. 7b).

351 5.2 Surface sediment biomarker distributions

352 HBI distributions in surface sediments (Fig. 7a) characterised by extensive sea ice cover 

353 (>50% SpSIC; n = 23) were characterised by a distinct prevalence of IP25 and HBI II within 

354 the assemblage (23 ± 4% and 73 ± 4%, respectively), with minor contribution from HBIs III 

355 and IV (2 ± 2% and 2 ± 1%, respectively). The contribution of sympagic biomarkers was 

356 lower and more variable in the central Barents Sea MIZ (≤50% SpSIC; n = 36), with 

357 respective percentage abundances of 9 ± 6% and 42 ± 22% observed for IP25 and HBI II. 

358 Accordingly, pelagic HBIs III and IV comprised a higher 31 ± 19% and 18 ± 9% of the 

359 assemblage, respectively. Ice-free Barents (n = 119) and Norwegian Sea (n = 20) locations 

360 were characterised almost entirely by HBIs III (56 ± 14% and 62 ± 10%, respectively) and IV 

361 (42 ± 3% and 38 ± 10%, respectively), while only 4 locations close to the annual maximum 

362 sea ice edge in the Barents Sea exhibited non-zero IP25 and HBI II.

363 Sterol distributions were mainly defined by the variability of β-sitosterol, 

364 epibrassicasterol, and cholesterol in all surface sediments. Conversely, chalinasterol, 

365 campesterol, and dinosterol remained minor components (Fig. 7b). Extensively ice-covered 

366 locations showed a prevalence of β-sitosterol (25 ± 5%), with comparable, but slightly lower 

367 abundances of cholesterol (21 ± 4%) and epibrassicasterol (22 ± 5%). Conversely, MIZ and 

 “ Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published 
version for accuracy and citation.” 



17

368 ice-free Barents Sea locations (n = 26 and n = 89, respectively) exhibited decreased β-

369 sitosterol abundance (14–17 ± 3–5%), with epibrassicasterol (32–37 ± 5–7%) and cholesterol 

370 (28–29 ± 5–11%) comprising most of the assemblage. Norwegian Sea sediments (n = 18) 

371 showed consistent prevalence of cholesterol (32 ± 3%), with similar epibrassicasterol content 

372 (28 ± 2%) and lower β-sitosterol (22 ± 2%).

373 6. Discussion

374 Biomarker data presented herein allow us to reconstruct seasonal sea ice and productivity 

375 variability during climatically contrasting conditions encompassing both growth and decay of 

376 the BSIS. To facilitate paleo-interpretation and contextualisation, we delineate the GS14 

377 record into discrete time slices, and include a rationale for these in section 6.1. Paleo-

378 interpretation for each time slice is then provided in section 6.2–6.4. 

379 6.1 Identification of time slices for core GS14

380 Our record is delineated into three main time slices: (i) The LGM and initial shelf edge 

381 deglaciation (SEDG) following ice sheet destabilisation (ca. 26.0–18.0 cal kyr BP); (ii) HS1 

382 following final BSIS collapse (ca. 18.0–16.3 cal kyr BP); (iii) The retreat of sea ice cover (ca. 

383 16.3 cal kyr BP) preceding AMOC recovery and the onset of the Bølling-Allerød (BA) 

384 interstadial. The time slice definitions are based on a combination of clear changes of 

385 biomarker concentrations (Fig. 3 and 4) and percentage distributions (Fig. 6 and 7), and the 

386 agreement between the timing of these changes in core GS14 and paleoceanographic shifts 

387 previously identified in the Barents Sea and other Arctic regions. The definitions of the LGM, 

388 SEDG, and the HS1 onset are based on the study of Knies et al. (2018), who infer a BSIS 

389 advance to its LGM shelf-edge position at ca. 26.0 cal kyr BP from increased sedimentation 

390 rates and IRD deposition. This also agrees with previous global definitions of Peltier and 

391 Fairbanks (2006) and Clark et al. (2009), who propose LGM onset at 26 cal kyr BP and 26.5 
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392 cal kyr BP, respectively. An IRD spike marks the SEDG at ca. 19.5 cal kyr BP, while final 

393 BSIS collapse between ca. 18.0–17.7 cal kyr BP is associated with a rapid, meltwater-

394 induced planktic δ18O depletion signifying the beginning of HS1 (Fig. 5) (Knies et al., 2018) 

395 and is also observed in various records from the Barents Sea, the Nordic Seas (Elverhøi et al., 

396 1995; Dokken and Jansen, 1999; Bauch et al., 2001; Weinelt et al., 2003; Müller and Stein, 

397 2014), and other Arctic seas (e.g. Jennings et al., 2018). In our study, we additionally note the 

398 abrupt decreases of all biomarker concentrations by 18.0 cal kyr BP (Fig. 3 and 4), and use 

399 this date as the beginning of the HS1. Finally, the post-HS1 deglacial period is defined by 

400 significant and contemporaneous changes in biomarker concentrations (Fig. 3b, 3c and 4) and 

401 relative abundances (Fig. 6 and 7) in core GS14 at ca. 16.3 cal kyr BP.

402 6.2 BSIS-adjacent productive ice margin during the LGM and SEDG (26–18 cal kyr BP)

403 Based on high dinosterol and IP25 concentrations, Knies et al. (2018) previously 

404 provided direct evidence of highly-productive coastal polynyas at the GS14 site during the 

405 otherwise harsh glacial conditions of the LGM. Such polynyas initiated by AW upwelling 

406 and maintained by powerful katabatic winds from the BSIS were previously suggested to 

407 significantly influence Late Weichselian sea ice and primary productivity regimes across the 

408 western (Müller et al., 2009; Müller and Stein, 2014; Xiao et al., 2015) and northern Barents 

409 Sea margins (Chauhan et al., 2016; Knies et al., 1998, 2018; Nørgaard-Pedersen et al., 2003). 

410 Our findings of abundant sympagic biomarkers (IP25 and II; Fig. 3a) with presence of pelagic 

411 HBIs III and IV (Fig. 3b) and high sterol concentrations (Fig. 4) support the existence of 

412 extensive, but seasonal sea ice (Fig. 3c), high overall productivity, and vertical stabilisation 

413 necessary to maintain pelagic spring and summer blooms at the GS14 site (e.g. Falk-Petersen 

414 et al., 2000; Signorini and McClain, 2009; Wassmann et al., 1999). This is further 

415 corroborated by the similarity of both the overall HBI and sterol assemblages in our record 

416 during the LGM and SEDG to that of northern and north-eastern Svalbard (Fig. 7) – an ice-
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417 covered region characterised by seasonally open waters during the summer (Fetterer et al., 

418 2017; Köseoğlu et al., 2018a, 2018b; Vare et al., 2010), as well as WSC-mediated winter 

419 polynya (Ivanov et al., 2012) and a high overall lead fraction (Willmes and Heinemann, 

420 2016) facilitating light penetration and development of under-ice pelagic blooms (Assmy et 

421 al., 2017; Strass and Nöthig, 1996). Moreover, average LGM and SEDG concentrations of 

422 pelagic HBIs III and IV (0.7 ng g-1 and 0.6 ng g-1, respectively) and sterols (0.37–1.22 µg g-1) 

423 in our record (Fig. 6) are also similar to those we observe in surface sediments north and 

424 north-east off Svalbard (0.5–0.6 ng g-1 and 0.63–2.67 µg g-1 for HBIs and sterols, 

425 respectively). Thus, we confirm the incidence of coastal polynya at the GS14 site throughout 

426 26–18 cal kyr BP, which is also potentially associated with previously inferred sub-surface 

427 AW inflow in the Nordic Seas throughout ca. 27–22.5 cal kyr BP, at least (Chauhan et al., 

428 2016; Dokken and Hald, 1996; Hebbeln et al. 1994; Knies et al., 1999; Nørgaard-Pedersen et 

429 al., 2003; Rasmussen et al., 2007; Rørvik et al., 2013; Vogt et al., 2001). Additionally, 

430 several investigations report high primary productivity with seasonally open waters evident 

431 from coevally high pelagic and sympagic biomarker concentrations along western Svalbard, 

432 Yermak Plateau (e.g. Kremer et al., 2018a, 2018b; Müller et al., 2009; Müller and Stein, 

433 2014; Rasmussen et al., 2007) and other Arctic regions (Stein et al., 2017), presence of 

434 temperate benthic foraminifera west and north off Svalbard (Chauhan et al., 2016), and 

435 decreasing planktonic foraminiferal and IRD abundances from the Fram Strait towards the 

436 central Arctic Ocean (Nørgaard-Pedersen et al., 2003).

437 The insolation-induced BSIS destabilisation at the GS14 site began at ca. 19.5 cal kyr 

438 BP (Knies et al. 2018), as indicated by increased IRD input; surface meltwater influence was 

439 likely absent or limited at this time, as no planktic δ18O depletions were observed (Fig. 5). 

440 High IRD input could have diluted biogenic sedimentation, resulting in the slightly decreased 

441 sympagic (e.g. IP25) and pelagic (sterols) primary productivity at the core site (Fig. 3a–b, 4). 
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442 Nonetheless, seasonal sea ice conditions that characterised the earlier LGM (26.0–19.7 cal 

443 kyr BP) persisted, with frequent summer sea ice occurrence (Fig. 3c).

444 6.3 Productivity termination during Heinrich Stadial HS1 (18.0–16.3 cal kyr BP)

445 Precipitous decreases of all biomarker concentrations to minimum values observed 

446 throughout the record (Fig. 3 and 4) and maximum PIIIIP25-derived SpSIC with extensive sea 

447 ice conditions predicted by the CT model (Fig. 3c) support the presence of closed perennial 

448 sea ice cover with near-zero primary productivity at the core site between ca. 18–16.3 cal kyr 

449 BP (Knies et al., 2018). While a brief increase in sympagic HBIs to late LGM levels at 17.2 

450 cal kyr BP potentially indicates sufficient thinning of sea ice cover to initiate photosynthesis 

451 during the summer (Fig. 3a), the overall onset of harsh conditions agrees with the widespread 

452 collapse of NH ice sheets at ca. 17.5 cal kyr BP following continued increases of summer 

453 insolation and sea level (Yokoyama et al., 2000; Clark et al., 2009; Shakun et al., 2012), 

454 strong ice stream activity (Winsborrow et al., 2010) and AW-induced weathering of the BSIS 

455 grounding line (Hormes et al., 2013). Contemporaneous massive meltwater discharges from 

456 icebergs are evidenced between ca. 17.7–16.9 cal kyr BP by depleted planktic δ18O and 

457 dominance of N. pachyderma (sin.) across the Norwegian Sea (Hoff et al., 2016; Rasmussen 

458 and Thomsen, 2008; Thornalley et al., 2015), southwestern Barents Sea (Rasmussen et al., 

459 2007) and Svalbard (Chauhan et al., 2016; Jessen et al., 2010; Koç et al., 2002). Accordingly, 

460 decreased planktic δ18O values observed in the GS14 record after ca. 18.0 cal kyr BP (Fig. 5) 

461 were previously attributed to meltwater-induced cooling and freshening of surface waters due 

462 to BSIS collapse (Knies et al., 2018), promoting stratification and sea ice re-expansion in the 

463 Barents Sea. Meltwater influence hampered the AMOC (McManus et al., 2004; Ritz et al., 

464 2013), causing a reduction in NAC-bound AW inflow evident from depleted benthic δ18O 

465 values across the Nordic Seas (Bauch et al., 2001; Knies et al., 2001; Rasmussen and 

466 Thomsen, 2008). Thus, our findings support the conclusions of Knies et al. (2018) that the 
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467 combined influence of cold, low-salinity surface waters, a strongly stratified water column, 

468 and a hindered AW inflow into the Barents Sea following BSIS disintegration facilitated 

469 perennial sea ice formation and limited the volume and upwelling of deep nutrient-rich 

470 waters to the photic zone (Fig. 8b). We argue that insufficient nutrient replenishment 

471 combined with reduced light penetration through thick multi-year ice following the closing of 

472 coastal polynya potentially caused a collapse of microalgal stocks – a scenario previously 

473 shown by modelling simulations (Schmittner, 2005) that likely resulted in near-zero 

474 biomarker concentrations in our dataset from ca. 18.0–16.3 cal kyr BP (Fig. 3, 4 and 6). 

475 Indeed, similarly to the LGM, the relative distributions of HBIs (Fig. 7a) remain consistent 

476 with modern assemblages indicative of extensive sea ice conditions North-East off Svalbard 

477 (Köseoğlu et al., 2018a), which suggests that primary productivity was still controlled by sea 

478 ice. The sterol distribution, however, slightly deviates from that of the north-eastern Svalbard 

479 surface sediments (Fig. 7b) due to dominance of cholesterol alongside β-sitosterol. The 

480 inhospitable conditions of thick ice cover during the HS1 likely reduced algal biodiversity – a 

481 trend observed at higher Arctic latitudes today (Falk-Petersen et al., 1998; Henderson et al., 

482 1998). Thus, the change in sterol distribution probably reflects a shift in the algal assemblage, 

483 especially given their ubiquity (Belt et al., 2013; Belt, 2018; Volkman, 2003). For instance, 

484 spring blooms in the Central Arctic ocean are often dominated by the cold-adapted diatom M. 

485 arctica (Syvertsen, 1991; Boetius et al., 2013), while at least some Melosirales produce both 

486 β-sitosterol and cholesterol as the two major sterols (Rampen et al., 2010). In any case, the 

487 presence of perennial ice overlying the study area is further substantiated by the absence of 

488 significant IRD input (Fig. 5) and low sedimentation rates of ca. 12 cm kyr-1 throughout the 

489 18.0–16.3 cal kyr BP interval in core GS14 (Knies et al., 2018). 

490 6.4 Ice retreat and intense productivity after 16.3 cal kyr BP
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491 Considerable increases in absolute concentrations of pelagic HBIs (Fig. 3b and 6a) and 

492 sterols (Fig. 4 and 6b), accompanied by shifts in respective percentage distributions (Fig. 7) 

493 indicated a general climate amelioration with enhanced primary productivity and SpSIC < 

494 10% (Fig. 3c) after 16.3 cal kyr BP. Low concentrations of sympagic IP25 and HBI II 

495 therefore shift the relative distribution to favour HBIs III and IV, which agrees with the 

496 modern HBI assemblage representing nearly ice-free settings with prolonged open water 

497 duration (Fig. 7a). Together with decreased PIIIIP25-derived SpSIC with CT predictions of 

498 marginal sea ice conditions (Fig. 3c; Köseoğlu et al., 2018a; Smik et al., 2016) and an abrupt 

499 increase of IRD at ca. 16.3 cal kyr BP (Knies et al., 2018), our evidence suggests limited 

500 annual sea ice cover (<10% SpSIC) and sympagic productivity (e.g. Belt et al., 2007; Belt 

501 and Müller, 2013; Brown et al., 2014b), with favourable conditions for pelagic blooms and 

502 the GS14 site being close to the annual maximum ice edge (Belt et al., 2015, 2017). Rapid 

503 sea ice and areal BSIS retreat is also apparent throughout the Barents Sea continental shelves 

504 between ca. 16.5–15.5 cal kyr BP, inferred from the abundance of opportunistic benthic 

505 foraminifera characteristic of productive waters (Chauhan et al., 2016), increased IRD 

506 deposition and meltwater release from sea ice and icebergs (e.g. Chauhan et al., 2016; Jessen 

507 et al., 2010; Knies and Stein, 1998; Vogt et al., 2001), as well as high biomarker 

508 concentrations (e.g. Müller and Stein, 2014) around Svalbard. Since ca. 17.5 cal kyr BP, a 

509 gradual increase in insolation (Berger and Loutre, 1991; Laskar et al., 2004) probably 

510 contributed to the areal retreat of the BSIS and reinvigoration of the AMOC at ca. 16 cal kyr 

511 BP (McManus et al., 2004; Ritz et al., 2013) following a reduction of glacial meltwater flux 

512 also evident from modelling studies (e.g. Liu et al., 2009). The deglaciation was potentially 

513 also triggered by progressive aridification of the Arctic during HS1 due to limited ocean-

514 atmosphere heat and moisture exchange through perennial ice cover (e.g. Hormes et al., 

515 2013), which reduced the moisture supply for ice sheet build-up. Ice streams retreated from 
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516 the western Barents Sea margin due to a shifting BSIS mass balance after ca. 17 cal kyr BP 

517 (Winsborrow et al., 2010), which contributed to a separation of the BSIS and FIS in the 

518 central Barents Sea (Newton and Huuse, 2017). Thus, we suggest that precipitous sea ice 

519 retreat from the western Barents Sea continental slope at ca. 16.3 cal kyr BP coincided with 

520 the eastbound areal deglaciation of the BSIS (Fig. 8c).

521 Conspicuous enhancement of pelagic HBI concentrations (Fig. 3b and 6a) towards 

522 values >140 ng g-1 is unprecedented both within the GS14 record and the contemporary 

523 Barents Sea, where maximum sedimentary concentrations of HBIs III and IV detected in the 

524 highly-productive MIZ do not exceed ca. 47 and 22 ng g-1, respectively (Belt et al., 2015; 

525 Köseoğlu et al., 2018a). Such a remarkable increase in pelagic diatom productivity at the 

526 GS14 site after ca. 16.3 cal kyr is in broad agreement with Wollenburg et al. (2004), who also 

527 found that paleoproductivity in relatively fresh surface waters surpassed modern averages at 

528 the northern Svalbard margin during this period. Additionally, benthic foraminiferal 

529 assemblages along the continental margin adapted to warm AW and increased nutrient 

530 availability (e.g. Chauhan et al., 2016). Together, these data suggest the existence of 

531 significantly more productive post-HS1 conditions compared to those spanning at least the 

532 last several decades of sedimentation in the MIZ (Belt et al., 2015; Köseoğlu et al., 2018a), 

533 and are unlikely to be solely attributable to sea ice retreat and establishment of a productive 

534 seasonal ice margin following HS1. 

535 Several factors could have renewed pelagic productivity. The stratified water column in 

536 the Arctic throughout HS1 was initially salinity-controlled due to deglacial meltwater input 

537 since ca. 20–19 cal kyr BP (e.g. Chauhan et al., 2016; Hoff et al., 2016; Jennings et al., 2018; 

538 Jessen et al., 2010; Rasmussen et al., 2007; Rasmussen and Thomsen, 2008), which 

539 hampered the AMOC and NADW formation (Gherardi et al., 2009; McManus et al., 2004), 

540 slowing deep water ventilation in the North Atlantic and the Nordic Seas (Thiagarajan et al., 
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541 2014; Thornalley et al., 2015). Thus, a combination of reduced convective heat loss from 

542 northbound bottom waters due to strong salinity-driven stratification, and geothermal heating 

543 (e.g. Adkins et al., 2005) potentially caused a basin-wide increase of subsurface water 

544 temperatures according to proxy-based (Cronin et al., 2012; Thiagarajan et al., 2014) and 

545 modelling studies (Liu et al., 2009). Indeed, millennial sub-surface warming of 2–3°C since 

546 ca. 19 cal kyr BP is supported by foraminiferal transfer function reconstructions (Rørvik et 

547 al., 2013), Δ47 clumped isotope data, increased Mg/Ca ratios (Cronin et al., 2012; Thiagarajan 

548 et al., 2014; Thornalley et al., 2015), and benthic δ18O depletions (e.g. Rasmussen and 

549 Thomsen, 2004) across the Nordic Seas. Similar warming along the Barents Sea and Svalbard 

550 margins is indicated by intrusion of temperate benthic foraminifera adapted to reduced 

551 productivity immediately prior to the HS1 (Chauhan et al., 2016; Rasmussen et al., 2007; 

552 Wollenburg et al., 2004), which potentially affected the GS14 site and contributed to BSIS 

553 debuttressing, triggering glacial conditions at the onset of HS1 (e.g. Hormes et al., 2013; 

554 Marcott et al., 2011). Such accumulation of sub-surface heat in a salinity-stratified water 

555 column lowers the density of deep waters – a thermobaric effect which positively scales with 

556 pressure – and gradually destabilises the column by reducing the depth threshold at which the 

557 cold surface waters become denser than the warm, saline waters below. Once the depth 

558 threshold is breached, overturning resumes as the cold surface waters accelerate downwards, 

559 while the heat and salt accumulated in the deep waters is rapidly released to the surface ocean 

560 (e.g. Adkins et al., 2005). Such phenomena have been recorded in the Norwegian Sea, where 

561 subsurface temperatures rapidly decreased between ca. 18–15 cal kyr BP following a period 

562 of millennial warming (Rørvik et al., 2013; Thornalley et al., 2015). We therefore suggest 

563 that intense, instability- or buoyancy-driven upwelling of warm and saline subsurface waters 

564 at the GS14 site could have made massive surface reservoirs of heat and nutrients available 

565 (Fig. 8c) for seasonal ice melting (Fig. 3c) and unprecedented pelagic productivity (Fig. 3b) 
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566 after 16.3 cal kyr BP. Increased nutrient availability and efficient surface enrichment 

567 activated by this overturning resumption was potentially maintained by the deepening and 

568 intensification of the AMOC towards the Bølling-Allerød warming at ca. 15 cal kyr BP 

569 (McManus et al., 2004; Ritz et al., 2013; Shakun et al., 2012). Additionally, in contrast to the 

570 slow development of stratification and pelagic productivity in the ice-free southwestern 

571 Barents Sea today due to strong NAC- and wind-driven vertical mixing (Wassmann et al., 

572 1999), the post-HS1 productive season at the GS14 site could have been prolonged and 

573 hastened by earlier stratification due to meltwater input from sea ice and BSIS retreat 

574 (Hormes et al., 2013). Influx of ice and iceberg-entrained terrigenous material from coastal 

575 erosion could have provided an additional nutrient supply, as previously noted for the 

576 postglacial western (Aagaard-Sørensen et al., 2010) and northern Barents Sea (Knies and 

577 Stein, 1998).  Thus, a combination of marginal seasonal sea ice, surface warming, hastened 

578 meltwater-fuelled stratification, and an augmented nutrient input from terrigenous material 

579 and intense upwelling potentially stabilised pelagic species longer in the photic zone and 

580 reduced nutritional limitation during the peak bloom, explaining the GS14 productivity trends 

581 (Fig. 8c). Although it is not feasible to decouple the relative influences of individual factors, 

582 the core site was probably characterised by a significantly different productivity regime 

583 relative to the ephemeral, nutrient-limited blooms that occur in the modern Barents Sea 

584 (Signorini and McClain, 2009), where the phytoplankton productivity increase of recent years 

585 is mainly driven by a strengthening AW inflow (Årthun et al., 2012) and reducing sea ice 

586 extent (Arrigo and van Dijken, 2015; Assmy et al., 2017), and is not influenced by increased 

587 meltwater and terrigenous matter fluxes.

588 High sterol concentrations after ca. 16 cal kyr BP resemble the trend of abruptly 

589 increasing pelagic HBI concentrations (Fig. 3b, 4) and support our assumption of renewed 

590 primary productivity at the core site following precipitous ice retreat (Fig. 3c, 8c). While 
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591 most sterols only reach pre-HS1 values at the core site, cholesterol concentrations increase by 

592 a factor of 3 relative to LGM values and dominate the percentage distribution at 36% relative 

593 abundance instead of β-sitosterol (Fig. 6b, 7b). Similarly to HS1, this could simply be 

594 attributable to a switch in the algal assemblage to favour cholesterol production (e.g. by 

595 centric diatoms; Rampen et al., 2010). Another explanation is the efficient conversion of algal 

596 sterols to cholesterol by auxotrophic consumers, including zooplankton, which potentially 

597 flourished after the HS1 due to resumed deep circulation (Gherardi et al., 2009; McManus et 

598 al., 2004; Ritz et al., 2013) and global atmospheric-oceanic warming (Shakun et al., 2012). 

599 Zooplankton at lower trophic levels extensively feed on pelagic and sympagic algae for 

600 growth and reproduction, with increased grazing rates characteristic of warm and highly-

601 productive conditions with large phytoplankton stocks (Falk-Petersen et al., 2000; 

602 Tamelander et al., 2008). Contemporary zooplankton communities in the Barents Sea MIZ 

603 during peak blooms are dominated by crustaceans, including copepods and krill (e.g. Eriksen 

604 et al., 2017), which require a continuous source of cholesterol to maintain their phospholipid 

605 membranes and produce offspring (Hassett and Crockett, 2009). Accordingly, cholesterol is 

606 invariably the major constituent (usually >50%) of sterol distributions in Arctic and Antarctic 

607 crustaceans (Hamm et al., 2001; Mühlebach et al., 1999). Herbivorous and omnivorous 

608 arthropods largely rely on chemical conversion of phytosterols to cholesterol, which they 

609 cannot biosynthesize (Goad, 1981; Martin-Creuzburg and von Elert, 2009) or obtain in 

610 sufficient quantity from an algal diet. Therefore, it is possible that the nutrient-replete and 

611 diatom-rich conditions inferred from high pelagic HBI (III and IV) concentrations at the 

612 GS14 site after HS1 (Fig. 3b) revitalised zooplankton production and phytosterol to 

613 cholesterol bioconversion, leading to the proportionally larger increases of the latter sterol 

614 (Fig. 4). Additionally, our suggestion of a warming water column due to intensive post-HS1 

615 circulation of sub-surface heat could have accelerated zooplankton metabolism, switching 
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616 from temperature-limited to nutrient-limited growth with increased nutritional and 

617 reproductive cholesterol requirements (Hassett and Crockett, 2009). Overall, increased 

618 phytosterol conversion rates and zooplankton stocks following the post-HS1 climate 

619 amelioration represent one plausible mechanism for the switch from a phytosterol- to 

620 cholesterol-defined sterol assemblage after 16 cal kyr BP. Notably, however, such a 

621 cholesterol-dominated sterol distribution is not reproduced in the contemporary Barents Sea, 

622 where epibrassicasterol abundances increase alongside those of cholesterol, and are often 

623 higher. Consistent cholesterol prevalence is only observed in the warmer Norwegian Sea 

624 (Fig. 7b) characterised by significant transport of copepods and krill with the NAC (Falk-

625 Petersen et al., 2000), contributing to their role as major pelagic food web components in the 

626 Barents Sea (Aarflot et al., 2017; Eriksen et al., 2017). These observations potentially 

627 indicate that the highly-productive post-HS1 interval in the GS14 record is unique and not 

628 reproduced in the contemporary Barents Sea, supporting similar suggestions based on the 

629 unprecedented increase of pelagic HBIs III and IV, which overshadows that of cholesterol 

630 (Fig. 3b, 4d, and 7). 

631

632 Conclusions

633 Geochemical biomarkers in a marine sediment core provided new insights into the 

634 abruptly shifting seasonal sea ice conditions and primary productivity regimes on the 

635 southwestern Barents Sea slope throughout ca. 26–15 cal kyr BP. We draw the following 

636 main outcomes:

637 1) The LGM interval and initial SEDG were characterised by extensive sea ice covering the 

638 site, with seasonal occurrence of highly-productive coastal polynya. Overall marine 

639 productivity was variable, but generally high until 18.0 cal kyr BP.
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640 2) The onset of perennial sea ice cover during HS1 coincides with widespread NH ice sheet 

641 collapse and large meltwater influx at ca. 18.0 cal kyr BP as a result of AW-induced basal 

642 melting, atmospheric aridification and increased iceberg calving due to sea level rise. 

643 Thus, overall productivity plummeted until ca. 16.3 cal kyr BP as a result of a pan-Arctic 

644 meltwater-induced pycnocline, abrupt AMOC weakening and reduced light penetration 

645 through newly-formed perennial sea ice. 

646 3) Coincident with a rapid sea ice retreat to values <10% SpSIC between ca. 16.3–16.1 cal 

647 kyr BP, primary productivity exceeded the most productive contemporary conditions in 

648 the Barents Sea MIZ. This feature is likely uniquely deglacial and attributable to heat and 

649 nutrients released to the surface waters due to thermobaric and/or buoyancy-triggered 

650 instabilities following sub-surface warming under weak thermohaline circulation of the 

651 HS1. Meltwater input and coastal erosion from the BSIS could have provided an 

652 additional nutrient supply to the pelagic environment. We tentatively infer a revitalisation 

653 of marine fauna due to vast increases of algal biomass and surface warming.

654 4) We note some consistency of relative biomarker distributions downcore with those 

655 observed in contrasting sea ice and primary productivity regimes of the contemporary 

656 Barents Sea. We are able to decouple sympagic and pelagic primary production using 

657 source-specific HBI biomarkers characteristic of ice algal and pelagic diatoms, which 

658 indicate that LGM productivity was predominantly ice-based, while post-HS1 production 

659 conversely relied on free-floating pelagic algae with minor contribution from sympagic 

660 sources. In contrast, sterol concentrations remained similar under seasonal sea ice 

661 conditions of the LGM and the post-HS1 deglaciation, and likely represent a mixed algal 

662 source.
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1205 Figure legends

1206 Figure 1: Structures of IP25 and HBI II (representing sea ice diatom productivity), as well as 

1207 HBIs III and IV (indicative of pelagic diatom productivity). The combined use of HBIs 

1208 within proxies for sea ice reconstruction (including PIIIIP25 and CT models) is illustrated. 

1209 Figure 2: Maps of the Barents Sea showing: (a) The main inflow currents carrying AW (via 

1210 the NAC, NCaC, and WSC), ArW (PC and ESC), and CW (NCC); (b) Surface and downcore 

1211 sample locations. Green and orange circles correspond to surface sediment locations where 

1212 HBI with or without additional sterol data were available for comparison with downcore 

1213 records, respectively. Both the investigated site and referenced downcore locations are shown 

1214 by numbered diamond markers: (1) GS14-190-PC01 (this study and Knies et al., 2018); (2) 

1215 JM11-F1-19PC (Hoff et al., 2016); (3) MD95-2010 (Marcott et al., 2011); (4) JM05-85-GC 

1216 (Aagaard-Sørensen et al., 2010); (5) JM02-460 GC/PC (Rasmussen et al., 2007); (6) 

1217 MSM5/5-712-2 (Müller and Stein, 2014); (7) PS93/006-1 (Kremer et al., 2018a); (8) PS2837-

1218 5 (Wollenburg et al., 2004; Müller et al., 2009); (9) PS92/039-2 (Kremer et al., 2018b); (10) 

1219 HH11-09GC (Chauhan et al., 2016); (11) PS2138-1 (e.g. Knies and Stein, 1998; Nørgaard-

1220 Pedersen et al., 2003). Maximum BSIS extent throughout the LGM (at ca. 21 cal kyr BP) is 

1221 shown by a filled white area (Hughes et al., 2016). In both maps, dashed and solid black lines 

1222 correspond to averaged SpSIC contours (April–June; 1988–2017) of 0% and 15%, 

1223 respectively.

1224 Figure 3: HBI concentration profiles for core GS14: (a) IP25 and HBI II, indicative of 

1225 sympagic diatom productivity; (b) HBIs III and IV, showing pelagic diatom productivity. A 

1226 zoomed-in version of the profile spanning ca. 25–18 cal kyr BP is also shown; (c) PIIIIP25-

1227 based SpSIC (%) estimates with confidence limits (grey lines) corresponding to the standard 

1228 error of calibration (ca. ±11%; Smik et al., 2016), and superimposed categorical CT 
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1229 predictions of marginal (ca. <10% SpSIC), intermediate (ca. 10–50% SpSIC), and extensive 

1230 (>50% SpSIC) sea ice regimes denoted by red diamonds, yellow triangles, and green circles, 

1231 respectively. The threshold for summer sea ice occurrence is shown by the horizontal dashed 

1232 line. In all plots, coloured background bands constrain the LGM and SEDG (25.8–18.0 cal 

1233 kyr BP), HS1 (18.0–16.3 cal kyr BP) and Deglacial (after 16.3 cal kyr BP) intervals – a 

1234 rationale for dividing the GS14 record into time slices is provided in the Discussion. 

1235 Changepoints significant at a 99.5% confidence level (p < 0.005) are shown by vertical red 

1236 lines, where upward-pointing dashed arrows apply to the left y-axis only, while a solid line 

1237 applies to both the left and right y-axes. Red and blue crosses highlight GS14 and GC08 14C 

1238 AMS dates on the age scale, respectively. 

1239 Figure 4: Sterol concentration profiles for core GS14: (a) Brassicasterol and chalinasterol; (b) 

1240 Campesterol and β-sitosterol; (c) Dinosterol; (d) Cholesterol. In all plots, coloured 

1241 background bands constrain the LGM and SEDG (25.8–18.0 cal kyr BP), HS1 (18.0–16.3 cal 

1242 kyr BP) and Deglacial (after 16.3 cal kyr BP) time slices. Changepoints significant at a 99.5% 

1243 confidence level (p < 0.005) are shown by vertical red lines, where upward or downward 

1244 pointing dashed arrows apply to the left and right y-axis, respectively, while a solid line 

1245 applies to both left and right y-axes. Red and blue crosses highlight GS14 and GC08 14C 

1246 AMS dates on the age scale, respectively.

1247 Figure 5: Planktic δ18O of N. pachyderma sin. (black line with circle markers) and IRD data 

1248 (green line) for core GS14, obtained from Knies et al. (2018). Red and blue crosses highlight 

1249 GS14 and GC08 14C AMS dates on the age scale, respectively.

1250 Figure 6: Concentration distributions during the LGM (with SEDG), HS1, and Deglacial for: 

1251 (a) HBIs; (b) Sterols. Error bars denote ± 1 sample SD in each case. Blue and red boxes with 

1252 outgoing arrows show plot areas zoomed in for clarity for HBIs and sterols, respectively.
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1253 Figure 7: Relative abundance distributions during the LGM (with SEDG), HS1, and 

1254 Deglacial for: (a) HBIs, with comparisons to modern distributions reported in Barents and 

1255 Norwegian Sea surface sediments characterised by contrasting sea ice regimes (Fig. 1b); (b) 

1256 Sterols, with comparisons to surface sedimentary distributions analogous to those in (a). Error 

1257 bars denote ± 1 sample SD for each biomarker, while the sample size n is shown in red above 

1258 each distribution.

1259 Figure 8: Conceptual representation of sea ice and productivity conditions at the southwestern 

1260 Barents Sea continental slope throughout: (A) The LGM and SEDG (25.8–18.0 cal kyr BP); 

1261 (B) The HS1 (18.0–16.3 cal kyr BP); (C) The Deglacial (16.3 cal kyr BP onwards). Seasonal 

1262 sea ice conditions inferred from SpSIC (%) and the CT model are illustrated during winter 

1263 (October–March), spring (April–June) and summer (July-September). Red and blue arrows 

1264 correspond to AW and meltwater fluxes, respectively, where line width increases with flow 

1265 strength. Orange arrows represent solar insolation.

1266 Tables

1267 Table 1: Uses and potential limitations of HBI and sterol lipids utilized as biomarkers of sea 

1268 ice and primary productivity regimes in the current study.
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HBIs Common use(s) Potential limitation(s) Present interpretation References
Used as indicators of 
sympagic diatom 
productivity within sea 
ice, where absolute 
concentrations and 
relative abundances 
increase with longer 
seasonal sea ice 
duration.

IP25 and II Source-specific, co-
produced diatom 
proxies of seasonal 
Arctic sea ice1, 2.

Stable within 
sedimentary record and 
resistant to 
photodegradation and 
autoxidation3.

Require concurrent 
analysis of an open-
water biomarker(s) to 
distinguish perennial ice 
and open water 
settings4, 5, 6, 7.

Only represent 
productivity of minor 
sympagic diatoms1, 2.

III and IV Used as indicators of 
pelagic diatom 
productivity in the photic 
zone of the water 
column. Absolute 
concentrations and 
relative abundances 
increase under highly-
productive conditions.

Ubiquitous pelagic 
diatom proxies vastly 
enhanced during the 
spring MIZ 
phytoplankton bloom, 
and limited under 
extensive ice 
conditions5, 6, 7.

III used to derive 
PIIIIP25-based SpSIC 
estimates5, 6, and IV 
used for CT predictions 
of sea ice cover7.

Increased degradation 
rates relative to IP25 and 
II, at least under 
laboratory conditions3.

IV (<10%) detected in 
sea ice, while all but one 
in-situ sources in the 
Arctic (Rhizosolenia 
setigera) are still 
unknown9.

Belt et al. (20155, 20162, 
20179)
Brown et al. (2014b)1

Köseoğlu et al. 
(2018a,b)7

Müller et al. (2011)4

Ringrose (2012)8

Rontani et al. (2011, 
2014b)3

Smik et al. (2016)6

Reviews:
Belt and Müller (2013)
Belt (2018)

Sterols
Brassicasterol A major constituent of 

marine algae and 
indicative of general 
productivity10.

Present in sea ice11.

Chalinasterol An indicator of marine 
diatom productivity as 
the dominant sterol in 
many centric and 
pennate diatoms10.

Susceptible to 
photodegradation and 
autoxidation12;
Found in other algae 
(e.g. cryptomonads), 
and in sea ice11, 13.

Campesterol
and

β-sitosterol

Commonly associated 
with terrigenous input 
from vascular plants14.

Found in many diatoms, 
where β-sitosterol often 
dominates the sterol 
assemblage10.

Dinosterol A common biomarker 
of dinoflagellate 
productivity15.

Detected as a minor 
constituent of diatoms 
(including sympagic) in 
polar settings16 and 
cultures17.

Cholesterol High proportional 
abundance can 
indicate increased 
marine faunal 
productivity13.

Ubiquitous amongst 
vertebrates18, 19 and 
diatoms10.

Due to their reduced 
source-specificity, 
variability of all absolute 
sterol concentrations 
was interpreted as a 
general indicator of 
changes in marine 
productivity. 

Comparison of sterol 
relative abundance 
distributions downcore 
to those of surface 
sediments was used to 
identify similarities and 
differences between 
paleo and more 
recent/contemporary 
settings characterised 
by contrasting sea ice 
and/or productivity 
conditions.

Belt et al. (2013, 
2018)11

Boon et al. (1979)15

Hassett and Crockett 
(2009)19

Huang and Meinschein 
(1976)14

Mühlebach et al. 
(1999)18

Nichols et al. (1990)16

Rampen et al. (2010)10

Rontani et al. (2014a, 
2016)12

Volkman et al. (1993)17

Review:
Volkman (1986)13
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