Mining of the biosynthetic mechanisms of Vibrio spp. polysaccharides and potential role in biofilm formation

Type Poster
Date 2019-05
Language English
Other localization https://cbm13.sciencesconf.org/
Author(s) Verrez-Bagnis VeroniqueORCID1, Soree MarionORCID1, Passerini DelphineORCID1, Kolypczuk LaetitiaORCID1, Marchand Laetitia1, Bonnetot Sandrine1, Fecamp Florian1, Lozach Solen1, Hervio Heath DominiqueORCID1, Delbarre Ladrat ChristineORCID1
Meeting CBM 13 - 13th Carbohydrate Bioengineering Meeting. 19-22 mai 2019, Toulouse
Abstract

Vibrio spp. are ubiquitous marine bacteria that are ecologically and metabolically diverse members of planktonic and animal associated microbial communities. They encompass the ancient and well-studied human pathogen, Vibrio cholerae, and two other human pathogens, V. vulnificus and V. parahaemolyticus, as well as some less thoroughly characterized animal pathogens. Virulence is based on a wide diversity of mechanisms involved in motility and host colonization, in ability to persist and develop, and in damage generation. Polysaccharides may play major roles in virulence and are major components of extracellular polymeric matrix synthesized upon biofilm growth. They may also exhibit biological features, especially those similar to animal-derived glycosaminoglycans (GAG). Bacterial polysaccharides include EPSs which are released to the surrounding medium, and two surface polysaccharides: lipopolysaccharides (LPS) with an O-antigen polysaccharide linked to the Lipid A core complex and capsular polysaccharides (CPS) with K-antigen.

Diversity of biosynthetic pathways involved in glycopolymers biosynthesis in Vibrio spp. was analysed through in silico identification of genes encoding CAZYmes and comparative genomic approaches. In parallel, ability to form biofilm and extracellular matrix composition is studied. The aim is to provide a better knowledge of the polysaccharide gene cluster importance and to facilitate discovery of new bioactive carbohydrate compounds.

Full Text
File Pages Size Access
66965.pdf 1 1 MB Open access
Top of the page

How to cite 

Verrez-Bagnis Veronique, Soree Marion, Passerini Delphine, Kolypczuk Laetitia, Marchand Laetitia, Bonnetot Sandrine, Fecamp Florian, Lozach Solen, Hervio Heath Dominique, Delbarre Ladrat Christine (2019). Mining of the biosynthetic mechanisms of Vibrio spp. polysaccharides and potential role in biofilm formation. CBM 13 - 13th Carbohydrate Bioengineering Meeting. 19-22 mai 2019, Toulouse. https://archimer.ifremer.fr/doc/00514/62605/