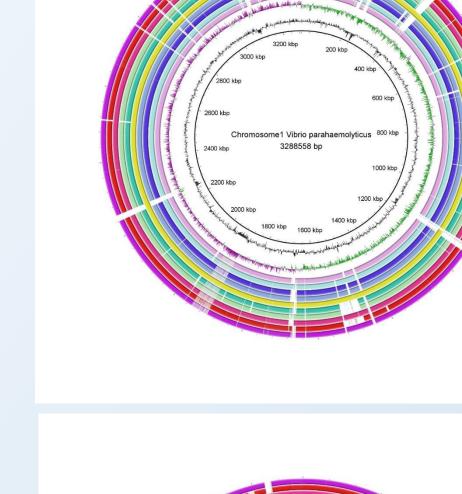
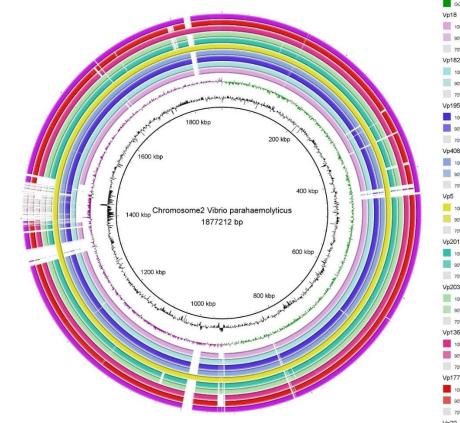
Mining of the biosynthetic mechanisms of *Vibrio spp.* polysaccharides and potential role in biofilm formation

<u>Véronique Verrez-Bagnis 1</u>, Marion Sorée 2, Delphine Passerini 1, Laetitia Kolypczuk 1, Laetitia Marchand 1, Sandrine Bonnetot 1, Florian Fécamp 1, Solen Lozach 2, Dominique Hervio-Heath 2, Christine Delbarre-Ladrat 1 *E-mail: vverrez@ifremer.fr*

Introduction

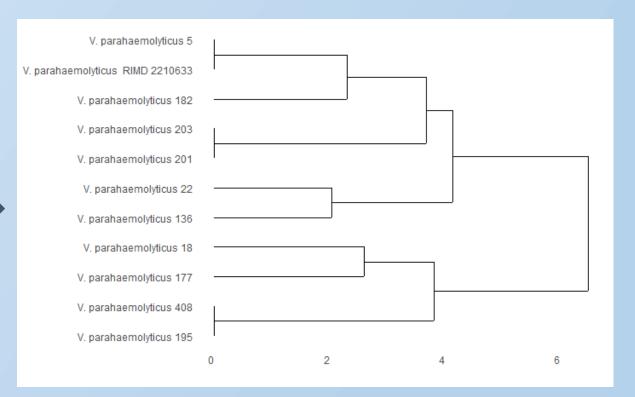

Vibrio spp. are ubiquitous marine bacteria, they encompass the well-studied human pathogen, *Vibrio cholerae*, and two other human pathogens, *V. vulnificus* and *V. parahaemolyticus*, as well as some characterized animal pathogens. Virulence depends on different mechanisms including contact and host colonization, ability to survive and to grow. The main factors of virulence, excreted or present on the bacteria cell surface are extracellular vesicles, capsular polysaccharide (CPS), and hemolysins and urease production in *V. parahaemolyticus*. Furthermore, biofilm assuring survival and dissemination of pathogen microorganisms in the environment is considered as virulence factor. Polysaccharides are major components of extracellular matrix synthetized upon biofilm growth and therefore may play major roles in virulence. Bacterial polysaccharides include expolysaccharides (EPSs) which are released to the surrounding medium, and two surface polysaccharides: lipopolysaccharides (LPS) with an O-antigen polysaccharide linked to the Lipid A core complex, and already known to give endotoxins and capsular polysaccharides (CPS) with K-antigen.


The results presented here are part of a study on growth inhibition and virulence attenuation of *V. parahaemolyticus* by the use of lactic bacteria and on a better comprehension of the pathogenicity and virulence mechanisms.

Genome and carbohydrate-active enzymes diversity in *V. parahaemolyticus*

Complete genome sequencing was performed on different *Vibrio parahaemolyticus* strains isolated from shellfish

			Replicon			
Species name	Total CDS number	Total genome length	Sequence length	%GC	CDS number	
Vibrio parahaemolyticus RIMD 2210633	5131	5165770	3288558	45.39	3229	
			1877212	45.35	1902	
Vibrio parahaemolyticus Vp5	4780	5103880	3211751	45,3	2987	
			1864737		1732	
Vibrio parahaemolyticus Vp18	4787	5115131	3297266	45,28	3095	
			1803990		1636	
Vibrio parahaemolyticus Vp22	4957	5211050	3281076	45,23	3081	
			1896632		1740	
Vibrio parahaemolyticus Vp136	4742	5080133	3299078	45,27	3076	
			1848690		1694	
Vibrio parahaemolyticus Vp177	5094	5185645	3247594	45,23	3084	
			1875030		1705	
Vibrio parahaemolyticus Vp182	5122	5237328	3263214	45,17	3072	
			1894036		1769	
Vibrio parahaemolyticus Vp195	4945	5099906	2997941	45,22	2767	
			1847971		1703	
Vibrio parahaemolyticus Vp201	4849	5131162	3258275	45,34	3070	
			1847159		1710	
Vibrio parahaemolyticus Vp203	4861	5140450	3251638	45,34	3062	
			1845016		1710	
Vibrio parahaemolyticus Vp408	4950	5119409	3178214	45,21	2947	
			1848645		1703	



Composition of Carbohydrate-Active enzymes (CAZymes) including carbohydrate esterase (CE), glycoside hydrolase (GH), glycosyl transferase (GT) and polysaccharide lyase (PL) involved in synthesis and degradation of complex carbohydrates was analysed through *in silico* identification of genes encoding CAZYmes. In total, among the 11 *V. parahaemolyticus* strains studied, 8, 23, 17 and 2 families were found for CE, GH, GT and PL, respectively.

		CAZ			
Strain	CE	GH	GT	PL	Total
/ibrio parahaemolyticus RIMD 2210633	12	43	33	4	92
/ibrio parahaemolyticus Vp5	12	43	33	4	92
Vibrio parahaemolyticus Vp18	13	46	33	4	96
/ibrio parahaemolyticus Vp22	14	48	34	4	100
/ibrio parahaemolyticus Vp136	13	43	33	4	93
/ibrio parahaemolyticus Vp177	15	51	37	4	107
/ibrio parahaemolyticus Vp182	14	48	35	4	101
/ibrio parahaemolyticus Vp195	15	48	37	4	104
/ibrio parahaemolyticus Vp201	15	51	37	4	107
/ibrio parahaemolyticus Vp203	15	51	37	4	107
Vibrio parahaemolyticus Vp408	15	48	37	4	104

V. parahaemolyticus strains were clustered using hierarchical clustering and

Genomes consisting in two

France.

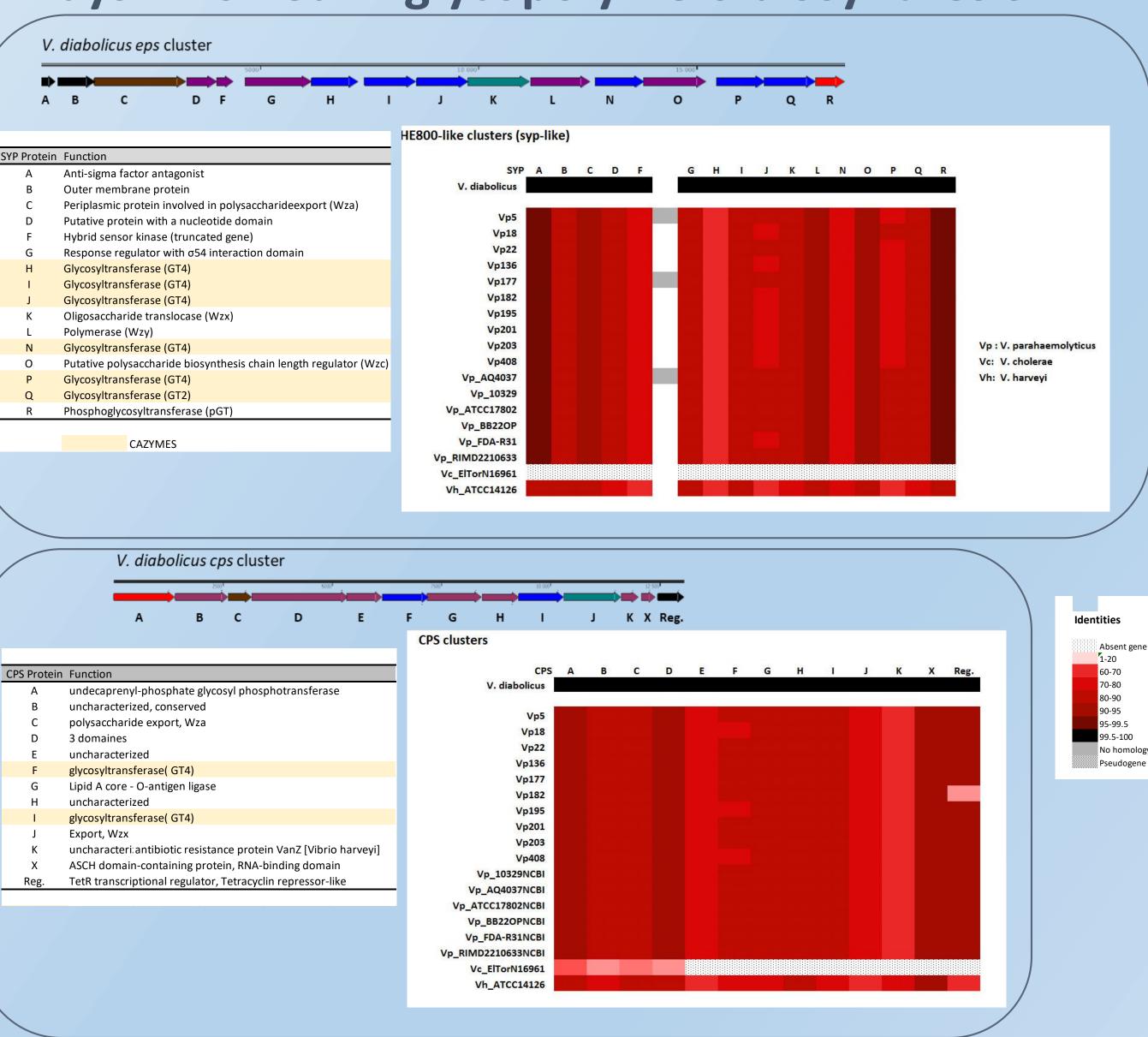
¹ Ifreme

Atlanti

Cente

Labo

chromosomes were assembled and compared to *Vibrio parahaemolyticus* type strain RIMD 2210633


Euclidean distance on the basis of CaZymes (CE, GH, GT and PL) families using R software.

Comparative genomic and diversity of biosynthetic pathways involved in glycopolymers biosynthesis

in Vibrio sp. strains The *eps* **locus** in *Vibrio diabolicus* described in Goudenège et al.(2014) is involved in the production of the biotechnologically valuable HE800 EPS. The presence of several GT within the locus indicates the capacity to generate diversity in the glycosidic structure. In this study, proteins orthologous to *V. diabolicus* HE800 biosynthetic cluster were searched into the genomes using BLAST+ 2.2.3.0 package (Camacho et al. 2009).

Results show that *Vibrio parahaemolyticus* (Vp) and *V. harveyi* (Vh_ATCC14126) sequences display such an *eps* locus with a high level of synteny, particularly in the 5' end of the cluster (A gene) and in the 3' end encompassing R gene. *Vibrio cholerae* (Vc_ElTorN16961) genome does not display such *eps* cluster.

The cps locus in Vibrio diabolicus presents synteny with a locus designated as an exopolysaccharide cluster related to the rugose colony phenotype in V.

This work is funded by Ifremer Scientific Board to promote research projects between Ifremer Iaboratories from different sites parahaemolyticus (Chen et al., 2010), but was previously suggested by Guvener et al. (2003) to be responsible of the capsular polysaccharide synthesis in V. parahaemolyticus.

Results show that the global synteny of *cps* locus is highly conserved in all *V*. *parahaemolyticus* strain studied, whereas it is absent from *Vibrio cholerae* and *V*. *harveyi*.

Future work

Clusterisation on the basis of CaZymes composition of *V. parahaemolyticus* strains has now to be compared with virulence tests which are ongoing *in vivo* on the model *Caenorhabiditis elegans*. Comparative genomics reveals a high range of homology of *eps* and *cps* biosynthesis gene clusters in *V. parahaemolyticus*. Extracellular matrix composition study is also ongoing on biofilm. The biofilm biochemical composition will allow to understand if these extracellular components are virulence and/or antimicrobial resistance factors.

Goudenège, D., Boursicot, V., Versigny, T., Bonnetot, S., Ratiskol, J., Sinquin, C., ... & Delbarre-Ladrat, C. (2014). Genome sequence of *Vibrio diabolicus* and identification of the exopolysaccharide HE800 biosynthesis locus. *Applied Microbiology and Biotechnology*, *98*(24), 10165-10176. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J. & Bealer, K. (2009). BLAST plus: architecture and applications. *BMC Bioinformatics. BioMed Central*, 10(421), 1. Chen, Y., Dai, J., Morris, J. G. & Johnson, J. A. (2010). Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic *Vibrio parahaemolyticus* O3: K6. *BMC Microbiology*, 10(1), 274. Guvener, ZT. & McCarter, LL. (2003). Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. *Journal of Bacteriology*, 185 (18): 5431-5441.