
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 617-618: 245–263, 2019
https://doi.org/10.3354/meps12602

Published May 16§

1. INTRODUCTION

The Bay of Biscay anchovy fishery constitutes an
example of how the crash and closure of a fishery led
to the development of a management plan, which be -
came operative after stock recovery in 2010. Since
then, the fishery has been operating in a sustainable
(ICES 2016b) and profitable manner. Two main

aspects may be of interest to other case studies: (1)
the process of developing and implementing a man-
agement plan that has undergone the full cycle (set
objectives; propose, formalize, and test management
measures; implement management plan; and review
performance) and has involved the collaboration of
scientists, managers, and stakeholders as suggested
for the process (Punt et al. 2016); (2) the quantitative
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assessment of alternative harvest control rules
(HCRs) following the management strategy evalua-
tion (Tonkin et al. 2008) or management procedure
approach (IWC 1999, Aranda & Motos 2006) that
 usually forms the basis of a management plan before
implementation. The former is discussed by A. Uri-
arte et al. (unpubl.), while the latter is addressed in
this article.

Since its creation by the International Whaling
Commission (IWC 1999), management strategy eval-
uation (MSE) has been used worldwide for the devel-
opment of management plans (Goodman et al. 2002,
De Oliveira & Butterworth 2004, Bastardie et al.
2010, STECF 2015). MSE allows us to compare alter-
native management strategies and identify those that
fulfill the management objectives while being robust
to the uncertainties in the system (Butterworth et al.
2010, Punt et al. 2016). Therefore, establishing all
elements necessary for MSE requires modeling the
stock and fishery dynamics and identifying the major
potential sources of uncertainty. In other words, MSE
needs to be individually adapted to the stock and
fisheries characteristics of each case (Punt et al.
2016). Furthermore, within the same case study, MSE
should be able to conform to any new information
and evolve by incorporating new elements and elim-
inating irrelevant ones.

Small pelagic species, like anchovies, are a chal-
lenge for fishery management due to their life history
characteristics, and often because of management
decisions unrelated to the monitoring (Barange et al.
2009). They are considered to be short-lived species
with high and variable natural mortality. Conse-
quently, population levels are highly dependent on
the magnitude of incoming recruitment, which is
highly variable and influenced by environmental fac-
tors (Petitgas et al. 2013). Improved understanding of
recruitment processes and their potential relation-
ship with environmental conditions would contribute
to more efficient management, but this has rarely
been achieved successfully (Subbey et al. 2014, Punt
et al. 2016). Besides boom and bust recruitment
dynamics, multi-decadal regimes have also been
observed for some small pelagic species (Lluch-Belda
et al. 1989, 1992) and might also need to be consid-
ered in the design of management procedures (De
Oliveira 2006).

The aggregative behavior of small pelagic fish
makes the catch per unit effort unreliable as a proxy
of abundance (Csirke 1988, Fréon & Misund 1999)
and therefore, fisheries-independent surveys are
required. Surveys for eggs and larvae, as well as
acoustic surveys are often used for close monitoring

of the stock (Gunderson 1993), either to fit the popu-
lation models, including their estimates as abun-
dance indices, or to directly implement management
decisions. Therefore, any bias or lack of precision in
the surveys will have immediate consequences on the
stock. For these cases, the estimation of constant har-
vest strategies, such as Fmsy (i.e. the fishing mortality
rate which, if applied constantly, would result in
maximum sustainable yield), can be difficult, and
usually risk-averse decisions are suggested, for exam-
ple short-term escapement strategies (Gjøsæter et al.
2015).

The objective of this work was to describe the
underlying MSE process for the Bay of Biscay an -
chovy, focusing on how small pelagic fish character-
istics were considered and how the modeling work
was adapted as new biological information and data
sources became available. To do so, firstly, the fish-
ery and the management framework are de scribed.
Secondly, the set of explored HCRs are presented.
Next, changes made during the modeling process,
motivated by changes in the assessment methodol-
ogy and the participation of stakeholders, are de -
scribed. The results allowed us to identify the most
relevant sources of uncertainties for the management
of the Bay of Biscay anchovy, which could be applica-
ble to other short-lived pelagic species.

2. MATERIALS AND METHODS

2.1. Case study

The Bay of Biscay anchovy Engraulis encrasicolus
is a small pelagic fish that is a prey species for pisciv-
orous fish, mammals, and birds in the region (Preci-
ado et al. 2008, Lassalle et al. 2011). It spawns during
spring off the Spanish and French Atlantic coasts,
and early juveniles are found during summer and
autumn in the southeastern part of the Bay of Biscay
(Uriarte et al. 1996, Irigoien et al. 2007, Petitgas et al.
2010b).

Two countries (Spain and France) exploit the Bay of
Biscay anchovy, each operating in different periods
and areas. The Spanish fishery is carried out with
purse seiners, and about 90−95% of the catches
occur during the first half of the year. The French
fleet instead uses mainly pelagic trawlers, but also
some opportunistic purse seiners, and between 70
and 100% of the catches are fished during the second
semester. The number of vessels involved in both
fisheries has decreased since the year 2000 (Andrés
& Prellezo 2012, STECF 2014). According to the rela-
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tive stability principle, Spain owns 90% of the quota
and France the remaining 10%. However, various bi -
lateral agreements for quota transfers between these
countries since 1991 have led to a more balanced
share of the total allowable catch (TAC) (Aranda &
Motos 2006), around 50% for both countries.

The population is monitored by 3 fishery-indepen-
dent annual surveys. Two spring surveys estimate the
adult population at age and the spawning stock bio-
mass: a daily egg production method survey (BIO-
MAN) and an acoustic survey (PELGAS). These sur-
veys have been carried out regularly since 1987 and
1989, respectively, (Massé et al. 2018, Santos et al.
2018). In addition, since 2003, an acoustic survey (JU-
VENA) is carried out in autumn to estimate the juve-
nile abundance that will form the next year’s recruit-
ment at age 1 (Boyra et al. 2013). The abundance of
juveniles in autumn constitutes a reliable indicator of
the strength of recruitment to the adult stock in the
following year (Boyra et al. 2013, Boyra 2017, Boyra &
Martínez 2018). As a consequence, since 2014, the es-
timates from JUVENA were also in-
cluded in the as sessment as an index of
recruitment (ICES 2014a), improving
the knowledge base for making man-
agement decisions.

From 1979 to 2005, the fishery was
managed using a fixed TAC between
30 000 and 33 000 t, set independ-
ently to the stock status. The fishery
collapsed in 2005, due to successive
poor recruitments, and was closed
for 5 yr (ICES 2006, Andrés &
Prellezo 2012). Since 2010, the fish-
ery has been managed according to
a long-term management plan
(COM[2009] 399 final, https://eur-lex.
europa. eu/legal-content/EN/TXT/
PDF/?uri =CELEX: 52009PC0399&
rid=5), which was re vised in 2014
(STECF 2014). The de velopment and
agreement of the HCRs associated
with these plans have been supported
by extensive and thorough simulation
testing work (STECF 2008a,b, 2009,
2013, 2014) within the MSE frame-
work (Smith et al. 1999, Sainsbury et
al. 2000). The work was carried out
in 2 phases: (1) in 2008, for the initial
management plan to be used once
the stock had achieved re covered
status (STECF 2008a,b); and (2) in
2014, for the revision of the manage-

ment plan after being in force for several years,
and due to important changes in the assessment
methodology, such as the incorporation of a
recruitment index from the autumn acoustic survey
JUVENA (STECF 2013, 2014).

2.2. Definition of a management plan in 2008

The general management objectives for the anchovy
fishery, as defined by the European Commission,
were: to ensure the exploitation of the stock at high
yields consistent with the maximum sustainable
yield, guaranteeing stability (as far as possible) with
a low risk of stock collapse (Non-paper of the EC on
long-term management for anchovy, November 2007
unpubl.)

Usually management runs from January to Decem-
ber. In the absence of any valid indicator of recruit-
ment at age 1 in the management year (y+1), man-
agement of the population in y+1 was very uncertain,
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Fig. 1. Conceptual diagram of management calendars employed for the an-
chovy fishery in the Bay of Biscay. DEPM: daily egg production method; TAC: 

total allowable catch; SSB: spawning stock biomass
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because most of the catches and population would
depend upon the unknown new recruits (by about
60%; Fig. 1a). For this reason, it was decided to man-
age the population in the year of the assessment (as
observed by the spring surveys in May), while mini-
mizing the risks for the population in the following
year. To achieve this, the management calendar was
moved from January (y+1)−December (y+1) to July
(y)−June (y+1). The basis for these decisions was the
recent in-year spawning stock estimates from the
assessment based on spring surveys of adults (in May
of year y) (Fig. 1b). In this way, catches, as defined by
the HCR, would regulate much of the exploitation of
the recently assessed stock and hence its contribu-
tion to spawning in the next year (y+1), making the
most of the newly acquired information on stock
abundance from the surveys. Furthermore, with this
approach, there is no need to make predictions on
the unknown incoming recruits which form the bulk
of the population and the catch in year y+1. This sim-
plifies the procedure of defining the HCRs.

On this basis, the HCRs considered (Rules A, B, C,
D, and E in Table 1) determined the annual TAC (in t)
from the period from July of year y to June of year
y+1 (denoted by ) according to the
spawning stock biomass (SSB) estimate (cor -
responding to the stock biomass on 15 May). For all
HCRs, the effects of having maximum and minimum
TACs were also tested at the request of the stake-
holders. The maximum TAC at 33 000 t aimed at pro-
viding stability to the TACs at high levels of the
resource and was based on the evolution of the fleet’s
capacity and the anchovy market. The minimum
TAC of 7000 t represented the threshold below which
fishing was considered economically not viable (by
the fishermen) leading to a TAC of 0. Therefore, for
each HCR, 4 cases were considered: (1) no maximum
or minimum TAC; (2) 33 000 t maximum TAC, no min-
imum TAC; (3) no maximum TAC, 7000 t minimum
TAC; and (4) 33 000 t maximum and 7000 t minimum
TAC. An additional Rule E allowed the minimum
TAC to be taken over a range of low values (between
24 000 and 33 000 t).

In order to test the proposed HCRs, the MSE frame-
work was used to simulate the anchovy fishery (Table 2,
Fig. 2; also see Supplement 1 at www. int-res. com/
articles/ suppl/ m617 p245 _ supp .pdf). The MSE frame-
work was implemented in R software (https:// www.
r-project. org/). The simulation model is divided into
the operating model (OM) and the management proce-
dure (MP). The OM represents the ‘real world,’ which
consists of the fish stocks and the fleets, whereas the MP
represents the ‘perceived world,’ comprising the per-

ceived system and the management actions taken.
Stochasticity was introduced using Monte Carlo simu-
lation (Refsgaard et al. 2007). A detailed description of
the simulation model can be found in Supplement 1.

Within the OM, 3 seasons were considered within
the year (1 July to 31 December, 1 January to 15 May
15, 16 May to 30 June). Population dynamics are sim-
ulated given a 2-stage biomass population model.
Catches are as sumed to be taken instantaneously at
the middle of the defined periods. The management
procedure was run an nually. Since the currently used
as sessment model is a Bayesian model which is very
time-demanding, it was not possible to incorporate
the assessment model into the simulation, and a
short-cut ap proach was used. Observation and as -
sessment uncertainty were considered jointly in the
observation error model (OEM) based on the simula-
tion testing results of the assessment model (Ibaibar-
riaga et al. 2011). Management advice is generated
by means of an HCR that sets the TAC from July of
year y to June of year y+1, based on an estimate of
the real population simulated in the OM (subject to
error). Implementation error was not considered, and
seasonal catches were determined based on assign-
ing a fixed proportion of the TAC each season, based
on historical catches. Catches at age are estimated
based on a flat selectivity pattern. The initial SSB (in
2007) was assumed to follow a log-normal distribu-
tion with mean equal to the median SSB from the
most recent assessment (ICES 2007, Ibaibarriaga et
al. 2008), and a coefficient of variation (CV) of 25% to
account for the uncertainty in the initial conditions.
No errors were considered for the age-1 proportion of
the population. For initialization, a fishery closure
from 15 May 2007 up to July 2008 was simulated.
Subsequently, the simulation period started and the
HCRs were applied.

An independent algorithm was developed to eval-
uate the socio-economic impact of the different HCRs
(Fig. 2; Supplement 1). In this case, both Spanish and
French fleets were included as independent fleets to
infer the economic results for each of them sepa-
rately. Given the annual catches (median value) sim-
ulated in the MSE, these were disaggregated by
country and season based on historical catches. The
effort devoted by fleet and season was then esti-
mated given a Schaefer-type production function
(Schaefer 1954), with effort and biomass elasticities
equal to 1. The SSB value was taken from the abun-
dances (median values) simulated in the OM of the
MSE. Prices for anchovy were modeled by country
and season as a linear function of the total landings of
the stock by semester (on a log scale), conditioned to

TAC
1Jul Juny y− +

SSBy
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Fig. 2. Conceptual diagram of the modeling approach. MSE: management strategy evaluation; HCR: harvest control rule

                                           MP definition in 2008                                                       MP revision in 2013

Software                            R (https://www.r-project.org)                                          R (https://www.r-project.org)
                                           Ad hoc created code                                                        FLBEIA frameworka

OM                                                                                                                                
Biological                           Two-stage model in biomass (ages 1,2+)                       Age-structured model in numbers (ages 0–3+) 
                                                                 based on half-year BBM assessmentb                                           based on half-year CBBM assessmentc

Recruitment                       Ricker SR                                                                           Ricker SR

Observation model            Observation + assessment error (CV 25%)                    Observation + assessment error (CV 25%)

MP                                                                                                                                 
HCRs                                 Discontinuous HCRs                                                        Continuous HCRs
                                           Rules A, B, C, D, and E (see Table 1)                              Rules G1, G2, G3, and G4 (see Table 1)

Implementation model                                                            and 
                                           No implementation error                                                 No implementation error

Conditioning:                    Half-year BBM assessment results in 2008b,d                 CBBM assessment results with 1987−2013 datac,e

initial population

Simulations                        10 yr                                                                                   20 yr
                                           500 iterations                                                                    1000 iterations

Performance statistics      Biological risks, i.e. p(SSB < Blim) in any year;               Biological risks, i.e. p(SSB < Blim) in any year;
(see formulation              Probability of fishery closure;                                          Probability of fishery closure;
in Supplement 3)             Yield: average catch, standard deviation                      Yield: average catch, standard deviation of the catch, 

                                           of the catch;                                                                     interannual variation (IAV) and p(IAV < 5000 t);
                                           Economic risk (probability of having negative              Economic risk (probability of having negative cash 
                                           cash flow by country); and                                             flow by country);
                                           Discounted present value of the landings by                Discounted present value of the landings by country
                                           country

aGarcía et al. (2017); bIbaibarriaga et al. (2008); cIbaibarriaga et al. (2011); dICES (2007); eICES (2013a)

TAC TAC
1

= − +y Jul Juny y
TAC

1− +Jul Juny y
TAC −Jan Decy y

Table 2. Details of the management strategy evaluation (MSE) framework and its conditioning for the base case (see details in Supple-
ments 1 & 2 at www. int-res. com/ articles/ suppl/ m617p245 _ supp .pdf). OM: operating model; MP: management procedure; HCR: harvest control
rule; (C)BBM: biomass-based model (including catches); SR: stock recruitment model; SSB: spawning stock biomass; Blim: biomass limit 

below which a stock is considered to have reduced reproductive capacity

https://www.int-res.com/articles/suppl/m617p245_supp.pdf
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information from the period 2000−2006, and showing
a negative effect for the volume of landings in the
price and that anchovies landed in the first half of the
year would reach higher prices.

Simulations were carried out considering a range
of sources of uncertainty (Table 3). Firstly, alterna-
tively to the Ricker stock-recruitment (SR) model,
Beverton-Holt, segmented regression, and quadratic
hockey stick models were also examined. Addition-
ally, even though no significant autocorrelation was
found in the recruitments, a major concern in the
recruitment modeling was to account for a potential
permanent regime shift in recruitment levels (as
observed from 2002 to 2009), either due to the bio-
mass level of the stock itself or to an environmental
regime shift. To explore the implications of a poten-
tial regime shift, a scenario of low recruitment was
also considered according to a normal distribution
with mean and standard deviation equal to 19 000
and 9200 t, respectively (ICES 2007), truncated to be
positive. Secondly, motivated by the lack of complete
knowledge of the real biological dynamics, alterna-
tively to the 2-stage model an age-structured model
was used in the OM for contrast (a complete descrip-
tion of the model and its conditioning can be found in
STECF 2008a). Finally, regarding the catch alloca-
tion in seasons, an alternative variable quota alloca-

tion scenario was defined. This would result from a
new potential TAC share agreement, where a part of
the Spanish quota, proportional to the TAC, would be
transferred to France on an annual basis (STECF
2008a). This alternative TAC sharing would ulti-
mately imply a different seasonal international catch
allocation every year. Catches by countries and
semesters were deduced for any potential TAC given
the following assumption on catch allocation by
countries in semesters to apply in the future to their
quotas (Q): QSpain,sem1 = 0.87 × QSpain and QFrance,sem1 =
0.24 × QFrance (STECF 2008a).

The dynamics were simulated for 10 yr and run for
1000 iterations. All simulated scenarios are listed in
Table 3. The performance of HCRs in relation to the
management objectives (such as the sustainability of
the stock and the profitability of the fleet) was evalu-
ated given the performance statistics described in
Supplement 3.

2.3. Management plan revision in 2013

In 2013, after some years of application of the
selected HCR (COM[2009[ 399 FINAL), the Euro-
pean Commission requested the revision of the
agreed management plan. This revision was trig-
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                                         MP definition in 2008                               MP revision in 2013                        Source of uncertaintya

OM
Biological                         Two-stage model in biomass                                                                                                                  Model structure error
                                         (ages 1,2+)b

                                         Age-structured model in numbers
                                         (ages 0–3+)
Recruitment                    Ricker SR modelb                                                         Ricker SR modelb                                          Process error
                                         Persistent low recruitment                       Sensitivity to 3 successive 
                                         Other: Beverton-Holt, segmented          years of poor recruitment
                                         regression, quadratic hockey stick       Other: Beverton-Holt
                                         SR models, and historical variability

MP
Observation +                 CV = 25%b                                                                        CV = 25%b                                                         Observation error
assessment error           CV = 15% (as assessment predicts)            CV = 15% (as assessment 

                                                                                                            predicts)
HCRs                               Rules A, B, C, D, and E (see Table 1)      Rules G1, G2, G3, and G4             –
                                                                                                            (see Table 1)
TAC calendar                                                              and     –

Implementation model
Catches 1st semester                                                                          60% (as historical;                          Implementation error
                                                                                                            i.e. TAC share = 50%)b

                                                                                                            75% (TAC share: 80% Spain        
                                                                                                            and 20% France)
aBase case; bFrom the classification of Francis & Shotton (1997)

TAC
1− +Jul Juny y

TAC
1− +Jul Juny y

TAC −Jan Decy y

Table 3. Summary of the sensitivity analysis carried out during the management strategy evaluation process. OM: operating 
model; MP: management procedure; HCR: harvest control rule; TAC: total allowable catch; SR: stock recruitment
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gered by changes in the assessment methodology
and new data on recruitment from the autumn
acoustic survey JUVENA (Boyra et al. 2013). The
possibility to test alternative HCRs was also open.

The inclusion of an index of juveniles from the
JUVENA survey provided reliable information on
recruitment at age 1 in year y+1 into the base knowl-
edge for management. This opened the possibility of
managing the population and the catches of year y+1
based on an assessment carried out at the end of the
previous year (Fig. 1c). Certainly, information on sur-
vivors (ages 2+, coming from the spring surveys in
year y) and of the new recruits (age 1, coming from
the autumn acoustic survey on juveniles) would
allow a forecast for year y+1. On this basis, HCRs to
manage the population from January to December
y+1 were also devised. The final shape of the HCRs
was defined by some parameters such as the harvest
rate, the biomass trigger points, and the TAC maxi-
mum and minimum thresholds (Table 1). HCRs that
were discontinuous (α = 0) and continuous at trigger
points were tested. The performance of each HCR
was tested in the July−June and January− December
management calendars for γ values between 0 and 1.
Present HCRs cover the alternatives of having or not
having: (1) a maximum TAC of 25 000 or 33 000 t; and
(2) a minimum TAC of 7000 t (Table 1).

The MSE approach was updated to the new situa-
tion. In this case, the FLBEIA framework was used to
test the performance of different management strate-
gies by means of simulations. FLBEIA is a flexible
toolbox with which to perform bio-economic impact
assessment of fisheries management strategies under
the MSE approach (García et al. 2013, 2017, Prellezo
et al. 2016). It is presented as an R (R CoreTeam 2015)
library, which makes use of the FLR tools (Kell et al.
2007). All of these packages and their source codes
are freely available at GitHub (http://github.com/flr).
A detailed description of the main differences of the
simulation model relative to the 2-stage model can be
found in Supplement 2.

In this new approach, the biological OM was age-
structured (ages 0 to 3+) and the population dynamics
were simulated in numbers at age by semesters.
Regarding the fleets, a unique fleet operating in each
semester was considered. As the Spanish and French
fisheries largely dominate catches in the first and
second half of the year, respectively, such simplifica-
tion was considered good enough to reflect the major
changes in fishing selectivity throughout the year.
Selectivity patterns for these 2 sequential fisheries
were estimated conditioned to the assessment results
for age 1, and fixed at the values estimated by Uriarte

(2005) for the rest of the age classes. Management
advice was generated based on HCRs that establish
the annual TAC (in t): (1) as a constant proportion of
the latest estimate of SSB, for the July−June manage-
ment calendar; or (2) of the expected SSB during the
management period, for the January−December cal-
endar. For the January−December calendar, when
estimating the expected SSB: (1) the selectivity at age
for the first semester was fixed at the median values
of the last assessment; and (2) the proportion of
catches in the first semester was assumed as histori-
cal. In the OEM, a short-cut approach was taken, as -
suming that the joint observation and assessment
uncertainty was the same, independently of when
the assessment was expected to occur (either in June
or December). Given the TAC, total catches by
semester were disaggregated by age using the differ-
ent selectivity patterns.

The parameters of the OM were based on the most
recent available results of a Bayesian biomass-based
model including catches (CBBM) (Ibaibarriaga et al.
2011, ICES 2014b), and Markov chain Monte Carlo
(MCMC) draws were used to account for all uncer-
tainty in the true population and fishery states arising
from the assessment.

Regarding the economic model, the anchovy price
was estimated differently for the first and second
semester. In the first semester, the ex pected price
was estimated as a linear function of the total land-
ings of the stock in this season (on a log scale), condi-
tioned to the 2010−2013 data, deducing a negative
effect for the volume of landings in the price. For the
second semester, anchovy prices were fixed at the
average price between 2010 and 2013, as no model
could be fitted to the data. Economic results were
computed for each of the simulations, whereas in
defining the management plan in 2008, only the
median values were considered.

Simulations were carried out considering previously
evaluated sources of uncertainty, as well as several
new ones (Table 3). First, with the introduction of the
January−December management calendar, there was
a need to make some inference to estimate the ex-
pected SSB for applying the HCR. To infer the abun-
dance in spring, given the stock status at the begin-
ning of the year, assumptions on growth, mortality,
and the distribution of catches among semesters are
required. Within the MP, the percentage of catches
assumed for the first semester was 60% (i.e. the his-
torical value). Thus, alternative quota allocations dif-
ferent from the historical ones would lead to a mis-
match between the catch percentage by semesters in
the OM and the one assumed in the MP, for the HCRs
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in the calendar year. Therefore, we
tested how a change in the quota allo-
cations would affect the performance
of the HCRs given this assumption. An
alternative quota allocation based on
an expected TAC share by countries of
80% (Spain) and 20% (France) was
also tested, implying a share of the
TAC equal to 75% for the first semes-
ter. Secondly, given the fact that an-
chovy recruitment is highly variable
and uncertain, alternatives to the
Ricker recruitment were tested. This
time, the persistent low recruitment
regime was not considered valid any
more as the stock seemed to have en-
tered a high production period. How-
ever, in order to test some repeated re-
cruitment failures, 3 successive years
with low re cruitment were forced
(sampled randomly from the 1⁄3 lowest
recruitments of the time series, those of
the years 1988, 1990, 2001− 2002, and
2004−  2008). The 3 repeated recruit-
ment failures were forced to happen in
the 10th year of projection (2023− 2025)
over a 20 yr projection period (still leaving 8 yr to
allow for population recovery), being thus able to test
if the HCR allows for posterior stock recovery. Addi-
tionally, an SR model that does not assume overcom-
pensation, such as Beverton-Holt, was also tested.

The dynamics were simulated for 20 yr and run for
500 iterations. In comparison to the 2008 MSE, the
projection period was extended further, up to 20 yr,
to allow the population to recover in the scenarios
where a recruitment failure was forced. All simulated
scenarios are listed in Table 3.

3. RESULTS

3.1. Definition of a management plan in 2008

For the base case 2-stage model (Ricker SR model
and constant catch allocation between countries and
semesters), the Rules A, B, and C (with no TACmin or
TACmax restrictions) resulted in a similar level of
catches for the same level of risks (Fig. 3). Rule C,
which is based on a short-term risk of 15% (under a
low recruitment scenario), resulted in long-term risks
of 16%. These levels are similar for Rules A and B,
with harvest rates in the range 0.6−0.7 and 0.4−0.5,
respectively. Rule D, which has only 2 possible TAC

options (TACmax and TACmin), gave average catches
3500 t lower than the rest of the HCRs for similar
 levels of biological risk (above 0.2).

The enforcement of an upper TAC limit reduced
the mean catches and consequently the risk for all
HCRs. In addition, it stabilized the catches and
reduced the probability of fishery closure compared
to the case with no upper limit for the TAC level
(Fig. 4). Rule E yielded a result very similar to Rule B
with a TACmax at 33 000 t in terms of both risks and
catches (Fig. 4). Comparing Rule B (with a maximum
of 33 000 t and a minimum threshold TAC of 7000 t) to
Rule E (which has the same TACmax and a minimum
economically viable TAC at 7000 t for SSBs between
24 000 and 33 000 t), both HCRs again showed a very
similar performance in terms of risks and catches, but
Rule E gave a lower probability of fishery closure
(Fig. 4).

There was a high sensitivity to a persistently low
recruitment scenario, with catches of on average less
than 10 000 t than for the Ricker scenario. The risk of
falling below the biomass limit below which a stock is
considered to have reduced reproductive capacity
(Blim) was always above 10% in any year of the simu-
lations for any of the harvest strategies investigated
(Fig. 5). When SR models alternative to Ricker were
tested (Beverton-Holt, segmented regression, and
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Fig. 3. Catch (in t) vs. risk. Comparison of Rules A, B, C (without maximum or
minimum total allowable catch [TAC]), and Rule D (see Table 1). Different
data points for Rules A and B correspond to the different harvest rates (i.e. γ
parameter in Table 1). From bottom left corner to the upper right corner, points
correspond to increasing harvest rates from 0.1 to 1. SSB: spawning stock
 biomass; Blim: biomass limit below which a stock is considered to have reduced
reproductive capacity (in the case of a 2-stage operating model, Ricker stock 

recruitment, constant allocation); HCR: harvest control rule
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quadratic hockey stick), they did not result in any
major contrasting results for the MSE.

Regarding the economic analysis, the minimum
value of catches necessary to yield positive cash flow
(that is, to cover the fixed costs) was estimated be -
tween 7000 and 11 000 t, depending on the scenario.
Maximum value of the TAC was obtained at a TAC
level of 32 000 t for the selected price model (Model 1).
The highest overall discounted cash flow decreases
with the harvest rate. Nevertheless, this decrease is
flatter when setting a TACmax of 33 000 t. Moreover,
the economic risk is much lower in this case, and also
limits the catch variability and biological risks.
Finally, it was confirmed that international economic
results do not depend on TAC share by country,
although the results by country obviously changed.

The selected HCR for the Bay of Biscay anchovy
management plan (COM[2009] 399 FINAL) was Rule
E, which was the rule allowing higher catches at
lower biomass levels at the expense of a reduction in
the fishing possibilities at higher biomass levels. A

harvest rate of 0.3 was determined as producing a bio-
logical risk around the maximum allowable risk set at
5%. Expected trajectories of stock development un -
der this HCR can be found in Supplement 4 (Fig. S2).

Although the models used to assess the initial stock
status and to carry out the simulations changed, the
selected Rule E still remained within the same risk
limits at the selected harvest rate (0.3), and was con-
sidered precautionary (Fig. 6). Moreover, this new
evaluation forecasted higher catches (around 15%),
less variability, and lower probabilities of fishery clo-
sure compared to the evaluation of the rule in terms
of biomass.

3.2. Management plan revision in 2013

The inclusion of an available recruitment index
allowed moving the management calendar from
July−June to January−December. Comparing the
management calendar for the tested HCR at the
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Fig. 4. Summary statistics for Rule B (see Table 1) with and without a minimum and maximum total allowable catch (TACmin

and TACmax) and for Rule E with TACmin and TACmax. (a) Probability of spawning stock biomass (SSB) being below the biomass
limit below which a stock is considered to have reduced reproductive capacity (Blim), (b) probability of fishery closure, (c) aver-
age catch (in t), and (d) standard deviation of the catch as a function of the harvest rate (in the case of a 2-stage operating 

model, Ricker stock recruitment, constant allocation). HCR: harvest control rule
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same harvest rates, this January−December calendar
led to higher (~5%) and more stable average catches,
while reducing biological risks and the probability of
fishery closure (by ~40%; Fig. 7), for the same har-
vest rates. For the same level of allowable risks, the
average catch increase was around 15% combined
with a reduction of 25% in the probability of fishery
closure. Furthermore, the sensitivity of this result to
changes in the expected percentage of catches by
semesters as a result of, for instance, different TAC
share between countries was minimal. For example,
if the share by countries changed to the expected sit-
uation given the actual country shares and the agree-
ment in place (leading to 75% of the catches expected
in the first semester, instead of what was assumed,
i.e. 60%), for Rule G1 in the January− December
management calendar, the risk shows variations

smaller than 1%, while catches would not differ by
more than 400 t, showing similar stability in catches.

When comparing Rules G1, G2, G3, and G4 in the
January−December management calendar, Rules G1
and G2 (i.e. the HCRs with a biomass range in which
TACmin is applied) implied lower risks and probabil-
ity of closure (Fig. 8). Rules G1 and G3 (i.e. the HCRs
with TACmax = 33 000 t) allowed higher catches, but
they were less stable (Fig. 8). Interannual catch vari-
ability increased when increasing the harvest rate
(Fig. 8). Finally, more stable catches were achieved
for Rules G4 and G2 (i.e. those with TACmax = 25 000 t)
(Fig. 8) but at the expense of reducing mean catches.
Overall, imposing a biomass range in which TACmin

is applied implies lower risks and probability of clo-
sure, whereas setting a lower TACmax gives more sta-
bility in the catches at the expense of a reduction of
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Fig. 5. Sensitivity of the performance of Rule B (see Table 1) to the stock recruitment (SR) model, for Rule B with minimum and
maximum total allowable catch (TACmin and TACmax) of 7000 and 33 000 t. Summary statistics for Rule B under different SR
models (Ricker SR model and continuous low recruitment levels) and biological operating models (2-stage or age-structured
model) selected for the analysis. (a) Probability of spawning stock biomass (SSB) being below the biomass limit below which a
stock is considered to have reduced reproductive capacity (Blim), (b) probability of fishery closure, (c) average catch (in t), and 

(d) standard deviation of the catch as a function of the harvest rate
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the mean expected catches. The higher average
catches resulting in admissible risks of falling below
Blim (i.e. lower than 0.05) were achieved for G1 (γ <
0.7) and G3 (γ ≤ 0.4) (Fig. 8), whereas for G4, catches
were more stable but with an expected mean around
3000 t lower than the HCR providing the highest
catches, namely Rule G3 (Fig. 8).

Given the simulated results presented, the man-
agement calendar was moved to the calendar year.
Managers, motivated by the stakeholders’ proposal,
finally selected Rule G4 with a harvest rate of 0.45 to
be applied in 2015. Afterwards, the fishermen re -
quested a change to Rule G3 with a harvest rate of
0.4, which implied similar risks (~5%) and expected
catches 2500 t higher. Therefore, the selected HCR
applied since 2016 onwards is Rule G3 at γ = 0.4. 

Both selected HCRs could recover the SSB after
recruitment failure in less than 2 yr (i.e. ~1.5 yr).
However, in the case of recruitment failure, the risks
are doubled (10%) and the catches are between 2600
and 2700 t lower and less stable than for the Ricker
recruitment model. Expected trajectories of stock
development under these 2 HCRs can be found in
Supplement 4 (Figs. S3 & S4).

4. DISCUSSION AND CONCLUSIONS

Recruitment forecasting remains one of the main
challenges in fish stock assessment and management,
especially for small pelagic fish with highly variable
and environmentally driven recruitment. Subbey et
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Fig. 6. Comparison of the performance statistics for the re-evaluation of the management plan harvest control rule (HCR; age-
structured model) and for the previous evaluation (2-stage model). (a) Probability of spawning stock biomass (SSB) being
below the biomass limit below which a stock is considered to have reduced reproductive capacity (Blim), (b) probability of
 fishery closure, (c) average catch (in 1000 t), and (d) standard deviation of the catch as a function of the harvest rate. OM: 

operating model
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al. (2014) asserted that substantial changes are still re-
quired to allow stock-recruitment relationship mo -
deling and forecasting relevant for management. The
inclusion of environmental indices has been devised
as an alternative to improve management (Tommasi
et al. 2017); nevertheless, a minimum capacity predic-
tion is required to allow a significant improvement (De
Oliveira & Butterworth 2005, De Oliveira et al. 2005).
Our work showed the importance of real-time moni-
toring and the use of the most up-to-date information
for fast-reactive management. Without any informa-
tion on next year’s recruitment, moving the manage-
ment focus from the following year population to the
in-year estimated one, allowed us to maximize the ex-
ploitation of the in-year population, while keeping the
risk of SSB falling below Blim in the following year at
acceptable levels (STECF 2008a, Penas 2016). 

The availability of a reliable recruitment index
from a new fishery research survey allowed us to

reduce biological risks and the probability of fishery
closure for a January−December management year.
Catches could be increased by 15% for the same
level of allowable risks. Furthermore, the expected
economic value of this new survey was positively
evaluated by Prellezo (2017). Still, the benefit was
not as great as expected from earlier simulation
studies on the management of year y+1 (Pomarede
et al. 2010). This was probably due to the improved
management achieved by changing the manage-
ment calendar in the ab sence of a recruitment indi-
cator, as it allowed exploiting the in-year estimated
population as much as possible by avoiding the use
of any ex plicit short-term forecast. Another alterna-
tive, when there is no information on incoming
recruitment at the time of the analysis, is setting a
provisional TAC until information on incoming
recruitment strength is made available. This infor-
mation can be provided by (1) a survey, as is the
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Fig. 7. Summary statistics for Rules G1, G2, G3, and G4 (see Table 1), expressed as the relative change of the indicator when
changing from the July−June management calendar to the January−December one (i.e. ratios above 0 indicate that
performance statistics are higher for the January−December than for the July−June calendar). (a) Probability of spawning stock
biomass (SSB) being below the biomass limit below which a stock is considered to have reduced reproductive capacity (Blim), (b)
probability of fishery closure, (c) average catch (in 1000 t), and (d) standard deviation of the catch as a function of the harvest rate
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case for the South African anchovy (Plagányi et al.
2007) or (2) commercial fisheries, as occurs with the
North Sea sandeel (Penas 2016). This possibility was
also initially considered for the Bay of Biscay
anchovy, but was not tested be cause of the lack of
support from stakeholders, either politically, as it
was considered too legally complex to be imple-
mented, or by the industry, which assumed it could
create inequalities among country fleets due to their
marked seasonality.

The simulation results showed that, independ-
ently of the selected HCR, the mean catches deter-
mined the risk, as found in other similar cases (De
Oliveira & Butterworth 2005). So for a given set of
HCRs allowing similar catches/risks, the final selec-
tion of the HCRs seemed to come from the follow-
ing facts: (1) the shape of the harvest (catches)
across the range of potential SSBs (and the level of
SSB for which maximum TAC is reached); (2) the

stability of catches (although they are all highly
variable); and (3) the economic performance of the
HCR (which was invariantly maximized for the
HCRs having a  TACmax). Therefore, the selection of
a specific HCR depends on how to distribute the
yield given the stock status. Tested HCRs have
focused on exploiting a proportion of the estimated
available biomass or the expected biomass (depend-
ing on the management calendar). However, a
commonly used management strategy for short-
lived species is what is known as the escapement
strategy (ICES 2013b, Gjøsæter et al. 2015), which
allows catches that would lead to a reduction of the
SSB up to a certain level. When biomass is esti-
mated to be below this escapement threshold, fish-
ing is not allowed. The escapement threshold is
often set to the biomass above which the stock is
considered to have full reproductive capacity (Bpa)
(e.g. North Sea sandeel and Norway pout) to allow
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Fig. 8. Summary statistics for Rules G1, G2, G3, and G4 (see Table 1) in the January–December management calendar. (a)
Probability of spawning stock biomass (SSB) being below the biomass limit below which a stock is considered to have reduced
reproductive capacity (Blim), (b) probability of fishery closure, (c) average catch (in 1000 t), and (d) interannual catch variation 

(%) as a function of the harvest rate
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a high probability of SSB being above Blim (ICES
2013a). This type of rule was not tested for the Bay
of Biscay anchovy, because it was considered to be
infeasible for the operating fleets. This fishery
appears to have limitations in market demand, and
has shown a negative relation between prices and
catches (STECF 2008b). Alternatively, HCRs that
allowed exploiting just a fraction above a certain
biomass threshold were tested (Rules A and C), but
they were ultimately discarded, as other HCRs
showed better performance in relation to manage-
ment objectives. Fixed TAC strategies have been
demonstrated to be inappropriate for managing
short-lived species (Ruiz et al. 2017).

TAC constraints to limit the catches below a spe-
cific threshold (Cochrane et al. 1998, Punt et al. 2016)
are usually associated with changes in the allowable
catches in the previous years. For example, within
ICES, a TAC variation limit of a certain percentage
(usually between 15 and 25%) is applied to many
stocks (Penas 2016). Moreover, the management
strategy for the southern and eastern scalefish and
shark fishery, in addition to a maximum TAC change
of 50% (up or down), requires not changing the pre-
vious year’s TAC if the expected change is <10%
(Punt et al. 2016). The example in De Moor et al.
(2011) includes (1) maximum and minimum TACs,
but including exceptional measures when the popu-
lation falls below a specified threshold, and (2) a
maximum decrease from year to year, following a 2-
tier system to adjust these changes during boom and
bust periods, and a mid-season increase in TACs.
The main aim of this constraint is to allow the fleets
sustainability and permit their gradual adaptation.
However, given the high variability of short-lived
species, this is not justified or even sought by these
fisheries. Interannual variability will invariantly hap-
pen, but setting upper catch levels will provide more
stability at high levels of the resource, while accom-
modating market absorption capacity. In this case
study, these catch constraints arise due to the capac-
ity limitations of the fleet, supported by the fact that
catches have not attained allocated quotas in several
recent years (ICES 2016a), and since the fishery
reopened in 2010, catches have been lower than
30 000 t. Industrial fisheries, such as the South
African purse seine fishery, may be more interested
in strategies that allow taking advantage of the occa-
sional booms while not increasing the risk of falling
below a Blim threshold (Butterworth 2007, De Moor et
al. 2011) at the ex pense of higher TAC variability.

One of the main findings regarding economic
analysis was the confirmation of the value of the

catch thresholds proposed by the stakeholders. This
analysis pointed to a minimum TAC of 7000 t for a
sustainable fishery and a maximum TAC of 32 000 t,
which gives consistency between the simulation
results and the perceptions of the fishermen. The
maximum TAC is also in agreement with the catches
in the period 1980−2005, before the fishery closure,
when TACs were set between 30 000 and 33 000 t
independently of the scientific advice. The economic
analysis additionally allowed assessing the impacts
by country. However, there was no feedback be -
tween biological and economic models. That is, total
annual catches were estimated independently to the
fleets’ capacity and profitability. Therefore, more
suitable methodologies should be adopted, but these
require high-resolution data which are not readily
available (Nielsen et al. 2018). The FLBEIA frame-
work has implemented the functions required to
incorporate the necessary improvements, but the
economic information (e.g. effort, landings and price
to analyse the behaviour of the fleet, effort allocation
and revenues of the fleets) was not provided on time.
Consequently, it was not possible to include the fleet
dynamics in the OM, which would provide additional
indications about the economic performance of each
of the fleets involved in this fishery for the different
harvesting strategies. Additionally, it would allow
simulations and testing for undershooting of the
TAC, which has been observed in recent years (ICES
2016a). This is of major importance for the fleets,
which can be limited by their capacity and/or by the
market’s absorption capacity. Moreover, French and
Spanish fleets should be modeled separately, includ-
ing the different métiers (pelagic trawlers and purse
seiners); this would allow analysis of the economic
impact of the different management strategies at a
lower level. TAC borrowing or banking from one
year to the next (according to Article 4[2] of Regula-
tion [EC] No 847/96) could also be analyzed in future
studies. After the fishery closure, average prices
seem to have suffered a structural change (Garza-Gil
et al. 2011). One of the reasons for this change may
be the fact that when the fishery was closed for 5 yr,
it left a market niche, which may have been filled by
anchovies from other places. However, this analysis
has not been done, and the real causes of the price
change have not been established. In any case, the
economic effect of the fishery closure was not only
visible during the closure, but will also continue to
have effects in the medium term.

The change in the tool for conducting MSE and
the adoption of FLBEIA was considered important
because this tool has the potential to incorporate bio-
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economic feedback and at the same time admitted
seasonal steps within the year. Moreover, it is pre-
sented as an R package which provides a stable
framework that has been tested for different case
studies (García et al. 2013, 2017, Prellezo et al. 2016,
2017, Sampedro et al. 2016). FLBEIA was modeled
using half-yearly steps to study the calendar changes
to set the TACs and to simulate the different fishing
patterns of the fisheries by semesters.

Small pelagic species are subject to periods of low
or high recruitment and productivity (Lluch-Belda et
al. 1989, MacCall 1996). This forces a consideration
of the possible changes in the recruitment regimes
for an effective management of the stock. In the pres-
ent study, low frequency variability (long periods of
high or poor productivity) was properly tested, as
done in De Oliveira (2006), but low recruitment
regimes were modeled in 2 different ways. Initially,
given its high variability and following a period of
persistently low recruitments since 2002, in the work
carried out for the definition of a management plan in
2008 a scenario of persistent low recruitment levels
during the whole projection period was evaluated.
Simulations showed that for such a low recruitment
regime, biological risks would increase to levels well
above 10% for harvest rates >0.2. However, in the
revision phase of the management plan in 2014 after
the recent recovery of recruitment levels and of the
population, a short regime shift to low recruitment
was considered more appropriate to test the recovery
capacity for the different HCRs. For this, a short
period (3 yr) of repeated recruitment failures were
tested and compared among the rules. It was found
that all tested HCRs could recover in <2 yr. As a refer-
ence, other small pelagic stocks which collapsed in
the past required around 15−20 yr to re cover
(Barange et al. 2009, Petitgas et al. 2010a). However,
risks for the SSB of falling below Blim rose from pre-
cautionary levels (5%) up to 10%. Therefore, poor
recruitment regimes could lead to an invalidation of
the inferred results from the MSE testing, since
recruitment was demonstrated to be the uncertainty
of major relevance in determining the relative per-
formance of the HCRs.

Besides recruitment, sensitivity to other factors
was also tested. There was little sensitivity to quota
sharing and therefore to the percentage of catches
by semester. Other factors such as the consideration
of lower CVs for the SSB estimate were not influen-
tial at all. Sensitivity to higher CVs was not consid-
ered, as a CV of 25% was considered enough to
account for all of the uncertainty surrounding the
stock as sessment model. Due to time constraints to

provide advice on the performance of the different
HCRs on time, only the uncertainty sources that
were considered critical were selected, disregarding
others that potentially could also impact the HCRs’
performance (e.g. natural mortality, maturity, growth,
etc.). Therefore, future analyses should include these
broader considerations, and in addition to testing
them relative to the base case, the effect of their
combination should also be assessed. This would be
achievable in any potential future revision of the
management plan (as we currently have a tested,
functioning framework, which allows this wide
range of analysis to be carried out), since the devel-
opment of the framework is more time de manding
than the running of alternative simulations. No as -
sessment was simulated within the MP, and observa-
tion and assessment uncertainty were considered
jointly by adding random noise to the values simu-
lated in the OM. The use of this short-cut approach
was motivated by the considerable time required by
the Bayesian assessment model to yield an output.
This, however, limited the analysis by not account-
ing for estimation uncertainty. Different authors have
warned against the use of the short-cut approach
(Butterworth 2007, ICES 2013b), but it could be con-
sidered appropriate if the approximation proposed
is demonstrated to give results consistent with the
assessment, as was the case here, since the assess-
ment model has proved to provide unbiased esti-
mates (Ibaibarriaga et al. 2011). As soon as a maxi-
mum likelihood version of the assessment model is
parameterized, providing results comparable to its
Bayesian counterpart, a model-based MP would be
possible. In addition, the in creased computational
power provided by the grid and cluster computing
available now will allow us to test a wider range of
uncertainties and to in crease the number of itera-
tions in future analyses.
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