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Nearly 30 years ago, emerged the concept of deterministic chaos. With it came sensitivity to initial conditions, nonlinearities, and strange attrac-
tors. This constituted a paradigm shift that profoundly altered how numerical modellers approached dynamic systems. It also provided an oppor-
tunity to resolve a situation of mutual misunderstanding between scientists and non-scientists about uncertainties and predictability in natural
systems. Our proposition is that this issue can be addressed in an original way which involves modelling based on the principles of chance and ne-
cessity (CaN). We outline the conceptual and mathematical principles of CaN models and present an application of the model to the Barents
Sea food-web. Because CaN models rely on concepts easily grasped by all actors, because they are explicit about knowns and unknowns and be-
cause the interpretation of their results is simple without being prescriptive, they can be used in a context of participatory management. We pro-
pose that, three decades after the emergence of chaos theories, CaN can be a practical step to reconcile scientists and non-scientists around the
modelling of structurally and dynamically complex natural systems, and significantly contribute to ecosystem-based fisheries management.
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Introduction
Nearly 30 years ago, emerged the notions of deterministic chaos,

sensitivity to initial conditions, nonlinearities, and strange attrac-

tors (Gleick, 2011). This initiated a series of works investigating

the implications of chaos theory in ecology in general (Hastings

et al., 1993), in marine ecology (Huisman and Weissing, 1999), in

fisheries modelling (Beddington and May, 1977; May et al.,

1978), and in fisheries management (Wilson et al., 1994, 1996;

Fogarty, 1995; Fogarty et al., 1997; Acheson et al., 1998).

Smith (1990) considered the developments in the science of de-

terministic chaos as an opportunity to change the nature of the

interactions between scientists and other actors involved in fisheries

management. She was focused on the different positions taken by

the actors involved in management, particularly with regard to un-

certainty and predictability. She saw a group of actors, fishermen,

processors, traders, used to constantly adapt to an uncertain, and

changing universe. In contrast, the other actors, scientists, and

managers, were attached to the search for rules, balances, and

determinisms. Smith wondered if the new chaos theories could

help to resolve the situation of mutual misunderstanding she had

observed in these two groups of actors. More specifically she asked

if chaos theory could lead scientists and managers to think about

uncertainties and predictability in a way more compatible with the

perceptions of the other actors. The issue is particularly relevant in

the context of ecosystem-based fisheries management (EBFM),

which was formalized after the publication of Smith’s opinion and

is becoming a focal point of fisheries management and research see

e.g. Browman et al. (2004), Smith et al. (2007), Rice (2011), Fulton

et al. (2014), DePiper et al. (2017), Marshall et al. (2019), Link

et al. (2019), and Trochta et al. (2018).

We use Smith position at the starting point of this “food for

thought” and ask what has changed from the situation described

in 1990? We certainly note progress (i) in the identification of

chaos within ecological series and its use for short-term predic-

tion purposes [from Turchin and Taylor (1992), to Sugihara et al.

(2012)], (ii) in the parameterization of nonlinear models using

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com

ICES Journal of Marine Science (2020), 77(4), 1573–1588. doi:10.1093/icesjms/fsz173

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/77/4/1573/5584404 by IFR
EM

ER
 user on 30 July 2020

http://orcid.org/0000-0002-0557-7410
http://orcid.org/0000-0003-3990-9118
mailto:benjamin.planque@hi.no


Bayesian methods, for example state-space models (Dowd and

Meyer, 2003).

However, it seems that, despite some advances, the perceptive

gap between the two types of actors has not yet been bridged and

the problem of involving all actors in fisheries management is still

open (Röckmann et al., 2012). Although it is recognized as a ne-

cessity for fisheries policies (Symes, 1997; Gray and Hatchard,

2008), involving actors in participatory marine resource manage-

ment operations remains a difficult task (Gray and Hatchard,

2008; Pita et al., 2010, 2016; Gopnik et al., 2012; Kraan et al.,

2014). Actors’ lack of belief in the need for planning, divergent

objectives, difficult dialogue (Bailey and Jentoft, 1990; Bailey

et al., 2017), mutual misunderstanding (Johannes et al., 2000), or

mistrust between professionals and researchers (De Vos and Van

Tatenhove, 2011; Glenn et al., 2012; Eggert et al., 2016) are still

common problems. Miscommunication results, at least partly,

from different actors thinking from different perspectives built on

different representations of the natural world. There is often a di-

vorce between the understanding of the fisheries system by the

actors and the numerical modelling principles and terminology

used by scientists. To improve this situation, Röckmann et al.

(2015) propose that EBFM requires transparent interaction

among scientists, decision makers, and other actors, in which sa-

lience, legitimacy, and credibility are promoted. Numerical

modelling can positively contribute to this interaction triangle if

conducted in a transparent and participatory manner. A challenge

is to reconcile the numerical modelling approaches used by scien-

tists and approved by managers, together with the understanding

by other actors of the functioning of fisheries systems and marine

ecosystem dynamics. Group model building is a way to achieve

this reconciliation, by raising trust and empowerment of all par-

ties involved, but it may not be easy to achieve and has been de-

scribed as a messy problem (Vennix, 1999).

Our proposition is that this issue can be addressed in an origi-

nal way which involves the development of new types of models.

We posit that all actors, even if they do not express it explicitly,

possess their own personal positions about many of the ideas that

the chaos theory illustrates: determinism/indeterminism, conti-

nuities/ruptures, predictability/unpredictability. Even if they can

experience this in very different ways, they all look for a combina-

tion of the notions of necessity (expressed by constraints) and

chance (related to a lack of knowledge, the uncertainty, and

unpredictability of the system.) We expect that putting forward

this common point of view can help establishing a revised and

more effective management mode in which different actors can

better share their understanding of the fisheries system and its

uncertainties. For this purpose, we advocate models in which

principles, equations, and results are expressed as clearly as possi-

ble in terms of chance and necessity.

Below, we review briefly the motivations behind the develop-

ment of mathematical models for fisheries management. We then

discuss the importance of communication about models as part of

participatory management. We introduce the basic principles of

chance and necessity modelling (CaN) using the logistic equation

as a toy model. We then present an application of CaN modelling

to perform a simplified food-web assessment. Finally, we discuss

how the model results can serve as a basis for elaborated discus-

sions between parties and how CaN modelling can promote a par-

ticipatory framework in modelling, assessment, and management.

Mathematical modelling and fisheries
management
Mathematical models of exploited marine ecosystems
When constructing and evaluating a numerical model, a common

rule is that the model should be designed to answer a specific ques-

tion (or set of questions) (Jakeman et al., 2006). Fish stock assess-

ment models fall in this category. They are designed to (i)

reconstruct the historical trajectory of individual populations (e.g.

biomass or numbers) and of their exploitation (e.g. fishing mortal-

ity) and (ii) provide some predictions of the expected consequence

of exploitation on the state of the modelled population. In contrast,

models of marine ecosystems are rarely designed to address a spe-

cific question and rather serve several, and more diffuse, purposes

such as: increase understanding of system dynamics; identification

of major processes, drivers, and responses; highlight of major gaps

in knowledge; and provision of mechanisms to “road test” manage-

ment strategies before implementing them in reality (Fulton et al.,

2011). In other words, ecosystem models are used to quantitatively

represent and integrate what we know, to identify or clarify what

we do not know and to make predictions about the consequences

of our actions or of particular external events. Simulation models

are useful tools to display the expected response of the system to

specific management actions in a way that scientists hope to easily

communicate to managers and stakeholders.

Constructing ecosystem models with such wide and diffuse

objectives is challenging. It is difficult to define which ecosystem

components to incorporate, which processes to include, and

which temporal, spatial, and ecological scales to consider. The

temptation can be great to inflate model complexity (Hellweger,

2017), but there is no assurance that this can result in better

model performance. Given that knowledge regarding ecosystems

structure and processes is always incomplete, more complex

models can reflect additional assumptions and noise as much as

they can reflect better understanding of ecosystem dynamics.

Model evaluations and sensitivity analyses also get harder to con-

duct as models become more complex. Without proper evalua-

tion, numerical model simulations may be unreliable (Planque,

2016) and therefore of little use for management. In this context,

Collie et al. (2016) and Plagányi et al. (2014) have argued that the

challenge for modellers is to find the sweet spot, i.e. a compromise

among model complexity, parameter uncertainties, and model fit.

A central tenet to most marine ecosystem models—whether

they are bioenergetic models, predator–prey models, or mini-

mally realistic models—is that there are mechanistic processes

that connect different elements of the ecosystems and that these

processes can be described and formalized by mathematical equa-

tions, for which parameters can be measured or estimated [see

e.g. the review by Plagányi (2007)]. Regardless of their degree of

complexity, most ecosystem models are tuned or optimized to

describe the system state and dynamics in the best possible way.

The way in which observational and structural uncertainties

can be dealt with by modellers, managers, and stakeholders is

central to the modelling process, and given these uncertainties, it

is not obvious that a single best representation of the system can be

found. This has been recognized in the theoretical ecology litera-

ture and is well summarized by DeAngelis and Yurek (2015) who

claim that there are no right models to describe ecological sys-

tems, only good approximations and that complex ecological

models are so sensitive to structure and parameters that even the
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most thoroughly and carefully developed model can hardly be

expected to be predictive.

We explore a modelling tool for situations where it is not pos-

sible to fully and precisely observe a dynamic system, and where

there is substantial irreducible uncertainty in our understanding

of that system. The approach starts from few rules for which there

is evidence and from existing observations. It explicitly recognizes

our ignorance or incapacity to observe and model many ecologi-

cal processes. A central element of this approach is that model

outputs cover a range of possible ecosystem state and dynamics,

rather than striving to deliver a best estimate. The existence of

these multiple possibilities represents the starting point for dis-

cussions among modellers, managers, and stakeholders.

Communication and participatory management
As the use of algorithms and numerical models is increasingly preva-

lent in the studies and analyses that support management decisions,

it is vital that these are well understood and trusted by all actors.

Optimally all actors should be engaged in model building and inter-

pretation. In practice, because models are often too complex, the ex-

ercise is left to specialists that are numerically competent. When

non-specialists are left aside, they may perceive models as black boxes

and can eventually develop some degree of distrust towards the

models. As argued by Saltelli and Funtowicz (2014), in a multiple-

actor context there is a need for models that are simple because

simpler models enable scientists and stakeholders alike to

understand how assumptions and outputs are linked.

Complex and often overparameterized mechanistic models

should be used only for more speculative investigations

outside of the policy realm.

The ongoing transition towards EBFM (Browman et al., 2004)

and the development of integrated ecosystem assessments (IEAs)

(Dickey-Collas, 2014) provide favourable conditions for scien-

tists, managers, and actors of the fisheries sector to consider

issues broader than individual fish stocks and fishing fleets.

Nevertheless, most current quantitative modelling efforts are con-

cerned either with single stock assessments, which do not address

the broader issues, or with complex ecosystem models, which can

address the broader issues but in a way that is often too complex

for non-scientists to grasp or utilize. There is still a gap in the de-

velopment of models that can serve EBFM efficiently. We contend

that these would need to: be simple, transparent, and communi-

cable, be trusted by scientists and non-scientists, recognize uncer-

tainties in knowledge and observations, including irreducible

Knightian uncertainties (Schinckus, 2009; Stirling, 2010), recog-

nize different perspectives and choices by different actors.

Principles of CaN modelling
We propose that the broad objectives of marine ecosystem mod-

els can be addressed in the following four steps.

First, express what is known in terms of constraints
Ecological constraints can be derived from physical and biological

observations and theory and are often more easily defined than

ecological laws (Lawton, 1999). For example, the constraints that

population biomass is strictly positive, or that the trophic flow

from a prey to a predator is strictly positive (otherwise the prey

would regurgitate the predator alive) can be easily defined.

Similarly, there are upper limits to individual and population

growth rates that can be derived from physiology and reproduc-

tive biology. Animal movements are also constrained by their

swimming capabilities and the ocean circulation around them.

Following (Aubin et al., 2011), we use the term necessity to define

the ensemble of constraints operating on the modelled system.

Second, express what is not known in terms of sets of
possibilities
Because ecological systems are complex and only partially ob-

served, there is more out there that we do not know than we

know. The existence of ecological laws that could underpin the

equations used in numerical models has been questioned, in par-

ticular at the ecological community scale where most marine eco-

system models operate (Lawton, 1999). Instead, one can think of

the processes and interactions operating in an ecosystem as a set

of possibilities. For example, it is possible for a population to

grow or decline, for an individual to survive or die, for a prey to

be captured or not, or for a motile animal to move along certain

trajectories. In the real-world, there is only one realization from

this set of possibilities. Following (Aubin et al., 2011), we use the

term chance to reflect the indeterminacy of this realization.

Third, explore the patterns emerging from the
combination of chance and necessity
While chance, or randomness, makes predicting difficult, necessity

constrains the possible state and dynamics of natural systems. In

other words, “Nature may not be predictable, but it is not totally

unpredictable either” (Cury et al., 2005b). The combination of

chance and necessity provides a way to explore possible system dy-

namics when only partial knowledge of the system is available, as is

the case for ecosystems. We use the acronym CaN for models that

combined chance and necessity. The terminology originates from

the influential work of Monod (1971).

Fourth, communicate knowledge in terms of CaN
CaN models explicitly recognize domains where processes are well

understood and quantified, vs. those where randomness is a more

acceptable way to account for lack of knowledge, uncertainties, or

variability. This discrimination can help end users to better under-

stand the scientific knowledge basis behind the model. In CaN

models, it is the set of constraints that needs to be communicated

and discussed rather than functional relationships. The former is

often easier to grasp than the latter. Stochastic simulations provide

dynamic illustrations of multiple plausible pasts and futures.

Rather than focusing on the most likely ecosystem path, CaN mod-

els explore plausible trajectories of ecosystem dynamics providing a

range of historical reconstructions or future scenarios.

A specific tool: polytope sampling
CaN model outputs consist of multiple solutions, and the main

tool for implementing a CaN model is polytope sampling which

can be summarized as follows (Figure 1):

� Mathematically, each system trajectory is represented by a

point in a high-dimensional space. Each dimension of this

space represents the state (or the variation in state) of one

component of the system at a given time step. For example, if

a system has 12 state variables and there are 8 time steps, the

dimensions of the trajectories space is 96 ¼ 8 � 12.
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� Using linear constraints, the ensemble of possible system tra-

jectories is thus defined by a convex polytope (i.e. the equiva-

lent of a convex polygon, but in higher dimensions).

� The polytope is then sampled uniformly to obtain a large set

of possible solutions, i.e. an ensemble of possible system

trajectories.

There are today efficient tools to extract samples from polytopes

in high-dimensional space. These tools are used in many research

areas, one of the most significant being for the study of steady

states of metabolic equations (De Martino et al., 2015). Details

about polytopes and about the algorithm used to perform poly-

tope uniform sampling are given in Appendix 1.

CaN modelling: a primer using the logistic
equation
We illustrate the principles of CaN modelling using Verhulst’s

problem as an example. The problem can be formulated in those

terms: how to revise the Malthus exponential growth model so

that it can account for limitation in population size (carrying ca-

pacity)? The classic solution to Verhulst’s problem is the logistic

model of population dynamics illustrated in Figure 2a. An alter-

native solution is to express Verhulst’s problem in terms of trajec-

tories and constraints. This was first proposed by Jean-Pierre

Aubin as part of the viability theory (Aubin et al., 2011).

Conventional approach
In the Verhulst approach, dynamics are expressed in continuous

time. The formulation consists in a differential equation, express-

ing changes of population according to its intrinsic growth rate r

and a carrying capacity K, the effect of which lies in constraining

the solution in a given range.

x 0ð Þ ¼ z0 and x0 tð Þ ¼ rx tð Þ 1� x tð Þ
K

� �
: (1)

The mathematical solution is given by:

x tð Þ ¼ Kz0ert

K þ z0 ert � 1ð Þ : (2)

It results in typical population dynamics shown in Figure 2a,

with first an increasing growth, then an inflexion and finally a de-

creasing growth. Population size increases asymptotically towards

carrying capacity.

CaN approach
In the CaN approach, dynamics are expressed in discrete time.

Formulation is in terms of constraints. These are of two types.

The state (i.e. population size) is constrained:

x 0ð Þ ¼ z0 and 0 � x tð Þ � K : (3)

The variation of state (i.e. population growth) is constrained:

jx t þ 1ð Þ � x tð Þj � r x tð Þ: (4)

Finding CaN solutions consists in sampling the dynamics of

the system that satisfy the above constraints. This is done by

expressing constraints as linear equalities or inequalities on trajec-

tories, that is on vectors representing the succession of states:

X ¼ x0; x1; x2; . . . ; xTð Þ 2 R
Tþ1. We use the elementary linear

functions: I the identity function: I(X) ¼ X, F the forward func-

tion: F x0; x1; . . . ; xTð Þ ¼ x1; x2; . . . ; xTð Þ, H the truncation func-

tion: H x0; x1; . . . ; xTð Þ ¼ x0; x1; . . . ; xT�1ð Þ, f the first term

function: f x0; x1; . . . ; xTð Þ ¼ x0;ð Þ. Constraints are easily

expressed in terms of these functions and thus are linear: con-

straint x 0ð Þ ¼ z0 becomes f Xð Þ � z0 and f Xð Þ � z0; constraint

0 � x tð Þ � K becomes 0 � I Xð Þ and I Xð Þ � K ; constraint

jx t þ 1ð Þ � x tð Þj � r x tð Þ becomes 1� rð ÞH Xð Þ � F Xð Þ � 0

and 1þ rð ÞH Xð Þ � F Xð Þ � 0.

Figure 1. Left: a triangle is a simple example of a polytope; any edge determines a line in the plane, that is linear equality; the whole triangle is on
one side of this line: its points satisfy a corresponding linear inequality; the three linear inequalities corresponding to edges, x � 0; y � 0; xþ y � 1,
determine the triangle. Right: polytope in 3� d; any face determines a plane in space, that is linear equality; the whole polytope is on one
side of this plane: its points satisfy a corresponding linear inequality; the linear inequalities corresponding to faces determine the polytope.
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The set of linear inequalities above confines the set of possible

population trajectories inside a convex polytope. The CaN solu-

tion is not a unique trajectory, but an ensemble of possible trajec-

tories that can be obtained by sampling this polytope. The

sampling method is provided in Appendix 1.

Results of CaN model are shown in Figure 2b. Interestingly,

many of the trajectories sampled by CaN display an inflexion

point, although this is not an immediate result of constraints.

Assuming that all trajectories are equiprobable, the mean of the

ensemble of trajectories can be derived (Figure 2c). Population

growth trajectories that depart substantially from the sigmoid

shape are possible, but it is extremely improbable to find such tra-

jectories in the sample. If additional information about the popu-

lation is available (e.g. measurement of population size at a

particular time step), this information can be included in CaN as

a new constraint and thereby reduce the set of possible trajecto-

ries (Figure 2d).

Comparison
Using the conventional approach, the underlying determinism is

evident while with the CaN approach uncertainty is evident. Both

conventional and CaN models express the idea that population

growth is negatively related to population size. In the conventional

approach this is translated into a differential equation which pro-

vides a unique (and therefore very restrictive) solution to the

problem. This may result in overconfidence in the mathematical

solution which relies on the assumption that there is adequate iso-

morphism between nature and the mathematical model. Using the

logistic equation to describe population growth is a modeller’s

choice, and the precise mathematical answer it provides reflects

this choice rather than certainty in nature. The CaN approach

relaxes the assumptions about the population growth determin-

ism. The resulting outputs are not unique and the dispersion of

the trajectories reflects our lack of precise knowledge about the

control of population growth.

The logistic equation exhibits an inflexion point that can be

analytically defined (it is found when population size reaches half

of the carrying capacity and the when growth rate is maximum:

1=rð Þ log Kx0ð Þ=x0). The population trajectories sampled from the

CaN model also display inflexion points but highlight that there

is a large range of possible values.

Application of CaN modelling to a marine system:
the Barents Sea
Numerical models of ecosystem dynamics are part of the IEAs

toolkit, which form an integral part of EBFM. These models are

(a) (b)

(c) (d)

Figure 2. (a) The mathematical solution of the Verhulst model. (b) A set of trajectories from the CaN model of the Verhulst problem.
(c) The 50% (thick line), 25–75% (grey ribbon) and 0–100% (dashed lines) percentiles of the trajectories of the CaN model. (d) Two sub-
samples of CaN trajectories, with either high value (higher ribbon) or low value (lower ribbon) at time step 7. Parameters that have been used
for both simulations are: T¼ 10, z0¼ 2, and K¼ 15. In the logistic model, intrinsic growth rate is r¼ 0.5; then effective growth rate in state x
is r(1� x/K); in the CaN model, growth rates must be in the interval [�r, r].
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potentially complex, often difficult to communicate and the

assumptions and uncertainties associated with food-web models

are a legitimate topic for debate among modellers, managers, and

other parties. For these reasons, ecosystem models constitute an

interesting case study to address the issue raised by Smith about

the consideration of uncertainties and predictability by different

actors.

Below, we develop an application of CaN modelling to the

Barents Sea ecosystem. Our intention is to model the dynamics of

this system using an approach that reflects shared knowledge and

uncertainties about the ecosystem and that can favour the in-

volvement of the different actors concerned with fisheries man-

agement. Perceptions of knowledge and uncertainties in

ecosystem models may strongly differ between actors.

The aim of the Barents Sea ecosystem model is to provide a set

of plausible past dynamics of the system, given few constraints,

partial knowledge, and incomplete observations. This is particu-

larly relevant to the work of the IEA group for this region which

aims to describe the status and trends of the Barents Sea ecosys-

tem (ICES, 2017).

The Barents Sea ecosystem
Located to the north of Norway and Russia, the Barents Sea is a

wide continental shelf sea, seasonally ice covered and in which

fisheries operate on several types of resources including demersal

and pelagic fishes, macroplankton (krill), and benthic inverte-

brates (crabs and shrimps). There is an additional exploitation of

marine mammals (whales and seals). The fisheries are co-

managed by Russia and Norway. Fishing and landing data are

well documented, and the ecosystem has been regularly moni-

tored through series of surveys conducted on a yearly basis. There

is a need for management to consider a number of ongoing eco-

system changes. The Barents Sea is warming (Lind et al., 2018)

with direct implications for species spatial distribution (borealiza-

tion, Fossheim et al., 2015). Invasive species (king and snow

crabs) have spread in recent years. Key pelagic species (capelin)

can fluctuate widely in response to and with effect on other spe-

cies such as Atlantic cod and herring (Hjermann et al., 2010).

For the purpose of this explorative model, we use the simpli-

fied representation of the Barents Sea food-web given in

Lindstrøm et al. (2017), Figure 3. This consists of eight species

groups: phytoplankton, herbivorous zooplankton, omnivorous

zooplankton, benthos, pelagic fish, demersal fish, marine mam-

mals, and birds. Species composition in each group is provided in

the Supplementary Material. In the following we use the terms

“species” and “species groups” interchangeably.

Several components of the Barents Sea ecosystem have been

extensively monitored during ecosystem surveys (Olsen et al.,

2011). We use annual data on biomass estimates derived from

surveys and stock assessment models, and landings for the major

groups (ICES, 2017) for the period 1987–2013 (26 years,

Figure 4). Satellite-derived estimates of annual primary produc-

tion are available for the period 1998–2013 (Dalpadado et al.,

2014). Prior to 1998 we have assumed a fixed range of primary

production. The details of data sources and uncertainties are pro-

vided in the Supplementary Material.

Modelling objectives
We use CaN modelling as a way to contribute to IEA by learning

about the controls of the system while recognizing the limits to

our understanding and to our observational capabilities. We in-

vestigate how species and trophic interactions may have varied in

the past and to which degree these variations can explain the

changes in the Barents Sea ecosystem that have been observed. In

addition to these general goals, we use CaN model outputs to ex-

plore the nature of predatory control (top-down vs. bottom-up)

in the system.

Modelling steps
We construct the Barents Sea ecosystem CaN model as follows.

First, we set the model structure and constraints based on our

knowledge about the Barents Sea ecosystem and its components.

We consider that (i) we know the food-web structure, (ii) we

have estimates of primary production, (iii) we have estimates of

biomasses for the different species groups, some of them quite

precise, some of them imprecise, and (iv) we have accurate esti-

mates of landings.

Second, we consider this imperfect knowledge in terms of

chance and necessity can this knowledge be used to learn about

trophic flows between species groups? Can it be used to recon-

struct historical changes in trophic interactions and to under-

stand the nature of the controls in this ecosystem?

To achieve this, we go through the following steps: (i) express

ecosystem dynamics as a mass conservation equation, i.e. changes

in biomass are the results of gains minus losses in each species

group, (ii) express constraints on the system state (biomasses)

and dynamics (trophic flows) and define the corresponding set of

possible system trajectories (series of trophic flows) as a polytope,

(iii) sample the polytope, and (iv) explore the samples. Steps (ii)

and (iii) respectively reflect necessity and chance.

A mass conservation equation
The ecological process driving the dynamics of the system is

expressed as a mass conservation equation, as done in most tro-

phic models of marine ecosystems (Walters et al., 1997). This

equation describes the relationship between changes of biomasses

and trophic flows: the change in biomass of a species is equal to

gains provided by feeding minus losses due to predation and so-

matic maintenance. Prey assimilation and predation functionally

depend on trophic flows, biological losses and previous bio-

masses. Fishing is expressed as a predatory loss. By iterating these

stock–flow relationships across species, we conclude that the his-

tory of biomasses is a function of biomasses at initial step and of

the history of trophic flows and fishing. The mathematical formu-

lation is provided in Appendix 2. The derivation of mass conser-

vation equation and the values of its parameters are detailed in

the Supplementary Material.

Constraints
Several kinds of constraints are considered: (i) trophic flows are

positive; (ii) biomasses must be in a given range, determined by

observations; (iii) the relative annual variations of biomasses are

bounded (inertia); (iv) feeding per unit time and per unit bio-

mass is bounded (satiation); (v) flows to fisheries equate reported

catches; and (vi) flows from primary production to trophic

groups are limited by primary production itself. These constraints

are detailed in Appendix 2.

As all of these constraints are linear, they define a polytope

that can be sampled according to principles and algorithms given

in Appendix 1.
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An experiment
In what follows, we explore an original method for ecosystem

modelling rather than develop a fully functional ecosystem assess-

ment model for the Barents Sea. We present how the method can

be implemented for a system of intermediate complexity and

show that computation is feasible. We then discuss the results

and argue why these could improve the relationship between

modellers and other actors in fisheries. Such modelling approach

is best developed as an iterative exercise. In the first iteration pre-

sented here, there have been no adjustments of the model struc-

ture or input parameters, which are all derived from Lindstrøm

et al. (2017).

Sampling and exploring samples
Having expressed linear constraints, we extract a sample of

200 000 trajectories in the resulting polytope, and we plot and an-

alyse this sample.

Results 1: historical changes in biomasses
Before modelling begins, variations in biomasses of some groups

are known with some degree of certainty, while for other groups

the only information available is the range of plausible biomass

for the entire time period (Figure 4). The CaN model improves

this prior knowledge by providing a set of coherent reconstruc-

tions of the past biomasses for all species groups (Figure 5).

A first observation is that there are solutions to the modelling

problem, that is: it is possible to find ecosystem dynamics that

can satisfy the model structure, constraints, and input data, for all

species groups simultaneously. A second observation is that the

simulated trajectories do not fill uniformly the “space” of avail-

able biomass trajectories for all species biomass, that is: the spread

of sampled biomass trajectories is less than the uncertainty in the

input biomass data. In other words, we have reduced our uncer-

tainties about the history of the system. A third observation is

that the results raise a number of questions regarding the func-

tioning of the Barents Sea ecosystem and the construction of the

model. For example, modelled biomasses for many species are on

the high side of the range of input data. Does this reflect that bio-

masses in the Barents Sea are higher than generally assumed?

Does this arise from poor choice of input parameter values (e.g.

assimilation efficiencies)? Does this reflect structural incorrect-

ness of the model, such as missing species groups (e.g. bacteria,

gelatinous plankton)?

Results 2: historical changes in trophic flows
In the Barents Sea, quantitative information about trophic inter-

actions is available only for a restricted set of predators (mainly

commercial species such as Atlantic cod, Gadus morhua), and for

selected seasons (Dolgov et al., 2011). There is no information

available about temporal changes in trophic flows between most

species groups studied here. The second important output of the

model is that it can fill this gap by providing a set of possible his-

tories of these flows (Figure 6).

A first observation is that there is a high year-to-year variability

for almost all flows (trajectories are rugged), and that uncertainty

is high for all trophic flow (large spread of sampled flows in indi-

vidual years). A second observation is that the uncertainty is

lower for flows between groups for which there are prior observa-

tions (primary production, zooplankton, fishes). A third observa-

tion is that trophic flows towards demersal and pelagic fishes,

seem to reflect changes in the biomass of these groups. This can

be interpreted as top-down control and is investigated further in

the following section. A fourth observation is that the ratios of

flow to biomass are generally high. This is particularly the case

for flows operating within individual species groups, i.e. self-

feeding links. This suggests that the production-to-biomass ratio

is generally very high and also that a lot of energy is dissipated

within trophic groups. It is unclear, at this point if these flow esti-

mates are realistic. The estimated annual flows towards demersal

fishes are generally much higher (17 million tons on average)

than expected from stomach sampling programmes (�2.2 million

tons, Dolgov et al., 2011). The same applies for pelagic fishes with

Figure 3. Simplified trophic structure of the Barents Sea ecosystem. Arrows indicate flow of biomass from prey to predators (plain, green),
within the same trophic functional group (dotted, red) and towards fisheries (dashed, blue). The taxonomic composition of individual
trophic groups is taken from Lindstrøm et al. (2017) and detailed in the Supplementary Material.
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Figure 4. Primary production, estimated biomasses, and observed landings. Common unit is thousand metric tonnes. Thick red lines show
the best estimates of biomass, production or landings reported in ICES (2017) or other relevant literature (see Supplementary Material). Grey
ribbons illustrate the uncertainty around these estimates. Landings are assumed to be precisely known.

Figure 5. A representative set of sampled trajectories of biomasses. Thick (black) lines correspond to input trajectories shown in Figure 4.
Thin upper and lower (red) lines indicate lower and upper biomass constraints. Grey ribbons encompass the 5–95% quantiles of all sampled
trajectories. A subsample of ten trajectories is shown in thin (coloured) lines.
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Figure 6. A representative set of sampled trajectories of trophic fluxes. Grey ribbons encompass the 5–95% quantiles of all sampled
trajectories. A sub-sample of ten trajectories is shown in thin coloured lines.
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an average of 43 million tons in the current model, vs. 29 million

tons estimated from stomach sampling programmes (Dolgov

et al., 2011). Exposing the discrepancies between these estimates

and discussing their origins will be an important step in the pro-

cess of participatory modelling.

Results 3: trophic controls
Using model results on biomasses and trophic flows, it is possible

to explore trophic controls between prey and predators. This can

be done by looking at the correlation between individual prey–

predator flows and the biomass of either the prey or the predator

(Table 1). Positive and high correlation between the flow and

prey suggest a bottom-up control. Positive and high correlation

between flow and predator suggest a top-down control (Cury

et al., 2005a). This is observed, for example, for omnivorous zoo-

plankton control on herbivorous zooplankton, or pelagic fish

control on omnivorous zooplankton. High positive correlations

in both directions suggest trophic interactions with feedbacks, as

is the case for primary production and herbivorous zooplankton.

High positive correlations for flows within a group (self-feeding

link, e.g. pelagic fish or demersal fish) suggest that the group is

mostly controlled by a high turnover rate and that the control by

prey and predators may be of less importance.

Iterative model improvement
From this first attempt at modelling the dynamics of a simplified

ecosystem, we can observe that uncertainties in model outputs re-

flect uncertainties in model inputs, i.e. model structure, input

parameters, input data, and constraints. This can constitute the

starting point of a deliberative exercise to investigate where model

adjustments are necessary. Model structure assumptions, parame-

ters, and data can be questioned in the following way: should the

structure of the model (i.e. the structure of the food-web) be

modified? Are the constraints sufficient and defined in an unam-

biguous manner? Are the input data reliable? Can the results of

stomach sampling programmes be used to better constrain the

model? Should one improve biomass estimates for benthos?, etc.

Asking these questions is a first step to refine the model and work

towards less uncertain outputs. In a context of participatory

modelling, this questioning should be conducted jointly by mod-

ellers and other actors and modelling-questioning cycle should be

repeated to converge towards better-constructed, less-ambiguous,

and less-uncertain models.

Discussion
Nonlinearity is at the heart of the chaos theory paradigm. With

nonlinearity comes sensitivity to initial conditions, feedback

loops, strange attractors, limited predictability, and high uncer-

tainties. In fisheries research, the application of chaos theory has

mainly been inspired by the work of Sugihara and May (1990)

with further developments by Hsieh et al. (2005), Liu et al. (2012)

by Ye et al. (2015) or Munch et al. (2018). These studies have

shown that it is possible to use nonlinear chaotic system theory to

improve the forecasting of complex ecological systems without

requiring complicated mechanistic ecological models (DeAngelis

and Yurek, 2015).

Here, we purposely stepped out of this track and, starting from

the same initial point, we primarily focused on the relationship

between different actors involved in fisheries management. We

looked at how models could be used to reconcile scientists, man-

agers, and other actors’ perspectives about uncertainty and pre-

dictability of fisheries systems.

To illustrate the key points of the CaN approach, we have

compared a conventional and a CaN approach to the logistic

problem. While the conventional mathematical solution is elegant

and easily accessible to modellers trained in the use of differential

equations, it may appear a little too elegant to non-modellers

who think that it does not correspond to what they are experienc-

ing. For them, understanding that population size and growth are

constrained might be more intuitive than manipulating differen-

tial equations. Non-modellers may also be sceptical towards the

exact solution provided by the mathematical model and rather

accept as more realistic premises that population size in the fu-

ture (or even in the present) is uncertain. CaN modelling reflects

this second attitude.

The CaN modelling approach we have sketched here consists

of (i) defining the conceptual model of the system (here, the

food-web and fisheries), (ii) identifying available observations

(fisheries and biological time-series), (iii) defining important

constraints and quantifying them (e.g. satiation), (iv) recognizing

uncertainty in observations and lack of knowledge, and (v) jointly

exploring the diversity of model outputs.

By applying the CaN approach to a trophic model of the

Barents Sea, we attempted to present modelling choices in a sim-

ple and transparent way. These choices include modelling princi-

ples (such as a mass conservation equation that reflects transfer

of energy in the food-web), model assumptions, lack of knowl-

edge, or observation uncertainties. We presented here a specific

application of CaN to the Barents Sea but these principles are

general enough to be applied in other areas and for building

models with different structure and objectives.

CaN modelling is closely related to the viability theory (Aubin

et al., 2011), from which it borrows the emphasis on chance and

necessity. A common key point between viability theory and CaN

modelling has to be underlined: both consider the set of possible

trajectories (“histories”) of a system as a way to deal with the

question of indeterminism. Viability theory goes far beyond the

Table 1. Trophic flows (from prey to predator), their correlation
with biomasses of prey and predator and the associated trophic
controls.

Flow Prey Predator Control

PrimaryProduction! Benthos 0.52 0.32
PrimaryProduction! HerbZooplankton 0.59 0.83 Feedback
PrimaryProduction! OmnivZooplankton 0.14 0.62 Top-down
HerbZooplankton! OmnivZooplankton �0.12 0.59 Top-down
HerbZooplankton! PelagicFish 0.01 0.70 Top-down
OmnivZooplankton! Birds �0.01 0.32
OmnivZooplankton! DemersalFish 0.26 0.53 Top-down
OmnivZooplankton!Mammals �0.01 0.22
OmnivZooplankton! OmnivZooplankton 0.64 0.64 Turnover
OmnivZooplankton! PelagicFish �0.05 0.70 Top-down
Benthos! Benthos 0.02 0.02
Benthos! DemersalFish 0.00 0.56 Top-down
PelagicFish! Birds 0.07 0.31
PelagicFish! DemersalFish 0.17 0.60 Top-down
PelagicFish! Mammals 0.07 0.24
PelagicFish! PelagicFish 0.82 0.82 Turnover
DemersalFish! DemersalFish 0.76 0.76 Turnover
DemersalFish! Mammals 0.14 0.23
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example developed in this paper and applies the ideas of CaN to

several research fields (evolution, robotic, finance, etc.).

In CaN modelling, trajectories are said possible if they agree

with physical laws, ecological theories (e.g. life history theory or

metabolic theory of ecology) and are compatible with observa-

tions. When CaN models are constrained by observed historical

trajectories of the system, CaN modelling is part of inverse

modelling (Vézina and Piatt, 1988).

Outputs of CaN models are comparable to outputs from en-

semble models, without the cost of running a collection of mod-

els. Ensemble modelling has been advocated as a strategy to

embrace structural and parameter uncertainties in ecological

models and to allow for different ways of representing reality

(Spence et al., 2017). Because CaN does not rely on strong

assumptions regarding functional relationships (trophic func-

tional relationships in the present case), it encompasses a range of

dynamics that could be produced by multiple deterministic mod-

els relying on different assumptions.

An interesting feature of CaN models is that more knowledge

about the ecological system almost always lead to less uncertain-

ties in the model outputs. Since ecological knowledge is expressed

primarily in terms of constraints, increased knowledge translates

into a more constrained system, that is a reduced space for the

model dynamics to operate.

Modelling assumptions often remain unchallenged because

they are drowned in technical narratives. For example, the defini-

tion of functional groups, their number and the data available to

parameterize them in a model are most often left to modellers.

When choosing these functional groups scientists can be con-

strained by data availability and computing time, or may simply

borrow from earlier models. When other actors have different

representations of the groups interacting in the ecosystem, can

these be shared through joint modelling exercises? Equations can

also be very difficult to communicate outside the scientific com-

munity. The mass conservation equation used in this example is

relatively simple but more importantly, it can easily be presented

and interpreted in plain language (all coefficients have a biologi-

cal meaning). Observation uncertainty and lack of knowledge

lead to uncertainty in the model outputs. After each modelling

step, patterns and uncertainties can be summarized and discussed

by all actors. Each of the above points is critical for the model

outputs to be understood and shared by different actors. They

can constitute the starting point for constructive discussions

among scientists, managers, and other actors. Based on past expe-

rience, one can anticipate that the proposed method will promote

better conditions for participative modelling. At this stage, the

proposed CaN modelling approach has not been tested directly

with stakeholders and this remains to be done, to move from

concept to proof-of-concept. The ICES IEA groups provide an

ideal platform for such test in an operational context.

In participatory modelling (Röckmann et al., 2012), the first

step usually consists in reaching an agreement on a common ob-

jective. This objective is then translated into a corresponding ob-

jective function in an optimization programme. Because of the

correspondence between the management objective and the ob-

jective function, it can be problematic for various actors to chal-

lenge the optimization output, even when they do not have a

clear understanding of the how the underlying model functions.

Strategies can be adopted by modellers and stakeholders alike to

favour an optimization criteria that serves best their particular

needs (Hämäläinen, 2015). The approach proposed here differs

from the above by recognizing that different actors have different

perspectives and preferences and may not share a common objec-

tive. For example, some may favour conservation of resource

while other promote maximization of income; some may favour

one type of resource over another, etc. These different positions

can lead to different interpretation of the model results. As CaN

provides multiple outputs, it is possible for different actors to

highlight different fisheries-ecosystem trajectories that best illus-

trate their personal view of the system or best serve their needs.

Each actor can use their preferred trajectories to identify a se-

quence of events and build an associated narrative. Once this is

achieved, actors can confront their interpretations of model

results. In this way, every actor learns from the model, while con-

sidering the disparity of the objectives and interpretations of all

others actors. Instead of the modelling results and their

interpretation—being delivered from the expert modellers to the

other actors, this provides a framework for the appropriation of

the modelling results by all actors.

The proposed CaN modelling approach combines simplicity

and the recognition of irreducible uncertainties. This is in line

with Saltelli and Funtowicz (2014), and Manski (n.d.) who advo-

cate for the use of simple models and efficient communication of

scientific uncertainty [although convincing modellers to engage

into transparent and participatory modelling remains a challenge

(At this point, we may recall one of the well-known Nasredin’s

short stories. Nasreddin is a well-respected authority. His wife

remarks that the gap between rich and poor in the village is be-

coming intolerable and she asks Nasreddin to convince people

that they must share wealth. Nasreddin leave his house in the

morning to talk to the people in the village. At the end of a long

day, he returns home exhausted and says to his wife: It was diffi-

cult. I only half succeeded. I convinced the poor.).] Our proposi-

tion is also in line with the position taken by Stirling (2010) to

“keep it complex” by acknowledging knowledge gaps and uncer-

tainties throughout the expert process. CaN offers a way to de-

liver plural and conditional advice, rather than forcing consensus

and producing definitive science-based advice that may simply re-

flect the ignorance of fundamental uncertainties about the natural

system during the modelling process.

Conclusion
Our proposition is that CaN modelling constitutes a useful contri-

bution to the ecosystem modelling toolkit required to support

EBFM. CaN modelling tool strives to support communication and

deliberation among scientists, decision makers, and other actors.

It is a way to explore together datasets (the example here) or to ex-

plore the possible futures of a natural system. It relies on the con-

cepts of chance and necessity that should be easy to grasp by all

actors and on relatively light modelling tools (short computer

code that can be implemented in various programming languages

without requiring heavy computing power). CaN models are sim-

ple, transparent, explicit about knowns and unknowns and the in-

terpretation of the results is simple enough to be used in a context

of participatory management. Three decades after Smith (1990),

CaN can be a practical step to realize her proposition that chaos

theory could reconcile scientists and non-scientists.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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Appendices

Appendix 1: A short introduction to polytopes and
polytope sampling
Our proposition relies strongly upon polytope sampling, as a tool

to explore and communicate uncertainty. As exemplified in

Figure 1, polytopes are related to linear constraints. In a general

setting, a convex polytope P is defined by linear

inequalities: P ¼ X 2 R
njA:X � Bf g, where A 2 R

nc�n is a ma-

trix and B 2 R
nc vector, nc being the number of constraints.

Despite their apparent simplicity, polytopes have very interesting

mathematical properties, have been characterized by significant

theorems and are still the object an intense theoretical research

(Brondsted, 2012).

Sampling a polytope consists in finding a representative set of

its points. The algorithmic issue is how to proceed when the am-

bient space is high dimensional (several hundreds of dimensions)

and the number of constraints is very high. Polytope sampling

has many applications, for example in the computation of steady

state of metabolic equations (De Martino et al., 2015). While in

most applications, it is the state of the system that is explored

with polytope sampling, in the present model, it is the set of sys-

tem trajectories that is sampled.

Several algorithms exists to sample polytopes; a simple and

nevertheless efficient method is the Hit and Run algorithm

(Kannan and Narayanan, 2012). The sample is the result of a

walk inside the polytope. The steps of the algorithm consist in: (i)

Set, at step t ¼ 0, the current point to be a randomly drawn point

in the interior of the polytope X0, (ii) (a) from the current step

Xt, randomly draw a direction in the underlying space; and (b)

randomly draw a point on the interval that is inside the polytope

and on the line passing by the current point and is according to

the selected direction; (c) set the current point Xt being this point,

set t :¼ t þ 1 and (d) go to (a). This algorithm becomes less effi-

cient when there are large differences in the size of the polytope

along the different dimensions. The walk can stay very long in

some sharp vertices.

In this paper, we use a variant of this algorithm, the Dikin algo-

rithm (Kannan and Narayanan, 2012; Sachdeva and Vishnoi,

2016; Chen et al., 2018), which allows to deal with this issue, and

results in a Metropolis–Hastings walk. It is a Monte Carlo

Markov chain algorithm and its mixing properties can be theoret-

ically studied (Chen et al., 2018). It relies on the idea of a barrier

function, a function that becomes infinite on the faces of the pol-

ytope. If the polytope is defined by inequalities:
P

jmcjxj � bc ,

one usually use as a barrier function LðxÞ ¼ �
P

c log ð
P

jmcjxj �
bcÞ and the ellipsoid defined by the barrier function at a point X

depends on its second derivatives: if H(X) is the Hessian of L at

X: HðXÞij ¼ o2L=oxioxjðXÞ, then the ellipsoid is defined as the

set of points Z such that tðZ � XÞ:HðXÞ:ðZ � XÞ � 1. The algo-

rithm, illustrated in Figure A1, is the following. (i) Set, at step t ¼ 0,

the current point to be a randomly drawn point in the interior of

the polytope X0, (ii) (a) from the current stepXt, randomly draw

a direction D according to the ellipsoid defined by the barrier

function at Xt, (b) randomly draw a point Y inside the polytope

on the line starting from Xt with direction D, (c) compute the

volumes of ellipsoids at Xt and Y: vðXt Þ, v(Y), and (d) randomly

draw p 2 ½0; 1�; if p � vðXt Þ=vðY Þ, let Xtþ1 ¼ Xt , else Xtþ1 ¼ Y ;

set t :¼ t þ 1 and (d) go to (a).

Appendix 2: Constraints and polyhedron sampling
for trophic systems
Method
The principles of CaN modelling are: (i) there is a mass conserva-

tion equation: biomasses linearly depend on trophic flows, (ii)

constraints on biomasses and flows can all be expressed linearly,

which results linear constraints on flows trajectories, and (iii) the

set of possible flows trajectories constitutes a polytope. This can

be expressed in matrix notation.

In what follows, we provide details about the definition of lin-

ear constraints on trajectories, given that the system is described

in discrete time. Using linear algebra, we formulate relationships

in terms of trajectories (each trajectory is an element in R
n�T , T

being the number of time steps).

Mass conservation principle
The principle of a mass conservation equation (Vasconcellos

et al., 1997) is to relate changes in biomasses to trophic flows, tro-

phic losses and export or import of biomass. Here we consider a

simplified situation, without import or export of biomass.

Figure A1. Principles of the Dikin sampling algorithm. Left: a polytope. Middle: density plot of the barrier function. Right: a walk among
three points; at each step, the random direction is selected according to the directions of the ellipsoids at current point.
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We consider a trophic system with E species. Fishery is repre-

sented as a predatory species. Biomass of species i at time t is

noted Bi;t . In this system, there are P trophic flows. Each flow f

has an origin o(f), the prey, and an end e(f), the predator. Flows

during time interval t ; t þ 1½ � are noted Ff ;t . In Section 2.1 of the

Supplementary Material, we show how to derive a mass conserva-

tion equation, using a previous modelling attempt for the Barents

Sea food-web (Lindstrøm et al., 2017):

Bi;tþ1 � Bi;t ¼
X

f

Nif Ff ;t � HiBi;t : (A1)

This is a linear equation:

Btþ1 ¼ IE �Hð Þ 	 Bt þ N 	 Ft ; (A2)

involving: (i) the vector of biomasses at year t, Bt ¼ Bi;tð Þ 2 R
E ;

(ii) the vector of trophic flows at year t, Ft ¼ Ff ;tð Þ 2 R
P ; (iii)

H 2 R
E�E , the matrix with diagonal terms Hi ; (iv) IE 2 R

E�E , the

identity matrix; and (v) N ¼ Nifð Þ 2 R
E�P , a matrix related to

the impact of flows on biomasses.

Matrix formulation of dynamics
Starting with an initial state of biomass B0, we iterate Equation

(A2):

B1 ¼ IE �Hð Þ 	 B0 þ N 	 F0; (A3)

B2 ¼ IE �Hð Þ 	 B1 þ N 	 F1; (A4)

¼ IE �Hð Þ2 	 B0 þ IE �Hð Þ 	 N 	 F0 þ N 	 F1; (A5)

. . . ; (A6)

Bt ¼ IE �Hð Þt 	 B0 þ
Xt�1

u¼0

IE �Hð Þt�u�1 	 N 	 Fu: (A7)

We collect all states in a same vector. We put:

F ¼ F0; F1; F2; . . . ; FT�1ð Þ 2 R
P�T ; (A8)

B ¼ B1;B2; . . . ;BTð Þ 2 R
E�T : (A9)

We have a linear relationship:

B ¼ L 	 FþM (A10)

with:

L ¼

N 0 0 . . . 0

IE�Hð Þ 	N N 0 . . . 0

IE�Hð Þ2 	N IE�Hð Þ 	N N . . . 0

. . . . . . . . . . . . . . .
IE�Hð ÞT�1 	N IE�Hð ÞT�2 	N IE�Hð ÞT�3 	N . . . N

0
BBBB@

1
CCCCA;

(A11)

M ¼

IE �Hð Þ 	 B0

IE �Hð Þ2 	 B0

IE �Hð Þ3 	 B0

. . .
IE �Hð ÞT 	 B0

0
BBBB@

1
CCCCA: (A12)

This is a single linear equation relating the trajectory of biomasses

to the trajectory of flows.

Matrix formulation of constraints
The constraints we have introduced in Section 5.3.2 are linear

functions of the vector of flows trajectories F.

1. Trophic flows are positive. Biomasses are positive. Using

Equation (A10), we get:

F � 0

L 	 F � �M:
(A13)

2. Some biomasses Bi;t must be in a given range, determined by

observations BO
i;t ; see Figure 4. We have: Bi;t 2 ½kiB

O
i;t ; miB

O
i;t �.

Using Equation (A10), we get matrix equations:

�L 	 F � �mBO þM; (A14)

L 	 F � kBO �M: (A15)

3. The relative annual variation of biomasses is bounded:

e�qi Bi;t � Bi;tþ1 � eqi Bi;t . In matrix terms:

�IE 0 0 . . . 0

eq �IE 0 . . . 0

0 eq �IE . . . 0

. . . . . . . . . . . . . . .
0 0 . . . �IE

IE 0 0 . . . 0

�e�q IE 0 . . . 0

0 �e�q IE . . . 0

. . . . . . . . . . . . . . .
0 0 . . . IE

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

	

B1

B2

B3

. . .
BT

0
BBBB@

1
CCCCA �

�eqB0

0

0

. . .
0

e�qB0

0

0

. . .
0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

That is, in matrix notation:

D 	 B � B
q
0: (A16)

Using Equation (A10), it comes:

D 	 L 	 F � B
q
0 �D 	M: (A17)

4. Inflow is limited by biomass according to a satiation principle.

Let Ii;t be the sum of incoming flows to species i. Then:

Ii;t � riBi;t . We denote S : RP�T ! R
E�T the incidence matrix:

S (Sft ;kt 0 is 1 if o(f) ¼ i and t ¼ t 0, else is 0) and r be the diagonal

matrix obtained with T repetitions of r1;r2; . . . ;reð Þ. We ex-

press satiation principle as:

S 	 F � r 	 B: (A18)
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Using Equation (A10), it comes:

r 	 L� Sð Þ:F � r 	M: (A19)

5. Real landings are equal to their observed values; we have:

Ff ;t ¼ FO
f ;t if f is a landing (see Figure 4). Q being the restriction

of the whole set of flows to the set of landings, we get a matrix

equation:

Q 	 F ¼ Q 	 FO: (A20)

6. Flows from primary production to herbivory plankton and

benthos are limited by primary production itself. We have esti-

mates of primary production: PO tð Þ. The constraint is:

kPPO tð Þ �
X

f jo fð Þ¼P

Ff tð Þ � lPPO tð Þ

R being the restriction of the whole set of flows to the set of flows

from matrix production, we get a matrix equation:

R 	 F � kPPO; (A21)

�R 	 F � �lPPO: (A22)

Putting altogether previous inequalities, all constraints result in

multiple linear inequalities involving vector F, which get be

expressed in the form:

A 	 F � b: (A23)

Parameterization for the Barents Sea
The parameters we use for building a CaN model come from a

previous modelling experiment of the Barents Sea by Lindstrøm

et al. (2017). In the Supplementary Material, we provide:

(1) The species composition of trophic groups (Section 1.1).

(2) The estimated values of biomass and landings for the 1988–

2015 period (Section 1.2).

(3) The parameters used in the Lindstrøm’s modelling experi-

ment (Section 1.3).

(4) The derivation of the mass conservation equation (Section

2.1). The parameters of the mass conservation equation ap-

pear in Table 4.

(5) The parameters of the constraints equations, their values and

the assumptions for using these values (Section 2.2).

The complete set of parameters is reported in Tables 4 and 5.

Given that this is a relatively small set of parameters, we can speak

of a simple model.
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