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Abstract
Coral reefs are threatened by global warming, which disrupts the symbiosis between corals and their photosynthetic
symbionts (Symbiodiniaceae), leading to mass coral bleaching. Planktonic diazotrophs or dinitrogen (N2)-fixing prokaryotes
are abundant in coral lagoon waters and could be an alternative nutrient source for corals. Here we incubated untreated and
bleached coral colonies of Stylophora pistillata with a 15N2-pre-labelled natural plankton assemblage containing diazotrophs.
15N2 assimilation rates in Symbiodiniaceae cells and tissues of bleached corals were 5- and 30-fold higher, respectively, than
those measured in untreated corals, demonstrating that corals incorporate more nitrogen derived from planktonic diazotrophs
under bleaching conditions. Bleached corals also preferentially fed on Synechococcus, nitrogen-rich picophytoplanktonic
cells, instead of Prochlorococcus and picoeukaryotes, which have a lower cellular nitrogen content. By providing an
alternative source of bioavailable nitrogen, both the incorporation of nitrogen derived from planktonic diazotrophs and the
ingestion of Synechococcus may have profound consequences for coral bleaching recovery, especially for the many coral
reef ecosystems characterized by high abundance and activity of planktonic diazotrophs.

Introduction

Coral reefs are currently under threat from global warming,
which disrupts the symbiosis between corals and their endo-
symbiotic dinoflagellates of the family Symbiodiniaceae [1],
leading to mass coral bleaching [2]. When corals bleach, they
lose part of their photosynthetic symbionts that provide them
with nitrogen [3] and seawater warming also decreases coral

nitrogen acquisition capacity [4]. Several studies have reported
an increase in the consumption of mesoplankton and macro-
plankton by corals when exposed to thermal stress, potentially
sustaining a critical supply of nutrients needed for recovery
following bleaching [5–7]. The ability of corals to feed on
smaller planktonic fractions, i.e., picoplankton (0.2–2 µm) and
nanoplankton (2–20 µm) has also been documented [8], but the
increase in the ingestion of bacteria and picoflagellates by
bleached corals has only been observed in one study [9].
Among these size fractions, planktonic dinitrogen (N2)-fixing
prokaryotes (subsequently referred to as planktonic diazo-
trophs) are very abundant in coral lagoon waters [10, 11]. They
reduce atmospheric N2 into bioavailable ammonium (NH4

+),
providing sufficient nitrogen stocks for the development of the
planktonic food web in oligotrophic waters [12]. The assim-
ilation of nitrogen derived from planktonic diazotrophs has
been recently demonstrated in corals [13]. According to [13],
15N-enrichment in corals after their incubation with
15N2-labelled natural diazotrophic assemblages could be due to
three different processes: (1) direct feeding on planktonic
diazotrophs digested within the coelenteron, (2) uptake of
15N-dissolved nitrogen compounds fixed by the planktonic
diazotrophs and released extracellularly, and (3) ingestion of
nondiazotrophic plankton enriched in 15N as a result of
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diazotroph-derived nitrogen transfer [14]. While some studies
have demonstrated that N2 fixation by coral symbiotic diazo-
troph communities increases in bleached corals [15, 16], the
acquisition of nitrogen derived from planktonic diazotrophic
activity has never been investigated in corals facing thermal
stress.

Materials & Methods

To determine if bleached corals also benefit from plank-
tonic diazotrophs, we incubated five colonies of the
branching coral S. pistillata with a 15N2-pre-labelled (24
h) natural plankton assemblage containing planktonic
diazotrophs (prefiltered through a 100 µm mesh to exclude
larger cells) as described in [13]. In parallel, N2 fixation
within endosymbiotic diazotrophs in colonies of the same
species was measured by incubating five untreated and
five bleached colonies in 15N-enriched filtered seawater.
Coral colonies collected in the New Caledonian lagoon
were acclimated to experimental conditions for 3 weeks.
They were progressively bleached over 18 days (by a
gradual temperature increase up to 31 °C) or left at
ambient temperature (28 °C) as a control (subsequently
referred to as untreated corals, see supplementary infor-
mation for details, Supplementary Fig. S1). The δ15N
isotopic values were measured in symbionts, coral tissues,
and plankton before and after incubation (12 h). Nitrogen
assimilation rates were calculated as previously described
[17]. The contribution of endosymbiotic N2 fixation was
minor (see results in the supplementary information).
Conversely, after the incubation with 15N2-labelled nat-
ural planktonic assemblage significant 15N-enrichments

were measured in the Symbiodiniaceae of both untreated
and bleached corals

Results & Discussion

The results suggests that Symbiodiniaceae used nitrogen
originating from the planktonic diazotrophs [13, 15, 18].
Nitrogen assimilation rates in Symbiodiniaceae and tissue
from bleached corals increased by 5-fold (0.6512 ± 0.3890
µg N cm−2 h−1; n= 5; Mann–Whitney–Wilcoxon test, P <
0.05) and 30-fold
(0.0057 ± 0.0028 µg −2 h−1; n= 5;
Mann–Whitney–Wilcoxon test, P < 0.01), respectively,
compared to those measured in the untreated corals (0.1330
± 0.2465 and 0.0002 ± 0.0004 µg N cm−2 h−1) (Fig. 1,
Supplementary Table 1). This demonstrates that corals
could incorporate more nitrogen coming from planktonic
diazotrophs under bleaching conditions than untreated cor-
als. By providing an alternative source of bioavailable
nitrogen, this increased incorporation of nitrogen derived
from planktonic diazotrophs may have profound con-
sequences for coral bleaching recovery, particularly in coral
reef ecosystems characterized by high planktonic diazo-
troph abundance and activity. These reefs are very wide-
spread in the Western South Pacific (e.g., New Caledonia,
Papua New Guinea, and Australian Great Barrier Reef)
[10, 11, 19, 20], but also in Hawaii, in the Caribbean and
the Red Sea [21–23]. After 12 h of incubation, the assim-
ilation rates were 100 times greater in Symbiodiniaceae than
in coral tissues, regardless of the treatment (n= 10 for each
compartment; Mann–Whitney–Wilcoxon test, P= 0.019).
This observation is consistent with the results obtained by

Fig. 1 Nitrogen assimilation
rates (µg N cm−2 h−1) in
Symbiodiniaceae (a) and coral
tissue (b) in untreated and
bleached corals after 12 h of
exposure to 15N2-enriched
natural plankton assemblage
(mean ± SD; n= 5 for each
treatment). Horizontal line in
each boxplot indicates the
median and black dots represent
the outlier samples. Asterisks
indicate statistically significant
differences
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several authors (e.g., [24], [13], [25], [15, 26], [16]) who
demonstrated that symbionts can immediately take up and
store nitrogen-derived compounds that are then transferred
to the host’s tissue. We conducted quantitative PCR assays
to determine planktonic diazotroph abundances (UCYN-
A1, UCYN-C, and Trichodesmium, i.e., the most important
phylotypes in the lagoon [10, 27]) in the incubation medium
at the beginning and at the end of incubation by targeting
the nifH gene, a common biomarker for diazotrophs. These
assays revealed (1) a significant abundance of diazotrophs
in the incubation medium at the beginning of the experi-
ment (UCYN-A1, UCYN-C, and Trichodesmium abun-
dances were, respectively, 4.14 ± 5.35 102, 0.97 ± 1.26 101,
and 8.63 ± 6.03 102 nifH gene copies L−1), and (2) a
decrease in the abundance of UCYN-A1 (1 µm) and
UCYN-C (4–8 µm) in all tanks containing corals (n= 3)
compared to the controls without corals, confirming that
corals fed on these two types of preys (Supplementary
Table 2). While UCYN-A1 are ~1 µm in size, their asso-
ciation with a picoeukaryote host [28] could increase their
size to 7–10 µm and thus improve their chances of being
consumed by corals. Picoeukaryotes, nanoeukaryotes, and
bacterial abundances were further assessed by flow

cytometry at the start and end of incubations to quantify
their ingestion by both bleached and untreated corals.
During the 12 h of incubation, Prochlorococcus was
quantitatively the major prey ingested, followed by Syne-
chococcus and picoeukaryotes in both treatments confirm-
ing the ability of corals to feed on picoplankton [e.g., [9, 29;
Supplementary Table 3]. One of the most notable results of
this study is that the ingestion rates of Synechococcus were
1.6 times higher in bleached corals
(3.79 ± 0.64 104 cell cm−2 h−1) than in untreated corals
(2.38 ± 0.24 104 cell cm−2 h−1, Mann–Whitney–Wilcoxon
test, P= 0.028; Fig.2). Until now, studies have shown that
corals can regulate their heterotrophic feeding capacities on
zooplankton (>50 µm) [6] and on picoflagellates and bac-
teria [9] in response to bleaching. For the first time, our
results show that thermally stressed corals are able to
increase not only their consumption of planktonic diazo-
trophs and plankton that likely benefited from N2 fixation,
but also more specifically their ingestion of a very specific
taxonomic group of picoplankton: the ubiquitous marine
cyanobacterium Synechoccoccus. Surprisingly, bleached
colonies of S. pistillata preferentially selected Synecho-
coccus cells, which were not the most abundant in the

Fig. 2 Ingestion rates
(cell cm−2 h−1) of
Prochlorococcus (a),
Synechococcus (b), and
picoeukaryotes (c) in untreated
and bleached corals (mean ± SD;
n= 5 for each treatment).
Horizontal line in each boxplot
indicates the median and black
dots represent the outlier
samples. The asterisk indicates
statistically significant
differences
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medium during our incubation, but are known to be rich in
nitrogen [30, 31; Supplementary Table 4] and also to benefit
from nitrogen released by surrounding diazotrophs in the
natural environment [12, 32]. So far, this type of selective
feeding on Synechococcus cells has only been shown under
controlled conditions in colonies of Porites astreoides [33].
Additional experiments are needed to determine which
chemosensory cues are at the origin of this selection [34].

Without their symbionts supplying them with nutrients
[3], corals thriving within an oligotrophic environment have
an urgent need for nitrogen. Our results demonstrate that,
unlike in a previous study [15], bleached corals do not meet
this nitrogen requirement through the activity of their
endosymbiotic diazotrophs but through an external source
coming from planktonic diazotrophs and plankton that
benefited from N2 fixation. The amount of nitrogen coming
from planktonic diazotrophs and Synechococcus for
bleached corals, compared to the other nitrogen sources can
be estimated (Supplementary Tables 4 and 5). S. pistillata is
able to take up inorganic nitrogen (ammonium and nitrate at
in situ concentrations) at a rate of 2 ng cm−2 h−1 [35–37] and
also estimated that the uptake of organic nitrogen in the form
of dissolved free amino acids was ca. 60 ng
N cm−2 h−1 leading to a maximal uptake of total dissolved
nitrogen of ca. 0.062 µg N cm−2 h−1. In our study we esti-
mate that for the bleached corals, nitrogen coming from
diazotrophic plankton and Synechococcus (0.658 µg
N cm−2 h−1) brings ten times more nitrogen than what corals
take up in the dissolved nitrogen pool when they still contain
Symbiodiniaceae. This specific feeding also represents a
non-negligible source of carbon for corals devoid of Sym-
biodiniaceae (Supplementary Tables 4 and 5). Studying the
fate of nitrogen derived from planktonic diazotrophs within
coral holobionts holds great potential to improve our
understanding of nutritional interactions driving coral func-
tion and resilience in the context of climate change. Bene-
fiting from N2 fixation could become a common strategy for
coral recovery facing bleaching, as both the activity and
geographical distribution of diazotrophs will likely increase
with future rising sea surface temperature [38, 39].
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