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Abstract: We present new results for ocean surface current signatures in dual co- and cross-polarized
synthetic aperture radar (SAR) images. C-band RADARSAT-2 quad-polarized SAR ocean scenes
are decomposed into resonant Bragg scattering from regular (non-breaking) surface waves and
scattering from breaking waves. Surface current signatures in dual co- and cross-polarized SAR
images are confirmed to be governed by the modulations due to wave breaking. Due to their small
relaxation scale, short Bragg waves are almost insensitive to surface currents. Remarkably, the
contrast in sensitivity of the non-polarized contribution to dual co-polarized signals is found to largely
exceed, by a factor of about 3, the contrast in sensitivity of the corresponding cross-polarized signals.
A possible reason for this result is the co- and cross-polarized distinct scattering mechanisms from
breaking waves: for the former, quasi-specular radar returns are dominant, whereas for the latter,
quasi-resonant scattering from the rough breaking crests governs the backscatter intensity. Thus,
the differing sensitivity can be related to distinct spectral intervals of breaking waves contributing
to co- and cross-polarized scattering in the presence of surface currents. Accordingly, routinely
observed current signatures in quad-polarized SAR images essentially originate from wave breaking
modulations, and polarized contrasts can therefore help quantitatively retrieve the strength of surface
current gradients.

Keywords: quad-polarized SAR; ocean surface current; polarization decomposition; Bragg scattering;
breaking waves

1. Introduction

With the advent of new spaceborne synthetic aperture radar (SAR) systems, more detailed
information on the ocean surface signatures of high-resolution ocean–atmosphere processes is becoming
available. Due to their high spatial resolution, wide swath acquisitions, and their capability to operate
at day and night over the global ocean, C-band spaceborne SAR microwave sensors can often capture
spectacular manifestations of mesoscale and submesoscale ocean surface signatures. Surface floating
buoys (drifters) and shipborne marine radar can measure near-surface currents [1,2], with the former
only able to measure current velocities at depths of about 15 m, and the latter is limited by the detection
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range, which is rather short, about 4 km. Though high-frequency (HF) radar is capable of remotely
sensing the ocean surface current field, with large coverage, the retrieval process is complicated because
the currents contain contributions from the wave-induced Stokes drift [3,4]. In any case, it has been
demonstrated that single- and dual-antenna SARs have the capability to measure line-of-sight or vector
currents [5–8]. Since the RADARSAT-2 (RS-2) launch in 2007, more than a decade of quad-polarized
SAR images are readily available. This helps to advance the interpretation and quantification of various
ocean surface phenomena (e.g., currents, sea surface thermal fronts, and oceanic internal waves) as
well as to better understand the microwave scattering from the ocean surface.

Compared to optical observations [9,10], the diversity of radar polarization observations can
provide further help to better isolate the measured roughness variations between the changes of
polarized resonant Bragg scatters and non-polarized scatters associated with breaking waves. Previous
studies have revealed that a ‘conventional’ simple model based on Bragg scattering dramatically
underestimates the observed radar signatures of ocean currents [11]. The reason is that the relaxation
rate of short Bragg waves is very fast and these waves are therefore not modulated by typical
current gradients, which have a width of the order of 1 km. Radar imaging models have been
improved following the integral equation method [12] and the composite surface Bragg theory [13,14].
By inclusion of intermediate scale waves carrying the shorter Bragg waves, the gap between simulated
and observed radar backscatter anomalies has been reduced, but still the discrepancy exists [15,16].

Previous investigation suggested that the effect of wave breaking on radar scattering might
provide the explanation for this discrepancy, between simulated and observed radar signatures of
ocean currents [17]. In particular, wave–current interactions amplify wave breaking dissipation which
in turn results in an enhancement of shorter gravity waves, including Bragg waves [18]. Accordingly,
wave breaking effects [19] should be taken into account when simulating radar returns in areas of
strong currents [20,21]. Wave breaking statistics can be based on the threshold level approach [22],
and the relaxation-type wave–current interactions model [23]. The crucial role of wave breaking in
radar imaging of ocean currents has been further demonstrated on the basis of previously developed
models [17]; as well as dual co- and cross-polarized SAR observations of meso-scale currents and
internal waves [9,10,24,25], nonlinear Ekman divergence [26] and sea surface temperature front
signatures [27].

As already suggested [17,28] and tested [24,29,30] for particular case-studies, an effective
methodology can build on previous work that uses the dual co-polarization (VV and HH) radar data to
quantitatively assess contributions of Bragg and non-Bragg scattering (associated with wave breaking)
in SAR imaging of different ocean surface phenomena, such as surface slicks, current gradients,
and wind field features. Recently, using a large number of RS-2 quad-polarized SAR measurements,
the contribution of wave breaking to C-band dual co-polarized scattering has been quantified under
different incidence angles and wind conditions [31]. Results show that cross-polarized scattering from
breaking waves can reach 80% of the total normalized radar cross-section (NRCS) for wind speeds up
to 20 m/s, which suggests that wave breaking can play a crucial role in cross-polarized radar imaging
of the ocean current, like co-polarization.

In this paper, we consider six particular cases of RS-2 quad-polarized SAR images to further
precisely identify whether the short Bragg waves, or the modulations of wave breaking, are the most
sensitive to the presence of ocean surface features (ocean currents, internal waves and fronts). Moreover,
we further explore and analyze the differing sensitivity between co- and cross-polarized signals to
breaking wave modulations. This paper is organized as follows. The description of the SAR data and
the radar imaging properties are presented in Section 2.1. In Section 2.2, the decomposition method is
introduced. In Section 3, we present the analyses of different ocean surface features, followed by a
corresponding discussion in Section 4. Conclusions are given in Section 5.
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2. Data and Model Approach

2.1. Data

In a recent study, the background properties, in particular, the dependence of wave breaking
contributions in dual co- and cross-polarized SAR signals on incidence angle, azimuth and wind speed,
have been reported [31]. In the present study, we investigate the quad-polarized SAR signatures of
meso-scale ocean phenomena which have been visually detected in available RS-2 SAR scenes.

In total, 71 SAR images contain distinct signatures of surface currents, natural slicks, ocean fronts
and internal waves (IWs). Hereafter, we concentrate the analysis on six “typical” quad-polarized SAR
images, acquired over the Aleutian Islands, on 13:53 UTC, 24 May 2012 (see Figure 1), on 14:35 UTC,
15 August 2009 (see Figure 3) on 22:07 UTC, 18 March 2009 (see Figure 5), on 21:30 UTC, 26 April
2009 (see Figure 7), on 01:57 UTC, 9 August 2009 (see Figure 9), and on 18:20 UTC, 14 September, 2009
(see Figure 11). These SAR scenes provide quite generic environmental conditions to analyze and
discuss the main mechanisms responsible for the manifestation of ocean and atmospheric processes,
as detected at the ocean surface. The RS-2 fine quad-polarization imaging mode provides SAR images
in HH- (σhh

0 ), VV- (σvv
0 ) and cross-polarized (CP) polarizations, defined as CP = (σvh

0 + σhv
0 )/2. For these

six cases, the HH polarization scenes are shown in Figures 1a, 3a, 5a, 7a, 9a and 11a. It should be noted
that the noise-equivalent sigma-zero (NESZ) is very low for the quad-polarization imaging mode with
approximate values of −36.5 ± 3 dB [32]. The NESZ has been subtracted from co- and cross-polarized
NRCS before the polarimetric analysis.

In Figure 1, periodic bright/dark signatures are well expressed in HH and PR = σhh
0 /σvv

0 images.
This case, which is only VV, has previously been considered [33] in the context of developing an
improved C-band SAR GMF for ocean surface wind speed retrieval. It was reported that the observed
periodic features are caused by near-surface wind oscillations induced by atmospheric gravity waves.
Figure 3a,b depicts SAR signatures of IWs: periodic dark and bright oscillatory patterns are related
to the typical manifestations of IWs trains. The other linear feature is considered to be a solitary IW.
The unique step-like change of the HH-signal, displaying a bright linear feature around the front
in Figure 5a,b, is presumably associated with the modulation of the near-surface winds over the
SST front and convergence of the current around the frontal line. Figures 7a, 9a and 11a, and the
‘number 2’ feature in Figure 3a exhibit very different bright linear signatures which are quite visible in
HH-polarized images, and in processed PR images, which can be further interpreted as manifestations
of the surface current boundaries.

2.2. Model Approach

To interpret these observed high-resolution SAR features, we follow the approach suggested
in [29] and further extended to CP in [24,30,31]. Following this approach, VV and HH normalized
radar cross sections (NRCSs) can be separated into two parts, associated with the polarized resonant
Bragg scattering σpp

OB and the non-polarized (NP) radar returns from breaking waves σwb:

σ
pp
0 = σ

pp
0B + σwb (1)

Equation (1) is then solved to derive the NP contribution, σwb, from the dual co-polarized NRCS
measurements:

σwb = σvv
0 − ∆σ0/(1− pB) (2)

where ∆σ0 = σvv
0 − σ

hh
0 is the polarization difference (PD), and pB is the estimated polarization ratio

(PR) based on the two-scale Bragg scattering model (TSM) (see Figure 1a in [31]).
CP NRCS can also be decomposed into two parts,

σvh
0 = σvh

0B + σvh
wb (3)
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where σvh
0B is estimated Bragg scattering for CP from TSM, and σvh

wb corresponds to the contribution of
wave breaking to CP, defined as [31]:

σvh
wb = σvh

0 − rB∆σ0 (4)

where rB is the TSM estimate for CP-over-PD ratio: rB = σvh
0B/∆σ0 (see Figure 3a in [31]). Hereafter

the contribution of wave breaking to CP, (4), is denoted CPwb. Detailed description of the relative
contribution of wave breaking to dual co- and cross-polarized NRCS can be found in [31].

Following Equations (1) and (3), the original dual co- and cross-polarized images are thus
transformed into new images which possess information on very different radar scattering mechanisms:
Bragg scattering (associated with PD) provided by the fast-response of short wind waves, and the
contributions of wave breaking to dual co- and cross-polarized NRCS, as defined by Equations (2) and
(4), respectively. Anticipating the different sensitivities of short wind waves and wave breaking to
various ocean phenomena, this set of new images can then serve as an effective way to interpret the
original SAR data. The definition of the key parameters used in this paper are shown in Table 1.

Table 1. Definition of the key parameters.

PR σhh
0 /σvv

0

PD σvv
0 − σ

hh
0

NP σvv
0 − ∆σ0/(1− pB)

CP (σvh
0 + σhv

0 )/2

CPwb σvh
0 − rB∆σ0

pB
|Ghh |

2

|Gvv |
2 ·

1+ghh·s2
i

1+gvv·s2
i

rB
|Gvv−Ghh |

2

|Gvv |
2
−|Ghh |

2
s2

n

sin2 θ

contrast (y− y)/y

Note: Ghh, Gvv, ghh, and gvv are scattering coefficients of TSM defined by Equations (A2) and (A3) in [31], s2
i and s2

n
are the mean square slope (MSS) of tilting waves, in and out of the direction of the incidence plane.

In the following Section, SAR observations of several different ocean surface features (e.g.,
atmospheric gravity waves, oceanic internal waves, sea surface temperature (SST) fronts, and ocean
currents) will be assessed. Specifically, we estimate different polarized images (PR, NP, PD, and CPwb)
and use them to identify these phenomena. They will be individually investigated beginning with
an atmospheric gravity wave, followed by by Figures 1 and 2; oceanic internal waves, followed by
Figures 3 and 4; SST fronts, followed by Figures 5 and 6; ocean currents, followed by Figures 7 and 8,
Figures 9 and 10, and Figures 11 and 12.

3. Scattering Signatures

3.1. Atmospheric Gravity Waves

The case shown in Figure 1 provides quad-polarized SAR signatures of wind speed oscillations
induced by atmospheric gravity waves. This case had been used [33] to test the capability of a new
C_SARMOD2 GMF to retrieve wind speed variability from VV-polarized SAR data. In our present
case, the full set of quad-polarized SAR images, and their companions, PD, NP, CPwb, and PR =

HH/VV, are used. As obtained, the bright/dark features are quite visible in HH and PR: the larger the
wind speed, the larger is PR. Such behavior presumes that the wind sensitivity of NP (wave breaking)
is higher than the wind sensitivity of Bragg waves. This result can also be shown to occur using the
image contrast, ky = (y− y)/y, defined as the deviation from the mean value scaled by the mean,
of NP, PD, CPwb. As obtained, the intensities of NP- and CPwb contrast are much higher than the
intensities of the PD contrast.
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Figure 2b,c, the scale of NP contrast is about twice that of PD contrast. NP (wave breaking) is thus 
more sensitive to wind speed variations than PD (short-scale Bragg waves), which is also consistent 
with previously reported results ([24], compare their Figure 5b and Figure 12b).  

 
Figure 1. Synthetic aperture radar (SAR) images containing atmospheric gravity waves: (a) RS-2 SAR 
HH-polarized images (dB units) of an area of the West Coast of USA acquired at 13:53 UTC on May 
24, 2012. The key parameters associated with the enlarged region of the yellow fragment in (a) are 
estimated as: (b) polarization ratio (PR) (linear units); (c) non-polarized (NP) contrast; (d) polarization 
difference (PD) contrast, and (e) cross-polarized wave breaking (CPwb) contrast. The incidence angle, 
averaged wind speed and the angle between radar look direction and wind direction are about 44 
degrees, 11 m/s and 59 degrees, respectively. The black and white arrows in (a) correspond to wind 
direction and radar look direction. Wind direction is from the NDBC buoy, wind speed from the 
C_SARMOD2 GMF. RS-2 data are a product of MacDonald, Dettwiler, and Associates, Ltd. All rights 
reserved. 

 
Figure 2. Transects across the atmospheric gravity waves along the red arrow shown in Figure 1a: (a) 
PR, (b) NP contrast, (c) PD contrast, (d) CPwb contrast. 

Figure 1. Synthetic aperture radar (SAR) images containing atmospheric gravity waves: (a) RS-2 SAR
HH-polarized images (dB units) of an area of the West Coast of USA acquired at 13:53 UTC on May 24,
2012. The key parameters associated with the enlarged region of the yellow fragment in (a) are estimated
as: (b) polarization ratio (PR) (linear units); (c) non-polarized (NP) contrast; (d) polarization difference
(PD) contrast, and (e) cross-polarized wave breaking (CPwb) contrast. The incidence angle, averaged
wind speed and the angle between radar look direction and wind direction are about 44 degrees, 11 m/s
and 59 degrees, respectively. The black and white arrows in (a) correspond to wind direction and radar
look direction. Wind direction is from the NDBC buoy, wind speed from the C_SARMOD2 GMF. RS-2
data are a product of MacDonald, Dettwiler, and Associates, Ltd. All rights reserved.

Transects of PR, NP contrast, PD contrast, and CPwb contrast, along the red arrow in the yellow
fragment shown in Figure 2a–d correspondingly, further clearly indicate that the wind sensitivity of
the NRCS components supported by wave breaking is indeed stronger than that of PD associated with
Bragg scattering. Note that Figure 2b,d show that the transects of NP and CPwb contrasts are very
similar. The wind sensitivity to the wave breaking contribution to co- and cross-polarized signals is
thus similar, confirming previously reported results ([31], their Figure 4). As shown in Figure 2b,c, the
scale of NP contrast is about twice that of PD contrast. NP (wave breaking) is thus more sensitive to
wind speed variations than PD (short-scale Bragg waves), which is also consistent with previously
reported results ([24], compare their Figure 5b and Figure 12b).
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3.2. Oceanic Internal Waves

The manifestation of oceanic IWs in SAR images is shown in Figure 3. Firstly, the train of
short-period IWs is easily recognized, in the first yellow fragment of plot (a) (marked by fragment #1).
Another second feature, which may be treated as SAR signatures of solitary IWs, with a corresponding
bright linear feature, spreads from top to bottom of the HH image (marked by fragment #2). Enlarged
fragments of IWs manifestations in PR-, NP-, PD-, and CPwb-components of quad-polarized SAR
images are shown in plots (3b) to (3e) (for IWs train) and in plots (3f) to (3i) (for the solitary IW). Firstly,
we notice that modulations are well expressed in PR, for either or both type of IWs. This again indicates
that modulations of NP components exceed the modulations due to Bragg scattering. This observation
is verified by considering the modulations of NP- and PD-signals, e.g. compare plots (3c) and (3d) for
IW train and plots (3g) and (3h) for the solitary IW. For both cases, the modulations of the PD signal are
not detectable whereas NP modulations are quite well expressed. Secondly, similar to NP, modulations
of the CPwb-signal are also visually detectable, but less pronounced.
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Transects over the IW train and the solitary IW (red and blue arrows) are shown in Figure 
4a,d,e,h, correspondingly. As already noticed, for both cases, the strongest modulations are observed 
in the NP signal, whereas modulations in CPwb are also observed but are not prominent, and 
modulations of the PD signal associated with Bragg scattering modulations are negligible, and thus 
not detectable by a C-band SAR.  

Figure 3. SAR images containing a oceanic internal solitary wave (IW) and a train of IWs: (a) RS-2
SAR HH-polarized images (dB units) of an area of the West Coast of USA acquired at 14:35 UTC on
August 15, 2009. The key parameters associated with the enlarged region of the yellow fragment in
(a) are estimated as: (b,f) PR (linear units); (c,g) NP contrast; (d,h) PD contrast; (e,f) CPwb contrast.
The incidence angle, averaged wind speed and the angle between radar look direction and wind
direction are about 29 degrees, 6 m/s and 39 degrees, respectively. RS-2 data are a product of MacDonald,
Dettwiler, and Associates, Ltd. All rights reserved.

Transects over the IW train and the solitary IW (red and blue arrows) are shown in Figure 4a,d,e,h,
correspondingly. As already noticed, for both cases, the strongest modulations are observed in the NP
signal, whereas modulations in CPwb are also observed but are not prominent, and modulations of the
PD signal associated with Bragg scattering modulations are negligible, and thus not detectable by a
C-band SAR.
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3.3. SST Fronts

Figure 5 presumably provides the manifestation of an oceanic temperature front. A step-like change
of HH signal in the direction of the yellow fragment is likely caused by the effect of the atmospheric
boundary layer transformation over the temperature front. As known and often reported [17,34,35],
the spatial variations of the SST alter stratification of the marine atmospheric boundary layer (MABL)
and subsequently the surface wind stress. In our case, wind stress and the near-surface wind speed
(and consequently NRCS) over the cold side of the front decrease relative to the wind speed over
the warm side. This wind field feature leads to coherent step-like changes of the PR, NP- , PD- and
CPwb-contrast over the front, as well expressed in Figure 5.
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Figure 5. SAR images containing sea surface temperature (SST) front: (a) RS-2 SAR HH-polarized
images (dB units) of an area of the East Coast of USA acquired at 22:07 UTC on March 18, 2009. The key
parameters associated with the enlarged region of the yellow fragment in (a) are estimated as: (b) PR
(linear units); (c) NP contrast; (d) PD contrast, and (e) CPwb contrast. The incidence angle, averaged
wind speed and the angle between radar look direction and wind direction are about 33 degrees, 4 m/s
and 112 degrees, respectively. RS-2 data are a product of MacDonald, Dettwiler, and Associates, Ltd.
All rights reserved.
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There is also a noticeable bright line in the PR image that follows the SST frontal line. A possible
origin of this bright PR feature can be interpreted as a result of the local enhancement of wave breaking
and consequently NP radar component (Figure 5c). This area of enhanced wave breaking traces the
surface current convergence at the edge of the SST front [10,24]. Surprisingly, modulations of CPwb
around the front are much weaker than NP, though both signatures originate from the same surface
phenomenon—local wave breaking enhancement. Finally, modulations of PD around the front are
weak and almost negligible.

Figure 6b–d display the transects of NP, PD and CPwb contrasts along the red arrow in Figure 5a.
Each of the transects exhibits step-like changes related to the near-surface wind speed change over the
SST front. In addition, as mentioned above, NP exhibits a strong peak value around the front, whereas
in the CP signal, this is less pronounced, and almost negligible in PD signal. Therefore, we conclude
that the modulation of the wave breaking by the surface currents dominates the co-polarized SAR
image contrasts, and the effect of Bragg resonant scattering on SAR image contrasts is negligible.
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3.4. Ocean Currents

Figure 7 illustrates specific features of a surface current. Again, bright linear features, well
delineated in the HH image, trace the ocean surface current boundary (front). Enlarged fragments of
this typical SAR signature are shown in plots (7b) to (7e) to reveal the following: the current boundary
is well expressed in PR, plot (7b), suggesting that modulation of wave breaking (NP-signal) should
again be much stronger than modulations associated with resonant Bragg waves; this is confirmed
with plots (7c) and (7d) illustrating strong modulations of NP and negligible modulations of the PD,
correspondingly; breaking wave modulations lead to measurable but smaller (as compare with NP)
modulations in the CP signal, plot (7e).

These overall observations are confirmed by the transects shown in Figure 8. Well expressed
peaks in PR and NP contrasts, around the current boundary, confirm the strong modulations of wave
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breaking. Similar to the previous case, CPwb exhibits clear modulation, but this is not so well expressed
when compared to NP-signal. Similar to the previous cases, the transect of PD contrast does not
correlate with either NP or CPwb, confirming the absence of current impacts on short Bragg waves.
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associated with the enlarged region of the yellow fragment in (a) are estimated as: (b) PR (linear units);
(c) NP contrast; (d) PD contrast, and (e) CPwb contrast. The incidence angle, averaged wind speed and
the angle between radar look direction and wind direction is about 39 degrees, 6 m/s and 96 degrees,
respectively. RS-2 data are a product of MacDonald, Dettwiler, and Associates, Ltd. All rights reserved.
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Comparable to the case shown in Figure 7, Figure 9 illustrates another SAR signature of a surface
current feature. Referring to Figure 9d, although this current feature is not visible in PD contrasts,
it is quite well expressed in variations of NP and CPwb contrasts, Figure 9c,e. Quad-polarized
SAR signatures of this current feature appear to systematically result from enhanced wave breaking,
significantly contributing to NP and CPwb results.
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Figure 9. SAR images containing ocean current feature: (a) RS-2 SAR HH-polarized images (dB units)
of an area of the West Coast of USA acquired at 01:57 UTC on August 9, 2009. The key parameters
associated with the enlarged region of the yellow fragment in (a) are estimated as: (b) PR (linear units);
(c) NP contrast; (d) PD contrast, and (e) CPwb contrast. The incidence angle, averaged wind speed and
the angle between radar look direction and wind direction are about 23 degrees, 12 m/s and 108 degrees,
respectively. RS-2 data are a product of MacDonald, Dettwiler, and Associates, Ltd. All rights reserved.

Transects shown in Figure 10 illustrate the profiles of PR, PD contrast, NP and CPwb contrasts
along red and blue arrows in Figure 9a. The left two columns of transects in Figure 10 refer to the red
arrow shown in Figure 9a, and the right two columns refer to the blue arrow. Along the two directions,
distinct peaks of NP and CPwb contrasts are observed around the current boundary. PD variations
are absent.
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Figure 11 further displays another case of the SAR signature of a current feature. Similar
conclusions can be drawn, with strong NP and CPwb image contrasts (Figure 11c,e). This result is
furthermore supported by the PR image (Figure 11b), with larger PR values around the current which
are well correlated with the enhanced NP component.
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Figure 11. SAR images containing ocean current features: (a) RS-2 SAR HH-polarized images (dB units)
of an area of the Aleutian Islands acquired at 18:20 UTC on September 14, 2009. The key parameters
associated with the enlarged region of the yellow fragment in (a) are estimated as: (b) PR (linear units);
(c) NP contrast; (d) PD contrast, and (e) CPwb contrast. The incidence angle, averaged wind speed and
the angle between radar look direction and wind direction are about 34 degrees, 10 m/s and 60 degree,
respectively. RS-2 data are a product of MacDonald, Dettwiler, and Associates, Ltd. All rights reserved.

4. Discussion

Observations and results are summarized in Table 2. Modulations of PD, NP and CPwb
signals caused by wind speed variability, due to either atmospheric gravity waves or atmospheric
boundary layer transformation over the SST front, demonstrate the expected behavior imposed by the
corresponding wind exponents reported in [31].

Table 2. Information on the SAR images and transects.

SAR Observation
Time (UTC) Feature θ

(deg)
U10

(m/s)
Φ

(deg)
CPwb
NP R1

PD
NP R2

13:53, May 24, 2012 Atmospheric IWs 44 11 59 1.07 0.98 0.48 0.93

14:35, Aug 15, 2009 IW train
29 6 39

0.25 0.71 −0.05 −0.1

solitary IW 0.35 0.96 0.06 0.19

22:07, Mar 18, 2009 SST front 33 4 112 0.39 0.95 0.33 0.92

21:30, Apr 26, 2009 current 39 6 96 0.36 0.79 0.17 0.69

01:57, Aug 9, 2009 current (red)
23 12 108

0.54 0.97 0.02 0.07

current (blue) 0.42 0.92 0.02 0.07

18:20, Sept 14, 2009 current 34 10 60 0.55 0.85 −0.02 −0.07

Note: Φ is radar look direction relative to the wind direction, R1 and R2 are correlation coefficients between CPwb
and NP, and PD and NP, respectively. θ, U10, and φ are radar incidence angle, wind speed at 10-m height and the
angle between radar look direction and wind direction.
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However, signatures of the ocean currents in the quad-polarized SAR images (and their derivatives,
PR, PD, NP, and CPwb, see Table 1) are much more complicated. For C-band quad-polarized SAR
measurements, surface currents have negligible impact on short resonant Bragg waves (PD-signal)
which have small relaxation scale and thus do not “feel” the current. This result is in line with the
previous research findings that any radar imaging model based on Bragg scattering theory dramatically
underestimates observed SAR signatures of ocean currents [11,13,15,16].

In our study, additional experimental evidence is provided that the governing mechanism for
radar imaging of ocean currents is the modulations of wave breaking. Significant contributions of wave
breaking to co- and cross-polarized radar scattering (NP and CPwb signals in present notations) [31],
result in quite well detected manifestations of the ocean current features in the SAR image, at arbitrary
polarization configurations.

Unlike dual co-polarized SAR imaging, the manifestation of the current features in cross-polarized
SAR images is not obvious and has rarely been reported [24,25]. However, the unexpected result
found here is that the magnitudes of the current-induced contrasts in the NP-signal greatly exceed,
by factors of 2-to-3, that in the CP-signal. This fact is rather puzzling because both non-polarized and
cross-polarized scattering originate from precisely the same wave breaking events!

To interpret these quad-polarized SAR imaging peculiarities, we adopt the so-called relaxation
approach to describe the wind wave transformation due to non-uniform currents. To that end, it is
necessary to determine the spatial scales of the surface waves responsible for quad-polarized radar
scattering and their differing surface current responses.

Firstly, the scale of Bragg waves, associated with the PD-signal from regular (non-breaking surface),
is prescribed by the radar wavenumber, kR, and may be expressed as kB = 2kRsinθ; for C-band at
moderate incidence angles, it is around 0.06 m. As already discussed, NP- and CPwb-signals are both
associated with radar scattering from enhanced roughness at crests of breaking waves. The NP-signal
is likely governed by quasi-specular radar returns from the roughness elements of large-scale breaking
crests, with k < d·kB, where d� 1 is a dividing parameter; in order to be consistent with TSM estimates,
it is specified here as d = 3–4 [36]. However, quasi-specular facets do not provide cross-polarized
scattering. Therefore, we assume that CPwb is governed by quasi-resonant scattering from small-scale
breaking crest roughness, around k = kB.

Indeed, a breaking wave crest generates enhanced isotropic surface roughness with a totally
saturated spectrum ∝ k−4 confined to the localized breaking zone [37]. A local spectrum of this
roughness will peak at a wave number, kp, linked to the wave breaking wavenumber, kwb, defined
as kp = pkwb, with the parameter p varying from 5 to 10. This scale of breaking crests roughness,
kp, imposes the range of breaking waves, providing the CPwb- and NP-signals. For the CPwb
signal, the range of breaking waves is: kwb < kCP ≡ kB/p, and for NP is: kwb < kNP ≡ kB/(pd). Thus,
the breaking waves contributing to NP are longer than those contributing to CP.

Following [17] (see also Equations (11) and (13) from [24]), both NP and CPwb are proportional to
the fraction of the ocean surface covered by the breaking zone

qwb ∝
x

k<kwb

βBdϕd lnk ∝ cβ
(
u2
∗ kwb/g

)1+1/ng
(5)

where β = Cβ(u∗/c)2 is the wind wave growth rate and Cβ is a constant in the range Cβ = (2− 4)× 10−2,
B is saturation spectrum of wind waves, kwb is the upper limit of the breaking waves range, equal to
kwb = kNP or kwb = kCP for NP and CP, respectively. To derive the second relation, we used the fact that
the integral is converged at the upper limit, and that in the equilibrium range B ∝ (u∗/c)2/ng where ng

is a parameter of the wave breaking dissipation, ranging from ng = 2 [38] to ng = 5 [9,39]. According
to [31], the wind exponent of CPwb is about 2.4, corresponding to parameter ng = 5.
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To evaluate modulations of PD-, NP-, and CPwb-signals by the currents we define the relaxation
scales of the scattering elements as (see [17] for more details),

τ = m∗/(2β) (6)

where τ is relaxation time scaled by the wave frequency, m∗ is the wind exponent of the wave spectrum.
Correspondingly, the relaxation scale length kl = (1/2)τ is

kl = crm∗
(
g/ku2

10

)
(7)

where cr =
(
4cβCD

)−1
∝ 5× 103 is the overall relaxation scale constant.

We then consider wavenumbers kB, kCP, and kNP as typical scales for the scatter for PD, CPwb,
and NP, correspondingly. For the Bragg waves (with k around 102 rad/m for C-band) and m∗ around 1
(see Figure 12 from [31]), the relaxation scale for wind speed from u10 = 3 m/s to u10 = 10 m/s varies in
the range given by lPD =0.05−0.5 m. Since lCP = m∗P2lPD and lNP = m∗P2d2lPD (with m∗ = 2/ng =0.4),
the relaxation length scales for CPwb and NP scatterers varies in the range from lCP = 0.4 m to lCP =

4 m, and where lNP = 1 m varying to 100 m, correspondingly. From these rather short relaxation
scales, we anticipate that PD, CRwb and NP should follow wind speed variations on spatial scales
exceeding 100 meters. This is in line with observations shown in Figure 1, where wind speed oscillations
caused by atmospheric gravity waves lead to coherent oscillatory features for any quad-polarized
scattering combinations.

Considering current non-uniformities on a scale, L, from hundred meters to kilometers, condition
L > (lPD, lCP, lNP) is also fulfilled. The modulation transfer function (MTF), T(k) = B̃/B0, for the wave
spectrum can be expressed as (see [10,17])

T(k) = τω−1mkcos2ϕ·div(u) (8)

where mk is the wavenumber exponent of the wave action spectrum, mk ≈ −9/2, ϕ is wavenumber
direction relative to the wind, and div(u) is the local divergence of the surface current. Indeed, among
the different components of the current velocity gradient tensor, the divergence provides the main
contribution to modulation of any ocean surface quantities integrated over the azimuth (like the total
mean square slopes, or the total fraction of the wave breaking area defined by Equation (5)). Referring
to Equation (8) with (6), one finds that the expected modulation of the Bragg wave spectrum by an
ocean current with gradient of order 10−3 is negligible. This is consistent with observations, confirming
that short scale Bragg waves do not “feel” the current (see see Figures 3, 9 and 11). However, due to
small relaxation scale, PD-signals follow any variations of the near-surface wind speed (Figures 1d
and 5d).

Unlike PD, modulations of NP and CP signals depend on the impact of surface currents over a
rather wide spectral range, forming qwb as defined by (5). As mentioned above, relaxation scales for
the upper limits of the integrals in Equation (5), kNP and kCP, are of order 100 m. Therefore, spectral
modulations at these upper limits due to the currents are expected to be small and to be governed by the
wind speed modulations/changes. Yet, current-induced modulations of the longer wave components
(forming qwb) due to larger relaxation scales can be significant. Although these longer components do
not likely provide dominant contributions to background (no currents) NP and CP signal values, their
impacts on current-induced modulations of these signals can be significant.

An approximate solution for the modulation of wave breaking by the current can be taken from
([10], their Equation (7)). However, this solution was derived for the Phillips (1985) spectrum [38]
with parameter ng in Equation (5) equal to ng = 2 which differs from the one adopted here (ng = 5).
Therefore, to assess wave breaking modulations by the currents in the present study, we use the
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asymptotic form of the MTF (Equation (8)). This gives the following expression for the expected
modulations of the ocean surface area covered by breaking zones:

q̃wb =
(
ng + 1

)
div(u)

∫
k<kR

wb

∫
T(k,ϕ)βB(k,ϕ)dϕdlnk ≈ 2mkω

−1
P div(u) (9)

where ωP is the spectral peak frequency of the wind waves: ωP ≈ g/u10, and the approximate
relationship is valid for ng � 1. As previously discussed, although longer breaking waves provide
rather weak overall contributions to NP and CPwb signals, their contributions to radar scattering
modulations (due to larger relaxation scales) can be significant. Notice that Equation (9) is similar
to a previously derived expression ([10], their Equation (7)); both are proportional to (u10/g)div(u).
However, the proportionality constant in the previously derived expression is weakly dependent on
the scale of the currents and the wind speed.

Using Equations (5) and (9), the current-induced contrasts of NP- and CPwb-signals can be
evaluated as:

Kwb ∝

(
2mk
cβ

)
g

u2
∗ kwb

ω−1
P div(u) or Kwb ∝ cr(u10kwb)

−1div(u) (10)

where cr = 2mk/(cβCD) ∼ 2× 105, CD is the drag coefficient, subscript ‘wb’ should be replaced by ‘CP’
or ‘NP’, to represent cross-polarized or non-polarized signals, respectively.

Relationship (10) states that although the SAR signal will detect the areas of the surface current
convergence, the SAR contrasts will decrease with increasing wind speed. As predicted by (10),
the magnitude of the contrast is also dependent on the ability of the shortest breaking wave scales
to support one or other scattering mechanism. As already discussed, the upper limit, kwb, of wave
breaking contributing to CP, is equal to: kwb → kCP = kB/p , and for NP is: kwb → kNP = kB/(pd) .
Thus, current-induced contrasts in the CPwb-signals are suggested to be less than those in NP signals:

KCP/KNP = d−1 (11)

Considering that d is in the range d = 3–4, the ratio between the contrasts is expected to lie in the
range from 0.24 to 0.3, as is approximately reported (see Table 2).

5. Conclusions

Using the approach suggested in [24,29] as applied to a set of C-band quad-polarized SAR images,
we have investigated SAR imaging mechanisms of the ocean currents. Analysis of the data confirms
that the governing mechanism that leads to a manifestation of ocean current features in quad-polarized
SAR images is wave breaking modulations by the currents. In contrast to short resonant Bragg scatters,
breaking waves are very sensitive to surface current gradients. As interpreted, the relaxation scale
of C-band Bragg waves is of order 1 m which is much smaller than current scales, and thus Bragg
scattering from a regular (non-breaking) ocean surface is not relevant to radar imaging of the ocean
currents, with respect to both co- and cross-polarizations.

Non-polarized radar returns from large-scale elements of breaking wave crests, and resonant
cross-polarized scattering from the roughness of small-scale breaking crests, significantly contribute to
the dual co-polarized and cross-polarized NRCS of the ocean surface [31]. As found, strong sensitivity
of wave breaking to the presence of the surface current gradients leads to quite well detectable
current signatures in both co- and cross-polarized SAR images. More remarkably, the current-induced
contrasts of the non-polarized returns from breaking waves are found to largely exceed, by a factor of
about 3, the contrasts of the cross-polarized scattering from breaking waves. A possible reason lies
in the distinct co- and cross-polarized scattering mechanisms from breaking waves. For the former,
quasi-specular radar returns dominate, while for the latter, quasi-resonant scattering from rough
breaking crests governs the backscatter intensity. The differing sensitivity then relates to distinct spectral
intervals of breaking waves supporting quasi-specular returns (non-polarized), and cross-polarized
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quasi-resonant scattering. Accordingly, routinely observed current signatures in quad-polarized SAR
images essentially originate from wave breaking modulations, and polarized contrast sensitivity can
further help quantitatively retrieve the strength of surface current gradients.

Future investigations will capitalize on the proposed methodology to exploit similar decomposition
to analyze Doppler shifts [5,6]. This approach will help more consistently separate the surface currents
and the wave-induced impacts from the measured polarized Doppler shifts.
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