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Abstract :   
 
The growth of microorganisms is controlled by strategies for the dynamical allocation of available 
resources over different cellular functions. Synthetic biology approaches are considered nowadays to 
artificially modify these strategies and turn microbial populations into biotechnological factories for the 
production of metabolites of interest. In our recent work [1], [2] we have studied dynamics of microbial 
resource allocation and growth in terms of coarse-grained self-replicator models described by ordinary 
differential equations, and proposed artificial control strategies for the optimization of metabolite 
production based on the reengineering of resource allocation. In this paper, we elaborate on our earlier 
results and further investigate synthetic resource allocation control strategies. Using numerical simulation, 
we study the effect on growth and bioproduction of the (biological or technological) costs associated with 
discontinuous control strategies, and of the time allotted to optimal substrate utilization. Results provide 
novel insight into the most favorable synthetic control strategies. 
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Optimal control of bacterial growth for metabolite production:
The role of timing and costs of control ∗

E. Cinquemani1,†, F. Mairet2,†, I. Yegorov3, H. de Jong1, J.-L. Gouzé4

I. INTRODUCTION

The growth of microorganisms requires the allocation of
available resources, extracted from nutrients in the environ-
ments, to different cellular functions. Microorganisms have 
evolved strategies to achieve this in such a way as to survive 
and proliferate in a dynamically changing environment. In 
recent years several coarse-grained models of resource al-
location in microorganisms have appeared in the literature, 
relating observed resource allocation strategies to molecular 
mechanisms implementing these strategies and to criteria 
that microorganisms are considered to optimize [3], [1], [4],
[5], [6], [7], [8]. In addition to natural resource allocation 
strategies, there has been interest in the modification of
these strategies for biotechnological purposes. In the latter 
case, the challenge consists in the development of synthetic 
resource allocation strategies maximizing the production of
some metabolite or protein of interest. The advances in syn-
thetic biology over the past decade have provided powerful
experimental tools enabling the implementation of strategies
for resource reallocation in microbial cells [9].

In recent work [1], [4] we have developed coarse-
grained self-replicator models of bacterial growth and ap-
plied control-theoretical methods to study natural resource
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allocation in a dynamic context. This work has been extended
to the modification of natural resource allocation strategies
by means of a so-called bacterial growth switch [10], with the
objective of optimizing the production of a metabolite of in-
terest [2]. Using techniques from optimal control theory [11]
and numerical simulation, we showed, among other things,
that the strategy optimizing the production of the metabolite
over a given time interval from a given amount of nutrients
supplied in the environment consists of a simple two-step
control scheme: A first phase with maximal growth (and low
production), followed by a second phase with low growth
(and high production). A limitation of this study, possibly
affecting its practical applicability, is that we neglected the
biophysical constraints on and cellular costs of rapid control
actions on the molecular level. Moreover, we did not study
in depth the relation between the length of the production
time-interval and the optimal control strategy.

Here, as a first contribution, we explore whether the costs
of regulation inherent in natural resource allocation play a
role in the synthesis of the target product, that is, whether
external control design should account for these costs to
maximize production. Based on a penalized optimal control
approach, we show that conversion of substrate into product
is very much insensitive to these costs, which only affect
internal cellular dynamics to a mild extent. As a second
contribution, we study how the time horizon allotted for the
exploitation of a finite amount of substrate impacts the design
of the external control action that maximizes the amount of
product at final time. In view of the findings above, internal
control costs can be safely neglected in this part of the study.
Not surprisingly, we find that larger time horizons allow for
larger total product synthesis. More interestingly, the analysis
shows that two different regimes exist, depending on whether
or not the time horizon is sufficient for complete utilization
of the available substrate, corresponding to different control
strategies and different results in terms of productivity, that
is, amount of product synthesized per unit time. A third
regime is also found for time horizons that are so large
that no resource is invested into population growth, since
the sole initial population suffices to fully convert substrate
into product.

The models of cellular resource allocation and product
synthesis that we developed in [1], [2] are reviewed in Sec. II.
The optimal control problems that we addressed in the same
publications are reviewed in Sec. III. Costs of regulation are
investigated in Sec. IV, whereas the role of time horizon is
discussed in Sec. V. These two sections provide the original
contribution of this work. Conclusions are drawn in Sec. VI.
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Fig. 1. Schematic representation of resource allocation with external
control and synthesis of a product. The rod-shaped region represents the
cellular population. Uptaken substrate S is transformed into precursors P ,
which are then allocated by internal cell control α to metabolic machinery
M or genetic machinery (ribosomes) R (biochemical fluxes: thick arrows;
regulatory effects: thin arrows). In genetically modified cells, P can also be
converted into product X under additional external control I . Black: Natural
fluxes and regulation; Red: Additional fluxes and regulation of reengineered
cells; Grey: Addition of substrate S into reaction volume during experiments
(mostly neglected in this work). See text for more details.

II. MODELLING

In this section we review the coarse-grained modelling of
cellular growth and resource allocation developed in more
generality in [1], [2]. The scenario considered is a population
of cells growing on a single substrate in a fixed bioreactor
volume (the volume occupied by cells being a negligible
portion of the culture volume). The cellular population is
seen as a growing biomass with identical behavior across
cells. In accordance with this, reactions and their kinetics are
described in terms of total population quantities and rates.
Refer to Fig. 1. At a given experimental time t, let S(t) (in
grams, [g]) be the quantity of substrate in the bioreaction
volume. The substrate is imported by the cellular population
at rate VM (t) (grams per hour, [g h−1]) and converted
into precursors (e.g. amino acids, the building blocks of
proteins), whose total abundance over the population is
denoted P (t) [g]. Cells can utilize P (t) to boost the genetic
machinery, captured by the ribosomal abundance R(t) [g],
or the metabolic machinery, captured by metabolic enzyme
abundance M(t) [g]. The latter catalyzes substrate uptake
and conversion into precursors, whereas the former catalyzes
the synthesis of both ribosomes and metabolic enzymes,
thus introducing dynamical feedback. In accordance with [1],
cells can tradeoff conversion of P (t) into M(t) or R(t) via
a control function α(t) ∈ [0, 1], leading to synthesis rates for
M(t) and R(t) of the form

(
1−α(t)

)
VR(t) and α(t)VR(t)

([g h−1]), in the same order. The way VM and VR depend on
S, M and P is discussed later on. The growth of the popula-
tion is expressed in terms of its volume V (t) (in liters, [L]).
It is assumed that V (t) = β

(
M(t)+R(t)

)
, with β [L g−1] a

positive constant. The growth rate µ(t) = V −1 ˙V (t) follows.
In [1], an additional rate VS(t) is considered to account for
possible addition of S into the reaction volume.

In this paper we are interested in the scenario where cells
are genetically modified so as to synthesize a metabolite of

interest under external control. This scenario is modelled
in [2] as an extension of the above. In accordance with [2], let
us denote X(t) [g] the abundance of the product of interest
and I(t) ∈ [0, 1] the action of external control. Product
X(t) is synthesized at a rate VX(t) [g h−1] determined by
metabolic activity M(t) and precursor availability P (t) as
expressed later on. External control I(t) acts on the natural
control α(t), resulting in the new resource allocation function
u(t) = α(t)I(t). Throughout the rest of the paper, we
additionally assume that the system is closed, namely no
addition of S (VS(t) = 0) or removal of X occurs after
the beginning of the experiment. Over a given time period
t ∈ [0, T ], the dynamics of the extensive variables introduced
so far can thus be written as the differential equation system

Ṡ(t) = −VM (t),

Ṗ (t) = VM (t)− VR(t)− VX(t),

Ṁ(t) = (1− u(t))VR(t),

Ṙ(t) = u(t)VR(t),

Ẋ(t) = VX(t),

(1)

In order to specify the expression of the rate functions,
it is convenient to replace P , M and R by the intensive
variables p(t) = P (t)/V (t), m(t) = M(t)/V (t) and r(t) =
R(t)/V (t) [g L−1], representing the respective concentra-
tions in the (strictly positive) population volume. Thanks to
mass conservation, one finds that m(t) = β−1 − r(t). The
above equations are then equally represented by the system

Ṡ(t) = −vM (t)V (t),

ṗ(t) = vM (t)− vR(t)− vX(t)− µ(t)p(t),

ṙ(t) = u(t)vR(t)− µ(t)r(t),

Ẋ(t) = vX(t)V (t),

˙V (t) = µ(t)V (t),

(2)

for rates vM (t) = VM (t)/V (t), vR(t) = VR(t)/V (t)
and vX(t) = VX(t)/V (t) [g L−1 h−1] that can now be
expressed in terms of r(t) and p(t). In [2], these rates are
first defined and then renormalized along with a rescaling
of concentration variables and time axis to eliminate some
inessential parameters. Here, for notational simplicity and
conciseness, we do not detail this step but rather assume
that all concentrations and rates defined above refer to
their normalized counterparts. For these quantities, consistent
with [2], system (2) still holds, provided the definitions

vM (t) = k2
s(t)m(t)

K2 + s(t)
, vR(t) =

p(t)r(t)

K + p(t)
,

vX(t) = k1
p(t)m(t)

K1 + p(t)
, µ(t) = vR(t),

(3)

where k1, k2, K, K1 and K2 are (renormalized) nonnegative
constants, and m(t) = 1 − r(t) (renormalization eliminates
parameter β introduced earlier on). See [1], [2] for a exten-
sive discussion of this choice of reaction rate expressions.
We will typically assume that the initial conditions

S(0) = S0, p(0) = p0, r(0) = r0, X(0) = X0, V (0) = V0

(4)



obey S0 > 0, V0 > 0, X0 = 0, p0 > 0, as well as 0 < r0 ≤ 1
(the latter bounds follow from renormalization and the need
of a nonempty ribosome pool to start their own synthesis
and growth).

III. OPTIMAL CONTROL PROBLEMS

The model of the previous section allows one to address
in the first place questions related with the natural strategies
that cells implement to optimize growth. The question is first
addressed in [1], for the case of wild-type cells (that is, no
X and I , and hence vX = 0) exposed to sudden availability
of S at an invariant concentration in the reaction volume
(VS = VM ). For the case of this paper (VS = 0 and synthesis
of X) the problem is addressed in [2]. In both cases, the
question is formulated as an optimal control problem for the
maximization of the population volume V at final time T ,

max
u∈U

log
V (T )

V0
=

∫ T

0

µ(t)dt subject to (2)–(4), (5)

with U the class of (measurable) functions taking values in
[0, 1]. Here external control is absent (captured by I fixed
to 1) and u(t) has the interpretation of internal control law
(u(t) = α(t)). It can be shown [1], [2] that the optimal
control profile u∗(t) that cells should implement to maximize
biomass production in finite time is a bang-bang-singular
profile. That is, upon administration of S, cells exit their
quiescence state by abruptly alternating maximal synthesis
of M (α = 0) with maximal synthesis of R (α = 1), until a
singular intermediate steady-state is achieved (α in-between).
A biological discussion based on literature is provided in [1],
showing that a similar control law may correspond, at least
qualitatively, to a known biochemical circuit existing in cells.

Additionally, in [2], maximization of product synthesis X
is considered, based on a finite substrate amount S and using
external control I . The question is again formulated as an
optimal control problem,

max
u∈U

X(T ) =

∫ T

0

vX(t)V (t)dt subject to (2)–(4). (6)

Once again, the solution u∗ found in [2] is bang-bang-
singular (see illustration later on in Fig. 2). Here, however,
u(t) corresponds to the product α(t)I(t). In the light of
our model, this is the control action driving the internal cell
dynamics after compensation by the external induction I(t).
If u∗ is a solution to the problem and α(t) is the natural
strategy that the cell would implement, the optimal external
compensation is I(t) = u∗(t)/α(t), which explicitly depends
on the knowledge of α(t).

In all of these problems, the abruptness of the optimal
dynamics of u∗ is questionable. From a biophysical stand-
point, this implies (repeated) instantaneous reorganizations
of the cellular physiology that are not realistic. From a
biotechnological viewpoint, however, the question is whether
accounting precisely for these internal costs and the details of
the natural policy α has any relevant effect on the design of
external induction I(t) and the achievable X(T ). This ques-
tion is the object of Sec. IV. Moreover, it is an open question
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Fig. 2. Solutions of the optimal control problem (7), with control cost
λ = 10−1 (blue), λ = 10−2 (green), λ = 10−3 (cyan) and λ = 10−4

(red), and of the optimal control problem (6), without control cost (black
lines).

whether the choice of T has itself relevant effects on the
attainable X(T ), depending on how substrate consumption
is distributed over [0, T ], and on the corresponding optimal
control strategies. Also based on the results of Sec. IV, this
is the object of Sec. V.

IV. COST OF CONTROL

In this section we investigate the sensitivity of optimal
control policies to possible costs associated with abrupt
changes of the control action. We notably wish to assess
whether the achievable product synthesis X(T ) is sensitive
to these costs. To formalize the problem we introduce a
modified version of problem (6). In analogy with regularized
estimation approaches [12], we express the cost of rough
control actions by the penalization term

λ

∫ T

0

ü(t)2dt, λ ≥ 0,

the faster the changes of u, the larger the cost. Subtracting
this cost from the objective function X(T ) implies favoring
smoother control solutions (see also [13] for a related ap-
proach to regularized control). Yet the very definition of this
cost requires the second derivative of u to be well-defined,
which is not guaranteed by the problem statement (6) with
u ∈ U . To tackle this, we modified the problem as follows.
Let us define v = u̇ and w = v̇ = ü. Let W be the space
of functions over [0, T ] that are measurable and uniformly



bounded. We now modify (6) into the optimization problem

max
w∈W ,u0,v0

X(T )− λ
∫ T

0

w(t)2dt =∫ T

0

(
vX(t)V (t)− λw(t)2

)
dt

subject to (2)–(4)

and

{
u̇ = v, u(0) = u0,

v̇ = w, v(0) = v0,

and 0 ≤ u(t) ≤ 1, t ∈ [0, T ].

(7)

This way, double-differentiability of u is guaranteed by
construction. If (w∗, u∗0, v

∗
0) is a solution to this problem, the

corresponding solution in u is then fixed by ü∗(t) = w∗(t),
t ∈ [0, T ], with u∗(0) = u∗0, u̇∗(0) = v∗0 . We seek solutions
for λ > 0, the larger λ, the smoother the resulting control u
at the price of a generally smaller production X(T ).

To answer the question that opens this section, we com-
puted solutions of the optimal control problem (7) for differ-
ent weights λ of the control cost and compared them with
the solution of the original problem (6), that is, in absence
of control costs. Calculations were performed for parameter
values borrowed from [2], namely (k1, k2,K,K1,K2) =
(0.139, 1, 0.003, 0.003, 0.1), T = 20 and initial conditions
(S0, p0, r0, X0,V0) = (0.5, 0.02, 0.2, 0, 1), in the respective
units. Numerical solutions were obtained by the software
package Bocop [14].

Results are shown in Fig. 2. The different levels of smooth-
ness of the control action associated with the different values
of λ tested are apparent. For λ approaching 0, as expected,
the solution approaches the cost-unaware bang-bang-singular
strategy. Very interestingly, the different control strategies u
obtained affect the internal resource allocation profiles p and
r to a noticeable extent, but they hardly affect the production
profile of X and the consumption profile of S. This can be
explained in part by the (realistic) initial conditions of the
system. Indeed, the greatest impact of control costs appears
to be on the initial transient of the optimal control strategy,
whereby cells need to adjust their physiology to the sudden
availability of substrate. Differences in this transient modify
resource allocation from an initially small pool of precursors
p and over a small population V , such that their net effect
on growth and productivity is negligible.

To sum up the section, we showed by a regularized optimal
control approach that the effects of control costs on the
attainable synthesis of a product are negligible in realistic
conditions, despite detectable changes in internal dynamics.

V. ROLE OF TIME HORIZON

In this section we address the question of how optimal
control for the maximal production of a compound of interest
depends on the allotted production time T . Intuitively speak-
ing, the question is how to best balance substrate utilization
for population growth versus its utilization for the synthesis
of the product by the existing cellular population. Time
clearly enters this question since a longer horizon allows

Fig. 3. Time dynamics of p, r, S, X , V and control action u associated
with the solution of problem (6) for the different time horizons T = 13
(blue), T = 16 (red), T = 20 (yellow), T = 25 (purple) and T = 40
(green).
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Fig. 4. Same as in Fig. 3, but with T = 320.
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Fig. 5. Dependency of optimal switch time τT , total production XT ,
substrate residual ST , average production rate XT /T , and final population
volume VT on the control time horizon T (see text for the mathematical
definition of these quantities).

one to build up the cell factory (cell population) at a slower
pace, thus consuming less resources. If one may expect that
a larger T enables a larger production X(T ) (just because
control is given more flexibility), it is a priori unclear what
control can achieve this, and what are its implications on the
cellular population dynamics.

In the light of the results of the previous section, as long as
X is the variable of interest, cellular control costs need not be
accounted for in much detail. To address the question of this
section, we therefore rely on the solution of the maximum
production control problem in the original form (6). For the
same system parameters and initial conditions of the previous
section, we numerically solved problem (6) for different time
horizons T , again using Bocop [14].

Time-profiles of the different optimal control actions and
resulting system dynamics are reported in Fig. 3 and 4.
Dependency on the time horizon T of a few useful indicators
of the optimal control action is shown in Fig. 5. In the latter
figure and below, for any given value of T , quantities XT ,
ST and VT denote the values of X(T ), S(T ) and V (T ),
in the same order, corresponding to the solution of (6). (An

additional quantity reported in the figure, τT , is introduced
further below). As a first confirmation, not surprisingly, XT

increases with T (see in Fig. 3 the different profiles of X
at the respective final times, and, in Fig. 5, the plot of
log(1 +XT ) as a function of T ). For the smallest values of
T , time is insufficient to fully utilize the available substrate.
For the given system parameters, the mimimum horizon T̄
to deplete the substrate is about 20. The control actions
corresponding to these cases show a similar initial transient
to get into a growth phase. The larger T , the longer this
phase (compare the profiles of V and u in Fig. 3), after
which all resources are redirected for the residual time into
utilization of S for the production of X (the residual growth
is explained by the existing pool of ribosomes R built up
during the growth phase). Note that ignoring internal control
costs, that is, obtaining bang-bang solutions for u, has the
advantage that this phase change can be defined precisely as
the time τT when u drops to 0. In Fig. 5, consistent with the
above discussion, τT is shown to be an increasing function
of T up to T = T̄ .

For T > T̄ , a change of regime is observed. The time of
arrest of ribosome synthesis, τT , starts receding. Indeed, an
increased time horizon T allows for a smaller population (as
obtained with a smaller τT ) to fully transform the available
substrate S into product X . It is therefore convenient to
spare S from the growth of a larger population in favor
of a longer phase (t ≥ τT ) where fewer cells convert S
into X until depletion. This is clearly illustrated in Fig. 5,
where τT is shown to be a decreasing function of T for
T > T̄ (in Fig. 3, one sees that τT is such that the precursors
are exhausted precisely at the final time). Correspondingly
(Fig. 5), the total production XT increases with T although
at a lower rate compared to its increase for T up to T̄ (for
T ≥ T̄ , the amount of substrate utilized is invariant and
equal to S0). Yet the productivity, that is, the average rate of
product synthesis XT /T , decreases over T (see again Fig. 5),
since production is diluted out in time. Should production be
made more robust to possible interruption of the process, or
compliant with extraction of X in the course of the process,
a modified optimal control objective should be considered
taking productivity explicitly into account.

In particular, for T � T̄ , one observes in Fig. 5 that
τT converges to zero. In essence, for T large enough (in
our simulations, for T ≥ 320), the optimal control strategy
collapses into one where the entire conversion of S into X
is operated by a minimal cell population, as obtained from
the initial pool of cells X0 by the growth resulting from
the initial pool of ribosomes r0 (see Fig. 4). In this regime,
u is identically 0, until either substrate and precursors are
exhausted (and it becomes irrelevant thereafter). This is easy
to explain: With arbitrarily large T , there is no need to waste
resources S into the growth of a larger factory of cells, since
a small population will anyhow complete the job although
at a slower pace.

To conclude this section, we have shown in simulation
that two different regimes exist depending on whether the
allotted production time allows for a complete utilization



of the substrate. These two regimes yield different optimal
control strategies. A third regime exists corresponding to
full conversion of substrate into product by the smallest
possible population (no resource allocated to population
growth). It is worth recalling that the strategies discussed
above represent the optimal regulatory signal u∗ internal to
the cell. Based on this and the (approximate) knowledge of
the natural control signal α(t) (as discussed in Sec. IV),
the optimal external induction I(t) can be determined as
I(t) = u∗(t)/α(t). Analysis of compatibility of the resulting
induction strategies with possible technological and physical
constraints (boundaries on induction strength, etc.), along
with easily adapted problem reformulations, are out of the
scope of this paper.

VI. CONCLUSIONS

In this paper we have addressed open questions pertaining
to the biotechnological synthesis of compounds of interest
by a growing population of cells via an optimal control
approach. Starting from earlier work by the same authors
and collaborators, we have first reviewed the published
modelling and optimal control results. The use of a coarse-
grained, whole-cell model of resource allocation and micro-
bial growth distinguishes our work from previous application
of (optimal) control in biotechnology [15], [16], [17]. We
have then isolated and addressed two open questions, the
possible impact of physiological costs of internal cellular
resource reallocation onto the design of optimal control
strategies, and the role of the duration of the production
process in control design. We have first shown by a regu-
larized control approach that the cellular costs incurred in
resource reallocation have a negligible net impact on the
conversion of substrate into product. Then, we have shown
that the biotechnological control rationale should be different
depending on whether or not the time for production allows
for the complete depletion of the substrate.

The results obtained are of direct interest for the biotech-
nological applications they refer to. The little sensitivity of
production to details of internal cellular dynamics (costs)
suggests that optimal control of the production process does
not require precise or finer-grained models. At a genetic
engineering level, it also suggests that a certain degree of
inaccuracy in the design of the engineered strains can be
tolerated. The different regimes observed for optimal control
agree to some extent with the well-established practice in
dynamic bioprocess operation of following up a growth
phase by a production phase [18]. However, such empirical
control strategies could be further optimized using the kind
of optimal control techniques explored here, especially in the
context of batch processes. Yet, the analysis also implicitly
suggests that the situation for fed-batch and continuous
cultivation processes, where substrate is replenished in the
course of production, may be different, and deserves further
study.

From a biological viewpoint, the results show that the
observed cellular growth and metabolite secretion dynamics
are rather robust to internal regulatory mechanisms and

associated costs. In a different interpretation, this means that
reconstructing internal mechanisms from external observa-
tions is hard. Targeted experimental work is thus needed to
pinpoint the internal cellular dynamics and the costs of re-
source reallocation, and further mathematical developments
other than those of Sec. IV may be needed to quantitatively
characterize them. Finally, from a mathematical viewpoint,
an analytical study of what has been shown in simulation
here constitutes an intriguing direction of research. Theoret-
ical results on the optimal control problems addressed in this
work would further boost the application of control-theoretic
approaches to cellular biology [9].
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