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Abstract :   
 
Spaceborne synthetic aperture radar (SAR) can provide finely-resolved (meters-scale) images of ocean 
surface roughness day-or-night in nearly all weather conditions. This makes it a unique asset for many 
geophysical applications. Initially designed for the measurement of directional ocean wave spectra, 
Sentinel-1 SAR wave mode (WV) vignettes are small 20 km scenes that have been collected globally 
since 2014. Recent WV data exploration reveals that many important oceanic and atmospheric 
phenomena are also well captured, but not yet employed by the scientific community. However, expanding 
applications of this whole massive dataset beyond ocean waves requires a strategy to automatically 
identify these geophysical phenomena. In this study, we propose to apply the emerging deep learning 
approach in ocean SAR scenes classification. The training is performed using a hand-curated dataset 
that describes ten commonly-occurring atmospheric or oceanic processes. Our model evaluation relies 
on an independent assessment dataset and shows satisfactory and robust classification results. To further 
illustrate the model performance, regional patterns of rain and sea ice are qualitatively analyzed and found 
to be very consistent with independent remote sensing datasets. In addition, these high-resolution WV 
SAR data can resolve fine, sub-km scale, spatial structure of rain events and sea ice that complement 
other satellite measurements. Overall, such automated SAR vignettes classification may open paths for 
broader geophysical application of maritime Sentinel-1 acquisitions. 
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Highlights 

► First deep learning model to classify ten geophysical phenomena from S-1 WV SAR data. ► Model 
performance is evaluated using an independent eye-selected dataset. ► Classified rain cells and sea ice 
are compared with other satellite measurements. ► The global S-1 SAR data show great potential for 
sea surface processes studies. 
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1. Introduction14

The spaceborne synthetic aperture radar (SAR) is a well-established technique to collect high-15

resolution sea surface backscatter data during day and night in most weather conditions. Over the16

ocean, SAR images provide an estimate of the sea surface roughness primarily through backscat-17

tering of short waves (Alpers et al., 1981; Hasselmann et al., 1985; Hasselmann and Hasselmann,18

1991), where this small-scale (cm) roughness responds to the near-surface ocean winds (Lehner19

et al., 2000; Winstead et al., 2006; Mouche et al., 2012). In addition, these short waves are also20

modulated by ocean swell (Heimbach et al., 1998; Lehner et al., 2000; Collard et al., 2009), up-21

per ocean processes (Johannessen et al., 1996; Rascle et al., 2017; Jia et al., 2018), and atmo-22

spheric phenomena (Alpers and Brümmer, 1994; Young et al., 2005; Winstead et al., 2006; Li23

et al., 2007, 2013; Alpers et al., 2016). Beginning with SEASAT in 1978, ocean SAR imagery24

has been widely used to examine numerous air-sea interaction processes (Meadows et al., 1983;25

Gerling T W, 1986; Carsey and Holt, 1987; Fu and Holt, 1982; Katsaros and Brown, 1991). Since26

then, ever-improving SAR data have been obtained by satellite missions that include ERS-1/2,27

Envisat/ASAR, RADARSAT-1/2, TerraSAR-X, TanDEM-X and Sentinel-1 constellation.28

However, global-scale applications of ocean SAR data remain quite limited. This is largely29

because the wide swath SAR images are not routinely collected over the open ocean. These30

acquisitions mainly focus on land, Arctic regions, and near the coasts. Thus, most previous ocean31

SAR data investigations only involve limited regional or single SAR scene case study (Alpers and32

Brümmer, 1994; Babin et al., 2003; Sikora et al., 2011; Li et al., 2013; Alpers et al., 2016). One33

exception is the wave mode (WV) dedicated to retrieving ocean wave proprieties at global scale34

(Kerbaol et al., 1998; Stopa et al., 2016). The WV has been developed for ERS-1/2 (1991-2003)35

and Envisat/ASAR (2002-2012), and now introduced to Sentinel-1 (2014-present) and Gaofen-336

(2016-present). It normally collects relative small SAR images (typically 5 to 10 km square) along37

the orbit with a distance of about 100 km in between. This is sufficient for ocean wave spectrum38

retrieval and empirically estimation of the total significant wave height (Heimbach et al., 1998;39

Collard et al., 2009; Stopa and Mouche, 2017), which can be used in wave forecasting. At present,40

the routine WV measurements are only available from the Sentinel-1 (S-1) A&B (Torres et al.,41

2012). It was improved upon Envisat and ERS by having finer spatial resolution (4 m), higher42

signal-to-noise (which reduces speckle noise), larger scene footprint (20 by 20 km), and increased43

global sampling.44
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Wang et al. (2019) demonstrated that the S-1 WV dataset has the potential for new studies on45

air-sea interactions at scales of 0.5-10 km. The primary advantage of the S-1 WV dataset is its46

ability of measuring high resolution sea surface roughness globally (∼120k images per month).47

However, without an automated means to identify the geophysical features captured by each im-48

age, the potential would remain untapped. For example, previous studies have relied solely on49

visual inspection to identify SAR images with wind streaks before performing statistical analy-50

sis or surface wind direction derivation (Lehner et al., 2000; Levy, 2001; Mouche et al., 2012;51

Zhao et al., 2016). Such manual classification approach is impractical for the huge volume of S-152

WV data. Similarly, dedicated classic machine learning algorithms have mostly been developed53

for specific applications such as detection of oil spills and ships. These methods depend on the54

empirically hand-crafted features, which are usually insufficient to generalize the local variations,55

shapes and structural patterns of different geophysical phenomena (Topouzelis and Kitsiou, 2015;56

Zhang et al., 2016).57

This study attempts to train a deep convolutional neural network (CNN) to classify the ten58

prescribed geophysical phenomena seen in WV vignettes. Deep CNN models have been applied59

with great success in detection, segmentation, and recognition of objects, features, and textures60

within digital images (LeCun et al., 2015). They have also been applied to hyperspectral and61

optical remote sensing imagery (Zhao and Du, 2016; Li et al., 2017; Hu et al., 2015; Cheng and62

Han, 2016; Zhou et al., 2017). However, the primary use of CNN in ocean SAR application has63

mostly been for target recognition (Zhang et al., 2016; Zhu et al., 2017). In general, CNN is a64

multilayer architecture that can be trained to automatically extract the optimal image features and65

to amplify distinctions between images (LeCun et al., 2015; Zhang et al., 2016). A practical and66

effective way to develop a robust CNN for a specific application is to re-train an existing image67

recognition model. This so-called transfer-learning or fine-tuning strategy has been proven to68

be more efficient and practical than creating and training a new CNN architecture from scratch69

(Yosinski et al., 2014; Zhu et al., 2017; Cheng et al., 2017; Too et al., 2018; Wang et al., 2018a).70

In this paper, we adapt the Inception-v3 CNN (Szegedy et al., 2015) to train a model dedicated71

to the classification of S-1 WV vignettes, called CMwv. The involved datasets are described in sec-72

tion 2. Section 3 demonstrates the training process of CMwv and illustrates the model performance73

based on an independent assessment dataset. In section 4, we compare our classification results74

qualitatively with rain precipitation from Global Precipitation Measurement (GPM) and sea-ice75

concentration from Special Sensor Microwave Imager (SSM/I). Conclusions follow in section 5.76
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2. Datasets77

This study uses ocean SAR vignettes from S-1 WV, precipitation data from GPM and sea ice78

concentration data from SSM/I. To train the CNN architecture, we create training datasets drawn79

from the labelled TenGeoP-SARwv database (Wang et al., 2018b). In addition, to assess and80

quantify the performance of CMwv, we build an assessment dataset of 10,000 visually verified81

images. All datasets are described in the following.82

2.1. S-1 WV83

The S-1 mission is a constellation of two (A&B) polar-orbiting, sun-synchronous SAR satel-84

lites (Torres et al., 2012). They were launched by European Space Agency (ESA) in April of 201485

and 2016, respectively. The two satellites share the same orbital plane, which crosses the equator86

at approximately 0600 or 1800 local time, with a 180◦ phase difference to provide an effective87

6-day repeat cycle. The S-1 microwave SAR instruments have a 5.5 cm wavelength (C-band).88

WV is the default mode over the open ocean unless other imaging mode collections are requested.89

According to the defined Mission Operation Scenario, there is no WV acquisition in the Arctic90

Ocean, closed seas (Red, Black, Mediterranean and Caribbean seas) and coastal areas. Figure 191

displays the spatial coverage of S-1A WV data acquired in July of 2016. Although only S-1A WV92

data is used in this study, S-1B images have essentially equivalent characteristics with S-1A. Thus,93

the combination of S-1A and S-1B will expand sampling in time and space for different geophys-94

ical phenomena applications. Moreover, the developed classification model and results presented95

hereafter are also applicable to S-1B.96

S-1 WV vignettes are acquired in a ’leapfrog’ pattern at two alternating center incidence angles97

of 23◦ (WV1) and 36.5◦ (WV2) every 100 km along the flight track. Each vignette has a 20 by 2098

km footprint with 5 m spatial resolution. The default radar polarization is VV, though some HH99

images have been acquired. Combining both satellites and WV incidence angles, approximately100

120,000 vignettes per month are acquired. This study focuses on the VV polarized SAR vignettes101

as they comprise more than 99% of acquisitions to date. Also, data quality control is carried out102

by removing data files with the following criteria:103

• HH polarization: HH-polarized images are excluded.104

• Land contamination: The distance of one vignette center (longitude and latitude) to the105

nearest coastline is calculated based on the dataset of Distance from Nearest Coastline106
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Figure 1: Global distribution of the WV SAR data obtained by S-1A in July of 2016. Color is indicative of the SAR

image density in 2◦ by 2◦ spatial grid.

(DNC1). We filter out the vignettes if their center is over the land.107

• Low mean signal intensity: We filter out the low-quality vignettes by limiting the mean108

Normalized Radar Cross Section (NRCS) to be larger than -22 dB, which is the Noise Equiv-109

alent Sigma Zero (Torres et al., 2012).110

2.2. TenGeoP-SARwv dataset111

TenGeoP-SARwv is a labelled dataset of more than 37k ocean SAR images corresponding to112

ten commonly-observed and expertly-defined geophysical phenomena (Wang et al., 2019). These113

ten choices, though somewhat subjective, were selected and defined after an extensive review of114

the S-1 WV data and with reference to past ocean SAR studies. This study denotes the classes115

as pure ocean waves (PureWave), wind streaks (WindStreak), micro-convective cells (WindCell),116

rain cells (RainCell), biological slicks (BioSlick), sea ice (SeaIce), icebergs (IceBerg), low wind117

areas (LowWind), atmospheric fronts (AtmFront), and oceanic fronts (OcnFront). Thousands of118

VV-polarized vignettes for each case were manually selected from the S-1A WV acquisitions119

in 2016. These vignettes are chosen with the criteria that within one scene, one geophysical120

1The Distance from Nearest Coastline dataset is available at http://oos.soest.hawaii.edu/erddap/info/

dist2coast_1deg/index.html
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phenomenon dominates with its specific signature or pattern. It is worth noticing that PureWave121

signatures normally exist in SAR images as background for other classes. Example vignettes of122

the ten defined classes are displayed in Figure 2. These visually-identified and tagged SAR scenes,123

37560 in total, are provided in formats of Portable Network Graphics (PNG) and Georeferenced124

Tagged Image File Format (GeoTIFF). Despite the fact that the GeoTIFF product maintains high125

precision of the original data, PNG files are more suitable for visual interpretation and satisfy the126

training input requirement for CNN models. Thus, PNG product is the dataset of interest in this127

study. It is important to note that the detectability of SAR on these phenomena, especially these128

modulations induced by the surface wind, can differ for WV1 versus WV2. Because the complex129

response of C-band radar scatter of the sea surface depends primarily on the incidence angle and130

the relative angle between the radar and the surface wind direction. Under some atmospheric131

conditions such as strong winds (>15 m/s), the backscatter is dominated by sea states (winds and132

waves). Consequently, other phenomena except ocean waves can not be well captured.133

Figure 2: Ten vignette examples of expertly-defined geophysical phenomena. From (a) to (j) are pure ocean waves

(PureWave), wind streaks (WindStreak), micro convective cells (WindCell), rain cells (RainCell), biological slicks

(BioSlick), sea ice (SeaIce), icebergs (IceBerg), low wind area (LowWind), atmospheric front (AtmFront) and oceanic

front (OcnFront).

2.3. Assessment dataset134

S-1 WV SAR vignettes are able to capture a wide range of ocean surface geophysical processes135

and the most common ten categories have been included in the TenGeoP-SARwv. To assess and136

quantify performance of the developed classification model on the whole WV database, an in-137

dependent assessment dataset is thus created. 5000 WV1 and WV2 vignettes respectively were138
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randomly selected from 2016 S-1A acquisitions and classified by visual inspection. A less strict139

criteria of PureWave was adopted to make this validation dataset representative of the actual WV140

measurements. We then apply the classification model to each of these scenes. The resulting class141

identifications were compared to visual results, which is a skill test commonly used in image clas-142

sification modeling (Zhang et al., 2016; Cheng et al., 2017). For the vignettes that do not belong143

to any of the ten defined classes, we sort them into a special ’The Other’ category (TheOther).144

These more infrequent phenomena include, but are not limited to, oceanic internal waves (Alpers145

and Huang, 2011; Jia et al., 2018), atmospheric gravity waves (Chunchuzov et al., 2000; Li et al.,146

2013), upwelling regions (Jackson et al., 2004), and irregular atmospheric patterns.147

2.4. Rain precipitation from GPM and IMERG148

The GPM mission is an international satellite network that provides global estimates of rain-149

fall and snowfall from space (Hou et al., 2014). A primary instrument is the GPM Core Obser-150

vatory that was launched in February 2014 by the National Aeronautics and Space Administra-151

tion (NASA) and the Japan Aerospace and Exploration Agency (JAXA). This Core Observatory152

carries the first dual-frequency (Ku-/Ka-band) precipitation radar (DPR) and a multichannel mi-153

crowave imager (GMI). The Ku-band radar accurately measures moderate to heavy rain rates and154

the Ka-band radar can measure light rain and snowfall. They provide cross-track swaths of 245155

km (Ku) and 120 km (Ka) with 5 km resolution. Retrieved precipitation estimates from the swath156

measurements are available at the NASA data center (https://pmm.nasa.gov/data-access/157

downloads/gpm). In addition, the Integrated Multi-satellitE Retrievals for GPM (IMERG) is a158

gridded precipitation product that combines all satellite precipitation measurements. In this study,159

we collocate GPM level-2 (swath) DPR Ku-only surface rain precipitation data with S-1A WV160

vignettes acquired from March 2016 to February 2017. Spatial and temporal collocation crite-161

ria of 35 km and less than 10 mins are used and result in 2588 matched data pairs. The mean162

precipitation value for DPR measurements averaged across the 35 km square is used. We also163

use the IMERG 0.1◦-monthly product to qualitatively validate the global and seasonal features of164

CMwv-classified rain events. Results and discussions are given in section 4.1.165

2.5. Ice concentration from SSM/I166

Sea ice concentration maps are produced by applying the Artist Sea Ice (ASI) algorithm to167

the brightness temperatures from Special Sensor Microwave Imager (SSM/I) radiometer (Ezraty168

et al., 2007). The concentration product has been operational since 1992 with 12.5 km spatial169

resolution. It is publicly available at ftp://ftp.ifremer.fr/ifremer/cersat/products/170
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gridded/psi-concentration/. The seasonal sea ice concentration is computed based on the171

daily data, and compared with the CMwv-classified sea ice event occurrences (see section 4.2).172

3. Automated ocean SAR scene classification173

This section describes how the automated classifier for S-1 WV ocean SAR vignettes was174

developed by re-training the Inception-v3 CNN. The performance of this tool is evaluated and175

quantified using the independent assessment dataset described in section 2.3.176

3.1. Inception-v3 and training strategies177

Many successful CNN architectures have shown solid performance in the ImageNet large-178

Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015). In this study, we use179

the Inception-v3 architecture proposed by Google in 2015 (Szegedy et al., 2015; Szegedy et al.,180

2016) to demonstrate the potential of deep CNN in identifying and classifying geophysical phe-181

nomena from ocean SAR scenes. The Inception model was firstly introduced as GoogLeNet or182

Inception-v1 (Szegedy et al., 2015), a classic deep CNN architecture. The initial Inception ar-183

chitecture was refined in many ways. A first improvement was introduced in the Inception-v2184

of batch normalization to accelerate the training process (Szegedy et al., 2016). While later, the185

Inception-v3 used additional factorization ideas to augment the number of convolutions without186

increasing the computational cost. It achieves remarkable performance with 94.4% top-5 accuracy187

on the ILSVRC 2012 classification dataset. We choose Inception-v3 in this study because of its188

promising performance and easy implementation with the python deep learning library of Keras189

(https://keras.io/). Also, at the time of starting this work, this model represented the good190

tradeoff between classification performance and huge parameters (Bianco et al., 2018).191

The Inception-v3 architecture has 48 network layers with more than 23 million trainable192

weights. These layers are generally divided into feature extraction and classification parts. Weights193

of the feature extraction part are trained to describe common image characteristics such as curves,194

edges, gradients and particular patterns. These features are expected to be adopted to the task of195

ocean SAR vignette classification (Yosinski et al., 2014; Too et al., 2018; Wang et al., 2018a).196

The last layer of this CNN architecture represents the classification part, which is replaced with197

a new classification layer in our applications. Note that capability comparison of different CNN198

architectures may also be of interest, but it is beyond the scope of this work.199

We examined two training strategies: transfer-learning and fine-tuning. The transfer-learning200

only trains the final classifier layer, while the fine-tuning adjusts all the layers in the CNN architec-201
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ture. For each input image, Inception-v3 requires the image size to be 299 pixels for both height202

and width. Then, 2048 optimal features per image are extracted to construct the final classifier. As203

noted above, the sensitivity of SAR to different oceanic or atmospheric phenomena can be differ-204

ent for the two WV incidence angles. We therefore create separate training datasets for WV1 and205

WV2 (hereafter TDwv1 and TDwv2). To equalize the size of TDwv1 and TDwv2, 320 images per206

class are randomly selected from the labelled dataset of TenGeoP-SARwv (Wang et al., 2018b).207

For training Inception-v3, the input dataset is randomly split into training and validation subsets208

with proportions of 70% and 30%. Training subset is fed into the CNN to learn and extract image209

features. The validation subset, by contrast, is used to gauge the CNN model performance at each210

epoch (iteration of CNN optimization).211

3.2. CMwv model212

Figure 3: Overall accuracy (OA) in each 5 epochs during the training of inception-v3. The first 500 epochs are shown

for (a) comparison of transfer-learning and fine-tuning, (b) experiment of random splitting process, (c) experiment of

the training dataset size and (d) the development of CMwv.

First, we compare results found for the transfer-learning versus fine-tuning training approaches.213

Based on TDwv1, the Overall Accuracy (OA, Stehman (1997)) is calculated within 500 epochs214
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and is displayed in Figure 3 (a). As shown, the OA of both transfer-learning (red lines) and fine-215

tuning (black lines) increases rapidly within the first 100 epochs, and then remains stable at around216

89% and 97%, respectively. Fine-tuning is more accurate than transfer-learning and is therefore217

chosen in this study. Figure 3 (b) displays the sensitivity assessment of the fine-tuning process to218

random training inputs. Random shuffling is repeated three times to generate different training and219

validation subsets drawn from TDwv1. Result shows no significant effect on OA due to different220

data draws. The impact of dataset size is also tested using image input datasets of 80, 160, 240221

and 320 samples, respectively. All four models achieve comparable OA, as displayed in Figure 3222

(c). The largest training dataset converges most quickly and with the highest and most constant223

OA. In this paper, we use 320 images per class to train the final model. Figure 3 (d) shows that OA224

improves rapidly with training epochs. The trained CNN weights at epochs 399 and 329 where225

OA reaches the maximum (blue and red vertical lines) are adopted in the final CMwv. This model226

has a OA of 98.5% and 98.3% for WV1 and WV2, respectively.227

Figure 4: Examples of misclassified WV images from CMwv along with the classification probability of each class.

Red stars indicate the class determined visually (manually-labelled).

Misclassifications still occur even though the model OA is very high. With visual inspection of228

the misclassified images in the validation part, four representative examples with their classifica-229

tion probabilities are shown in Figure 4. The red stars indicate the actual class. Ambiguous image230

features are one of the reasons leading to misclassification. For example in Figure 4 (a), the linear231
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feature of an oceanic front (OcnFront) looks more like the softer mottled linear features that we232

ascribed to the atmospheric front (AtmFront) class (Wang et al., 2019). Both cell-shaped features233

(WindCell) and the linear-shaped features (WindStreak) are visible in Figure 4 (b), also resulting234

in an ambiguity within this vignette. Superimposition of these two phenomena is captured by the235

CMwv model with high classification probabilities in both classes. Indeed, the atmospheric coher-236

ent structures that generate the WindStreak signature often undergo a transition to the convective237

structures that generate the WindCell signature when the surface buoyancy increases (Atkinson238

and Wu Zhang, 1996). Another reason responsible for misclassifications is that multiple geophys-239

ical phenomena can coexist within the same vignette. Low wind area (LowWind) is often asso-240

ciated with wind gust fronts (AtmFront), as shown in Figure 4 (c). Biological slicks (BioSlick)241

usually accompany the LowWind (Figure 4 (d)) because they both occur in low wind conditions.242

Signatures of ocean waves are also clearly seen in the four examples. The PureWave classifica-243

tion probability for these scenes is nearly zero due to our imposed lowest ranking of ocean waves244

within these prelabelled events. In other words, the priority of other phenomena in the developed245

classification model is much higher. This corresponds to the fact that our definition of PureWave246

is a SAR image that only contains signature of ocean waves without any other geophysical phe-247

nomena. It is thus expected that adjustment of our model to address multi-labelling with equal248

weights for these multiple feature SAR images might improve future classification. To this end,249

the current classification probabilities can be further exploited to get more fuzzy probabilities or250

refine the training dataset. A thorough labeling strategy allowing the existence of multiple features251

is also demanded. In particular, wave detection shall facilitate the labeling of its coexistence with252

other phenomena.253

3.3. CMwv model assessment254

To further assess the CMwv performance on the whole WV database, a quantitative figure was255

obtained through comparison against the independent assessment dataset introduced in Section256

2.3. Figure 5 provides the normalized confusion matrix. The rows and columns in the matrix indi-257

cate the truth (manually-labelled) and CMwv prediction, respectively. One image is assigned to be258

the class of the largest classification probability. As shown, most of the class identification skill re-259

sults for both WV1 and WV2 cases show accuracy that exceeds 0.8. One exception is PureWave,260

this class being strongly influenced by IceBerg, AtmFront and OcnFront events. This leads to261

much lower PureWave classification accuracy of 47% and 39% for WV1 and WV2, respectively.262

It is likely because signatures of ocean waves are prevalent in most images and we choose a loose263
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Figure 5: CMwv normalized confusion matrix when the model is applied to the WV1 (left) and WV2 (right) indepen-

dent verification data subsets.

criteria for PureWave class in the assessment dataset. In addition, about 15% of WindStreak and264

WindCell images are misclassified as AtmFront and OcnFront, resulting in the relatively lower265

classification accuracy. Nearly 90% of the TheOther images are classified into categories of Atm-266

Front and OcnFront. Overall, images of PureWave, IceBerg, AtmFront and OcnFront are often267

misclassified. To further quantify CMwv performance, recall, precision and F-score parameters268

(Sokolova and Lapalme, 2009) are calculated based on the confusion matrix:269

Recall =
number o f correctly classi f ied

number o f truth
(1)

270

Precision =
number o f correctly classi f ied

number o f classi f ied
(2)

271

F − score =
2 × precision × recall

precision + recall
(3)

For given class, recall (also called sensitivity) is equivalent to the classification accuracy discussed272

above. Precision (also called positive predictability) indicates the model’s internal accuracy or273

skill. The F-score takes both recall and precision into account as one comprehensive index for274

model performance. Values of these three parameters are all expected to be near one.275

CMwv recall, precision and F-score results against the assessment dataset are given in Ta-276

ble 1. Results indicate a hierarchy in skill across classes where RainCell, BioSlick, SeaIce and277
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Table 1: CMwv recall, precision and F-score metrics for each of the 10 geophysical categories when applied to WV1

(upper) and WV2 (lower) vignette detection.

PureWave WindStreak WindCell RainCell BioSlick SeaIce IceBerg LowWind AtmFront OcnFront

Recall
0.47 0.83 0.80 0.93 0.95 0.90 0.97 1.00 0.95 1.00

0.39 0.83 0.85 0.93 0.89 0.96 0.92 1.00 0.94 1.00

Precision
1.00 0.77 0.76 0.88 0.88 0.96 0.16 0.87 0.39 0.02

0.98 0.96 0.94 0.80 0.91 0.96 0.18 0.79 0.38 0.02

F-score
0.64 0.80 0.78 0.90 0.91 0.93 0.27 0.93 0.56 0.04

0.56 0.89 0.89 0.86 0.90 0.96 0.30 0.88 0.54 0.04

LowWind classes show similarly highest levels of recall, precision and F-scores that exceed 85%278

in any measure, and for both WV1 and WV2 vignettes. A second tier with slightly lower skill is279

seen for WindStreak and WindCell with WV2 F-scores of nearly 0.9 and 0.8 for WV2 and WV1280

respectively. The drop in WV1 F-score is due to nearly 20% lower precision in WV1 scene de-281

tection. This is due to the fact that ocean wave signatures are suppressed at higher incidence and282

other atmospheric phenomena are more pronounced. Overall, the results indicate robust CMwv283

model performance for these six phenomena. A next drop in skill is seen for the PureWave class.284

PureWave detection shows much lower recall levels of 47% and 39% for WV1 and WV2, respec-285

tively. Inspection found that this is because a large number of PureWave dominated SAR scenes286

are misclassified as IceBerg (12% and 16%), AtmFront (6% and 11%), and OcnFront (31% and287

30%), as shown in Figure 5. Yet, high PureWave precision suggests strong confidence when a288

PureWave detection occurs. The lowest performance tier is seen when CMwv is applied to detect289

icebergs, atmospheric, and ocean fronts (IceBerg, AtmFront and OcnFront). In these three classes,290

the model shows poor precision (i.e. an excess of false positives) caused by the misclassification291

of scenes that should have been ocean waves (PureWave) or more ambiguous events (TheOther).292

Although time consuming, the visual classification provided by Wang et al. (2019) demon-293

strated the capabilities of S-1 WV to capture signatures of air-sea interactions. Above results294

suggest that an adapted deep CNN image recognition model can be trained for automated clas-295

sification of the S-1 WV VV-polarized SAR vignettes. A brief summation of CMwv skill taken296

from these results suggests reasonable confidence levels for investigations that focus on six of297

the prescribed classes (WindStreak, WindCell, RainCell, BioSlick, SeaIce and LowWind), while298

CMwv refinements would be needed for OcnFront, AtmFront, IceBerg, and PureWave applica-299

tions. Other deep learning techniques such as pixel-level based classification, object detection and300

image segmentation (Zhang et al., 2016; Cheng et al., 2017) are expected to efficiently target the301
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localized phenomena (RainCell, IceBerg, AtmFront and OcnFront) within each scene. In addition,302

it will be beneficial to include the geographic and time information of SAR data in deep learning303

approaches. Latitude is just one of many possible important and obvious data inputs, helping for304

example, to limit sea ice and iceberg detection windows to cold waters.305

4. Geophysical applications306

As a first demonstration, the CMwv model was applied to all S-1A WV VV-polarized acquisi-307

tions from March 2016 to February 2017. We examine the images classified as rain cells (RainCell)308

and sea ice (SeaIce) as well as their occurrence in space and time. GPM and IMERG rain precipi-309

tation and SSM/I sea ice concentration data are used for comparison. Specifically, seasonal varia-310

tions of these two phenomena are presented and discussed in the four seasons: March-April-May311

(MAM), June-July-August (JJA), September-October-November (SON) and December-January-312

February (DJF) from March 2016 to February 2017. There are more than 160k vignettes acquired313

globally by S-1A in each of these seasons.314

4.1. Rain cells315

A detected RainCell in the S-1 vignettes has been defined as one or several km-scale circular-316

or semi-circular-shaped patches that may be either relatively bright or dark (Wang et al., 2019).317

These patches are typical signature of rain downdraft (Atlas, 1994; Alpers et al., 2016) in the318

convective rain cells (Houze, 1997). From March 2016 to February 2017, nearly 10% of S-1A319

images are classified as RainCell. The seasonal mapping of SAR-detected RainCell occurrence320

(fraction within 2◦ lat/lon bins) in the left panel of Figure 6 indicates distinct spatial and temporal321

patterns. We also plot the seasonal maps of monthly averaged IMERG rain rate in the right panel322

of Figure 6 for comparison. However, it must be noted here that the IMERG product aims at323

intercalibrating, merging, and interpolating satellite microwave precipitation estimates, together324

with microwave-calibrated infrared (IR) satellite estimates. This leads to different temporal and325

coverage resolution between SAR-detected RainCell occurrence and IMERG precipitation.326

Across the whole tropical ocean (3 basins), SAR-detected rain events are found to be infre-327

quent right along the equator with a band of strong occurrence north of the Equator. This band328

is clearly observed throughout the year and with the Inter-Tropical Convergence Zone (ITCZ). In329

the particular case of the Pacific ocean, strong occurrence of rain cells are also found in the South330

Pacific Convergence Zone. It is in good agreement with IMERG precipitation seasonal patterns.331

Significant differences are found in the subtropics between 10◦ and 30◦. In the north hemisphere332
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Figure 6: Seasonal comparison of CMwv-detected S-1A rain cells (left) alongside GPM precipitation measurements

(right). Rain occurrence percentages are calculated on a 2◦ by 2◦ spatial grid based on S-1A WV data from March

2016 to February 2017. The average monthly rain rate in MAM, JJA, SON and DJF are obtained from the IMERG

0.1◦-monthly product.

(Atlantic and Pacific), SAR-detected RainCell occurrence is high (>10%) whereas the rain precip-333

itation from IMERG is low (<0.1 mm/hr). In the south hemisphere, this is also observed in the east334

of the south Pacific, in the Atlantic and in the Indian ocean. In the extratropical areas (poleward of335

30◦N or 30◦S), we observe the opposite trend. SAR results present lower occurrence of RainCell336

while IMERG measures comparatively higher precipitation rates.337

Overall, most areas of higher SAR-detected RainCell occurrence are associated with high338

IMERG precipitation areas and consistent with the rainfall climatology of previous studies (Kidd,339
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2001; Adler et al., 2003). However, disagreements are found as well. One of the reasons for this340

is due to the fact that IMEG products measure all types of rainfall and is not limited to rain cells.341

This certainly explains the agreement observed in the tropical area where the convective cells342

dominate (Houze, 1997). To further address the difference, a point-by-point collocation between343

S-1 WV SAR images and GPM level-2 DPR Ku-only surface rain precipitation is conducted. The344

collocation criteria is within 35 km in space and 10 min in time.345

In total, there are 2588 matched data pairs with 286 SAR vignettes being classified as RainCell.346

For 63.4% of the RainCell-classified images, collocated GPM also reports precipitation. In the347

remaining cases, however, no precipitation is reported by GPM. Figure 7 (a1) and (a2) display348

two examples of this situation that SAR detects rain events while GPM does not. The upper panel349

shows the SAR images and the bottom gives the precipitation. The red dashed box, white box350

and white arrow indicate the collocated area, image box and surface wind vector, respectively.351

As shown, these two SAR images exhibit clear RainCell signatures, confirming the credibility of352

RainCell classification results. The precipitation is not resolved by GPM, possibly because they353

are short-lived and/or weak rain events. For the images that are not classified as RainCell, 23.2%354

of the collocated GPM reports precipitation. With the visual inspection, we confirmed that most355

of these images do not have clear RainCell signature as defined in Wang et al. (2019). Two such356

examples are shown in Figure 7 (b1) and (b2). RainCell signatures in SAR images are primarily357

caused by modulations of the surface waves due to rainfall, downdraft and also a direct attenuation358

of the signal by rain drops in the atmosphere (Alpers et al., 2016). However, we recall here that359

the first order impact on the sea surface roughness as detected by C-band active radar is the local360

wind. As a result, there is a competition between the ambient wind and possible rain impacts on361

the small-scale waves. Thus, we suspect that in situation where the wind speed is sufficiently high,362

the wind impact dominates the backscattering over the rain, yielding SAR scenes with hardly363

detectable rain signature. Figure 8 further evidences this interpretation. It is the distribution of364

surface wind speed for the four possible situations (SAR-detected RainCell or not, GPM DPR-365

measured precipitation or not). As shown, SAR-detected RainCell (blue and orange lines) occurs366

mostly at intermediate wind speed of 3-10 m/s. By contrast, the wind distribution of the images367

with non-detected RainCell but precipitation as given by GPM (red line) centers at 12 m/s. This368

implies that when the backscattering is mainly impacted by the high wind speed, the detectability369

of rain cell signatures weakens.370

From these comparisons, we conclude that Deep Learning methods can be used to automat-371

ically identify SAR images impacted by rain cells. As a matter of fact, the high resolution of372
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SAR may complement the existing rainfall measurements available from space by detecting very373

short scale events. For now this potential seems limited to convective rain and is less relevant for374

high latitudes where sea state dominates the signature in SAR image, preventing for a reliable rain375

detection.376

Figure 7: Four cases of point-by-point comparison between classified rain cells and the collocated GPM level-2 DPR

Ku-only surface rain precipitation. (a1) and (a2) are cases in which WV detects RainCell and GPM indicates no

precipitation. (b1) and (b2) are cases in which WV did not detect RainCell and GPM measured precipitation. Upper

panels are WV images, lower panels show the GPM rain rate swath data. In the lower panels, the WV outline is the

white box and the collocation region is the red box. The vector indicates the sea surface wind.

4.2. Sea Ice Near Antarctica377

Interactions between sea ice, ocean, and the atmosphere in polar regions significantly impact378

global weather and climate systems (Fyke et al., 2018). Changing boundaries between the ocean379

and sea ice have dominant effects on marine ecosystem structure around the Antarctic (Tynan,380

1998; Nicol et al., 2000). Monitoring of Southern Ocean sea ice has thus been of high interest381

among remote sensing and geoscience communities for many years. In this subsection, we assess382

sea ice (SeaIce) detected by CMwv near the Antarctica using S-1A WV SAR vignettes from March383

2016 to February 2017. Note that our classification model distinguishes all type of SeaIce images384

from open ocean water.385
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Figure 8: Normalized probability density function of surface wind speed for the point-by-point comparisons with

condition of rain cells are detected or not and precipitation is measurable or not.

In total, there are nearly 25k vignettes classified as SeaIce. As shown in Figure 9 (a), most S-386

1A vignettes indicating SeaIce are distributed across the polar Southern Ocean. While the SeaIce387

subset mapping clearly shows a few misclassified cases of small islands, heavy rain and strong388

convection phenomena, the otherwise realistic geographic SeaIce distribution appears to confirm389

the high classification precision of 0.96 (see Table 1). Although the reason for misclassifications390

need further investigation, these misclassified SeaIce images can be easily filtered out according391

to the latitudes or SeaIce events occurrence map (see Figure 9 (c)). Figure 9 (b) provides the392

number of classified SeaIce SAR vignettes per month. As expected, the number of detected SeaIce393

vignettes has a clear seasonal variability, increasing from March to a maximum in October and394

subsequently decreasing. This variation is highly consistent with the seasonal cycle of Antarctic395

SeaIce extent (Doddridge and Marshall, 2017).396

S-1A detected SeaIce occurrence is calculated on a 2 by 2 degree grid and shown in Figure397

9 (c). It illustrates the seasonal variation view of SeaIce coverage around the Antarctica. The398

SeaIce extent is also denoted by the contour lines where occurrence percentage is equal to 10%.399

In the austral summer (DJF and MAM), most of the classified SeaIce lies close to the Antarctica400

and is poleward of 60◦S. It is also clear that the SeaIce extent is non-uniformly distributed along401

the Antarctic coasts, with more SeaIce from 0◦-60◦W, and from 120◦W-150◦E. Varied SeaIce402
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Figure 9: Ocean sea ice around the Antarctica from March 2016 to February 2017. (a) displays the locations of

classified sea ice vignettes with blue and red colors indicating WV1 and WV2, respectively. (b) presents the total

number of S-1A and sea ice detected vignettes for each month. Sea ice coverage in four seasons derived from the

classified SAR vignettes are shown in (c) with color representing the occurrence percentage in 2◦ boxes. (d) shows

the mean sea ice concentration from the SSM/I daily product. Contour lines in (c) and (d) are calculated from the

occurrence percentage (black, 10%) and sea ice concentration (red, 10%), denoting the ice-water boundaries.
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coverage also exists in the Antarctic winter from JJA to SON. As shown in Figure 9 (c), winter403

period SeaIce significantly expands in comparison to the austral summer. It even spreads north404

of 60◦S between 10◦E and 70◦W during the summer. It is important to note that there is no WV405

SAR data acquired very close to the coast of or over Antarctica (Torres et al., 2012). This is406

the reason for the null/white space around the coastline in these maps. For comparison, seasonal407

maps of mean SeaIce concentration from the SSM/I daily product are provided in Figure 9 (d).408

Contour lines of SeaIce edge calculated from both the occurrence percentage (black) and SeaIce409

concentration (red) are superimposed on these maps. As shown, the patterns seen on the SAR-410

detected SeaIce largely mirrors these SeaIce concentration maps where both systems collect data.411

Boundaries between ocean water and SeaIce from SAR and SSM/I data are highly consistent with412

each other. This agreement is another measure of CMwv credibility as an WV data classification413

tool.414

As demonstrated, these high-resolution WV acquisitions of SeaIce are another data catalogue415

to monitor SeaIce edge boundaries around the Antarctica. In particular, they can benefit the sur-416

vey of wave-ice interactions. Indeed, a new method has been recently developed to derive the417

directional wave spectrum in the sea-ice, from which wave heights, periods and directions can be418

derived (Ardhuin et al., 2015). Stopa et al. (2018) used these extensive information to address419

the wave forces on sea ice through break-up and rafting, advancing the knowledge of wave-ice420

dynamics. With respect of the waves and sea ice interactions, the use of sea-ice classification in421

combination with waves-in-ice algorithm is certainly a perspective.422

5. Conclusions423

The S-1 WV SAR vignette classification model (CMwv) has been successfully developed by a424

SAR-adaptation of the Inception-v3 CNN image recognition architecture. Experimental testing of425

the training process indicates that fine-tuning is a more effective approach than transfer-learning.426

The CMwv mode is able to identify and assign detection probabilities to ten geophysical phe-427

nomena that are pre-defined in a hand-labelled dataset (TenGeoP-SARwv, Wang et al. (2018b)).428

To evaluate and quantify the performance of CMwv, recall, precision and F-scores are calculated429

against an independent assessment dataset. Results show that this classification tool works well430

for classes of WindStreak (wind streaks), WindCell (micro-convective cells), RainCell (rain cells),431

BioSlick (biological slicks), SeaIce (sea ice) and LowWind (low wind area). However, classifi-432

cation of PureWave (pure ocean waves) is limited with very high precision, but low recall. Class433

detections for IceBerg (icebergs), AtmFront (atmospheric fronts) and OcnFront (oceanic fronts)434
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are severely influenced by PureWave and the special category of TheOther. The developed clas-435

sification model can directly be applied to S-1A&B WV datasets. In the near future, efforts to436

improve the classification of PureWave, IceBerg, AtmFront and OcnFront are necessary. In addi-437

tion, the inclusion of new classes corresponding to other geophysical phenomena and the definition438

of a multi-labelled dataset would likely yield further improvements.439

Two geophysical applications are demonstrated based on the classification results of S-1A WV440

vignettes from March 2016 to February 2017. Geophysical maps of classified rain cells and sea441

ice are qualitatively comparable to precipitation data from GPM and sea ice concentration from442

SSM/I. Results further verify the credibility of this classification tool. Moreover, once classi-443

fied, access to the large catalogue of class-specific high-resolution WV vignettes may provide new444

and more detailed geophysical information to complement existing global ocean satellite mea-445

surements. The various geophysical phenomena captured within the massive S-1 A&B WV data446

suggest promise to further advance our understanding of air-sea interactions, particularly at sub-447

kilometer scales. Application of this CMwv tool to the growing three plus year of S-1 global ocean448

SAR data archive should allow, for the first time, access to the spatial (global and regional) and449

temporal (seasonal and inter-annual) statistics of numerous geophysical phenomena. This may, in450

turn, help to advance certain aspects of atmospheric and climate theory and numerical ocean and451

weather models.452

This present work provides a basis to move application of ocean SAR remote sensing beyond453

the case study stage. It also demonstrates the potential of these global SAR WV mode vignettes for454

broader geophysical application, augmenting its operational role supporting ocean wave prediction455

systems. While this study is limited to the S-1 WV SAR acquisitions, the methodology could456

be applied to any other sub-scene (10-20 km) SAR data products from platforms such as ERS-457

1/2, Envisat/ASAR, TerraSAR-X, Gaofen-3 and CFOSAT. Similar exploitation of the full WV458

mode SAR data archive could provide a long-term (nearly 30 years) climatology including data on459

interannual and seasonal variability at global scale.460
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List of Figure Captions648

• Figure 1: Global distribution of the WV SAR data obtained by S-1A in July of 2016. Color649

is indicative of the SAR image density in 2◦ by 2◦ spatial grid.650

• Figure 2: Ten vignette examples of expertly-defined geophysical phenomena. From (a) to651

(j) are pure ocean waves (PureWave), wind streaks (WindStreak), micro convective cells652

(WindCell), rain cells (RainCell), biological slicks (BioSlick), sea ice (SeaIce), icebergs653

(IceBerg), low wind area (LowWind), atmospheric front (AtmFront) and oceanic front (Oc-654

nFront).655

• Figure 3: Overall accuracy (OA) in each 5 epochs during the training of inception-v3. The656

first 500 epochs are shown for (a) comparison of transfer-learning and fine-tuning, (b) ex-657
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periment of random splitting process, (c) experiment of the training dataset size and (d) the658

development of CMwv.659

• Figure 4: Examples of misclassified WV images from CMwv along with the classifica-660

tion probability of each class. Red stars indicate the class determined visually (manually-661

labelled).662

• Figure 5: CMwv normalized confusion matrix when the model is applied to the WV1 (left)663

and WV2 (right) independent verification data subsets.664

• Figure 6: Seasonal comparison of CMwv-detected S-1A rain cells (left) alongside GPM665

precipitation measurements (right). Rain occurrence percentages are calculated on a 2◦ by666

2◦ spatial grid based on S-1A WV data from March 2016 to February 2017. The average667

monthly rain rate in MAM, JJA, SON and DJF are obtained from the IMERG 0.1◦-monthly668

product.669

• Figure 7: Four cases of point-by-point comparison between classified rain cells and the670

collocated GPM level-2 DPR Ku-only surface rain precipitation. (a1) and (a2) are cases in671

which WV detects RainCell and GPM indicates no precipitation. (b1) and (b2) are cases672

in which WV did not detect RainCell and GPM measured precipitation. Upper panels are673

WV images, lower panels show the GPM rain rate swath data. In the lower panels, the WV674

outline is the white box and the collocation region is the red box. The vector indicates the675

sea surface wind.676

• Figure 8: Normalized probability density function of surface wind speed for the point-by-677

point comparisons with condition of rain cells are detected or not and precipitation is mea-678

surable or not.679

• Figure 9: Ocean sea ice around the Antarctica from March 2016 to February 2017. (a)680

displays the locations of classified sea ice vignettes with blue and red colors indicating WV1681

and WV2, respectively. (b) presents the total number of S-1A and sea ice detected vignettes682

for each month. Sea ice coverage in four seasons derived from the classified SAR vignettes683

are shown in (c) with color representing the occurrence percentage in 2◦ boxes. (d) shows684

the mean sea ice concentration from the SSM/I daily product. Contour lines in (c) and (d)685

are calculated from the occurrence percentage (black, 10%) and sea ice concentration (red,686

10%), denoting the ice-water boundaries.687
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