TY - JOUR T1 - Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains A1 - Cointet,Eva A1 - Wielgosz-Collin,Gaëtane A1 - Bougaran,Gael A1 - Rabesaotra,Vony A1 - Gonçalves,Olivier A1 - Méléder,Vona AD - Université de Nantes, Laboratoire Mer Molécules Santé, Nantes, France AD - PBA-IFREMER, Nantes, France AD - Université de Nantes, GEPEA, Saint-Nazaire, Nantes, France UR - https://archimer.ifremer.fr/doc/00591/70269/ DO - 10.1371/journal.pone.0224701 N2 - Microalgal biotechnology has gained considerable importance in recent decades. Applications range from simple biomass production for food and animal feed to valuable products for fuel, pharmaceuticals, health, biomolecules and materials relevant to nanotechnology. There are few reports of the exploration of wider microalgae biodiversity in the literature on high value microalgal compounds, however, because it is believed that there is little to be gained in terms of biomass productivity by examining new strains. Still, without diversity, innovation in biotechnology applications is currently limited. Using microalgal diversity is a very promising way to match species and processes for a specific biotechnological application. In this context, three benthic marine diatom strains (Entomoneis paludosa NCC18.2, Nitzschia alexandrina NCC33, and Staurosira sp NCC182) were selected for their lipid production and growth capacities. Using PAM fluorometry and FTIR spectroscopy, this study investigated the impact of nitrogen repletion and depletion as well as light intensity (30, 100, and 400 μmol.photons.m-2.s-1) on their growth, photosynthetic performance and macromolecular content, with the aim of improving the quality of their lipid composition. Results suggest that under high light and nitrogen limitation, the photosynthetic machinery is negatively impacted, leading cells to reduce their growth and accumulate lipids and/or carbohydrates. However, increasing lipid content under stressful conditions does not increase the production of lipids of interest: PUFA, ARA and EPA production decreases. Culture conditions to optimize production of such fatty acids in these three original strains led to a balance between economic and ecophysiological constraints: low light and no nitrogen limitation led to better photosynthetic capacities associated with energy savings, and hence a more profitable approach. Y1 - 2019/11 PB - Public Library of Science (PLoS) JF - Plos One SN - 1932-6203 VL - 14 IS - 11 ID - 70269 ER -