FN Archimer Export Format PT J TI Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains BT AF Cointet, Eva Wielgosz-Collin, Gaëtane Bougaran, Gael Rabesaotra, Vony Gonçalves, Olivier Méléder, Vona AS 1:1;2:1;3:2;4:1;5:3;6:1; FF 1:;2:;3:PDG-RBE-BRM-LPBA;4:;5:;6:; C1 Université de Nantes, Laboratoire Mer Molécules Santé, Nantes, France PBA-IFREMER, Nantes, France Université de Nantes, GEPEA, Saint-Nazaire, Nantes, France C2 UNIV NANTES, FRANCE IFREMER, FRANCE UNIV NANTES, FRANCE SI NANTES SE PDG-RBE-BRM-LPBA IN WOS Ifremer UPR DOAJ copubli-france copubli-univ-france IF 2.74 TC 36 UR https://archimer.ifremer.fr/doc/00591/70269/68328.pdf LA English DT Article AB Microalgal biotechnology has gained considerable importance in recent decades. Applications range from simple biomass production for food and animal feed to valuable products for fuel, pharmaceuticals, health, biomolecules and materials relevant to nanotechnology. There are few reports of the exploration of wider microalgae biodiversity in the literature on high value microalgal compounds, however, because it is believed that there is little to be gained in terms of biomass productivity by examining new strains. Still, without diversity, innovation in biotechnology applications is currently limited. Using microalgal diversity is a very promising way to match species and processes for a specific biotechnological application. In this context, three benthic marine diatom strains (Entomoneis paludosa NCC18.2, Nitzschia alexandrina NCC33, and Staurosira sp NCC182) were selected for their lipid production and growth capacities. Using PAM fluorometry and FTIR spectroscopy, this study investigated the impact of nitrogen repletion and depletion as well as light intensity (30, 100, and 400 μmol.photons.m-2.s-1) on their growth, photosynthetic performance and macromolecular content, with the aim of improving the quality of their lipid composition. Results suggest that under high light and nitrogen limitation, the photosynthetic machinery is negatively impacted, leading cells to reduce their growth and accumulate lipids and/or carbohydrates. However, increasing lipid content under stressful conditions does not increase the production of lipids of interest: PUFA, ARA and EPA production decreases. Culture conditions to optimize production of such fatty acids in these three original strains led to a balance between economic and ecophysiological constraints: low light and no nitrogen limitation led to better photosynthetic capacities associated with energy savings, and hence a more profitable approach. PY 2019 PD NOV SO Plos One SN 1932-6203 PU Public Library of Science (PLoS) VL 14 IS 11 UT 000532690100036 DI 10.1371/journal.pone.0224701 ID 70269 ER EF