

## Journal of Geophysical Research – Solid Earth

## Supporting Information for

## Vertically extensive magma reservoir revealed from joint inversion and quantitative interpretation of seismic and gravity data

Michele Paulatto<sup>1</sup>, Max Moorkamp<sup>2</sup>, Stefanie Hautmann<sup>3</sup>, Emilie Hooft<sup>4</sup>, Joanna V. Morgan<sup>1</sup>, R. Stephen J. Sparks<sup>5</sup>

<sup>1</sup> Department of Earth Science and Engineering, Imperial College London, London, UK

<sup>2</sup> Department of Earth and Environmental Sciences, Ludwig Maximilian University of Munich, Munich, Germany

<sup>3</sup> Department of Earth Sciences, ETH Zurich, Zurich, Switzerland

<sup>4</sup> Department of Earth Sciences, University of Oregon, Eugene (OR), USA

<sup>5</sup> School of Earth Sciences, University of Bristol, Bristol, UK

Contents of this file

Figures S1 to S7



**Figure S1.** Trade-off curve (L-curve) for standalone seismic inversion showing the effect of changing the strength of the seismic velocity model regularization weight  $\lambda_s$  between 10<sup>3</sup> and 10<sup>6</sup>. The inversions with  $\lambda_s = 10^3$  and  $\lambda_s = 10^{3.5}$  became trapped inside a local minimum and were halted. The panels on the top and right show cross-sections at 6 km depth through the starting model and the final models after 100 iterations.



**Figure S2.** Trade-off curve (L-curve) for standalone gravity inversion showing the effect of changing the strength of the density model regularization weight  $\lambda_{\rho}$  between 10<sup>1</sup> and 10<sup>4</sup>. The panels on the top and right show cross-sections at 2 km depth through the starting model and the final models after 100 iterations.



**Figure S3.** Evolution of the different terms of the objective function during joint inversion of seismic traveltimes and gravity data. Each term is normalized with respect to the starting seismic data misfit  $\lambda_t \Phi_{d,t}$  (i = 0). Panels a to d correspond to increasing values of the cross-gradient weight  $\lambda_x$ . Notice how increasing the cross-gradient weight slows down the convergence rate. The optimal  $\lambda_x$  is in the range  $10^{12} - 10^{13}$ , as it gives a cross-gradient term of the same order of magnitude as the seismic velocity and density regularization terms and doesn't significantly degrade the final data misfit.



**Figure S4.** Comparison of checkerboard recovery for independent and joint inversions. (a)  $v_P$  checkerboard. (b) density checkerboard. Anomaly size = 8x8x8 km. Single checkerboard layer centered at 5 km depth.



**Figure S4.** Comparison of checkerboard recovery for independent and joint inversions. (a)  $v_P$  checkerboard. (b) density checkerboard. Anomaly size = 5x5x5 km. Double checkerboard layers centred at 2 and 7 km depth.



**Figure S4.** Comparison of boxcar pattern recovery for independent and joint inversions. (a)  $v_P$  boxcar test. (b) density boxcar test. Anomaly size = 5x5x5 km. Single boxcar layer centered at 5 km depth.



**Figure S7.** Anomaly recovery tests with joint inversion. We test the ability of the experiment geometry and inversion strategy to recover a series of anomalies expected for different scenarios. First column: thermal anomaly; second column: thermal anomaly plus 10% melt fraction; third column: thermal anomaly plus 20% melt fraction; fourth column: thermal anomaly plus 30% melt fraction. The density anomaly is positive since the partially molten gabbro is denser than the surrounding arc crust. Input anomalies are shown in row 1 and 3. Recovered anomalies are shown in row 2 and 4. The inversion recovers 90%, 60% and 42% of the input  $v_P$  anomaly caused by 10, 20 and 30 % melt fraction respectively and introduces some blurring and vertical smearing in the density anomaly.