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Featured Application: By analyzing extracts of biofilm formed by two marine bacteria and
comparing them with planktonic extracts, we have shown that biofilm may induce the biosynthesis
of potentially bioactive compounds and may open up new possibilities for compound discovery.

Abstract: In the marine environment, biofilm formation is an important lifestyle for microorganisms.
A biofilm is comprised of cells embedded in an extracellular matrix that holds them close together
and keeps the biofilm attached to the colonized surface. This predominant lifestyle and its main
regulation pathway, namely quorum-sensing (QS), have been shown to induce specific bioactive
metabolites. In this study, we investigated the biofilm formation by two marine bacteria belonging to
the Vibrio species to discover potentially innovative bioactive compounds. We proposed a protocol to
isolate biofilm extracts, to analyze their biochemical composition, and to compare them to planktonic
cell extracts. Cells were grown attached to a plastic surface; extracts were prepared in water, NaOH,
or in ethyl acetate and analyzed. Extracellular matrix components featured carbohydrates, proteins,
lipids, and low amount of DNA. Carbohydrates appeared to be the main constituent of biofilm but
also of the planktonic cell supernatant. Moreover, antimicrobial and QS-signaling activities were
evidenced in extracts.

Keywords: Vibrio; biofilm; polysaccharide; quorum-sensing; activity

1. Introduction

Marine ecosystems host a wide microbial diversity with high biotechnological potential.
Microorganisms have developed different strategies to adapt to the marine environment, which is
characterized by a variety of dynamic conditions. In most cases, they grow into aggregates or
biofilms attached on biotic or abiotic surfaces, such as artificial surfaces, rocks, particulate compounds,
and organism surfaces [1]. This sessile microbial lifestyle is predominant and is characterized by
cellular differentiation during adhesion followed by some physiological pathway modifications. Due to
the importance of biofilms, a large number of reviews and book chapters have addressed this topic,
as reviewed by Neu et al. [2].

A biofilm is a complex three-dimensional structured community featuring two main components:
bacterial cells and the extracellular polymeric matrix (EPM) in which cells are embedded. The EPM
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is mainly produced by the cells themselves and can account for over 90% of the total dry mass of
the biofilm [3]. A biofilm can be the cause of the corrosion and biofouling of marine equipment,
resulting in its degradation and economic losses, and until now, most of the research efforts were
focused on its inhibition [4]. In contrast, little is known about biofilm-specific metabolites. Indeed,
a biofilm enables cell–cell interaction and communication by involving chemical signals, such as
quorum-sensing (QS) autoinducers. Different metabolic pathways that remain inactive under the
planktonic growth conditions are commonly used in the research laboratories where they can be
activated [5,6]. Many biosynthetic pathways are regulated by QS, including the production of
metabolites [7,8], of biosurfactants [9,10], and of antimicrobials [11].

Biofilm-specific EPM substances may be endowed with diverse physical/chemical properties
and with biological activities and functionalities. Polysaccharides (PSs) have been evidenced as
the most common components of a bacterial biofilm matrix [12–14]. Specific PSs can be produced
during biofilm formation and development [14–16]. For example, cellulose production has been
described at the air–liquid interface of static liquid cultures of bacteria [6,17]. Biotechnological
applications of carbohydrate polymers are strongly influenced by their structural features and they
have been investigated in various fields, including human health and the production of valuable
metabolites [18–21].

Proteins in biofilms are the structural components of multimeric cellular appendages, such as
flagella, pili, or fimbriae. They are involved in cell motility and in both the initial phase of biofilm
formation and in its development [17]. Some of them are located on the cell surface to promote
interactions with other extracellular matrix ligands, such as LecB in Pseudomonas aeruginosa [22] or the
biofilm-associated proteins (Bap) [17,23]. Furthermore, many proteins are extracellular enzymes, such as
proteases [12,24], which could be worth studying for their biotechnological potential. Among other
less characterized biofilm components, extracellular DNA (eDNA) has also been found in EPMs and
may play a structural role in biofilm development by promoting cell-to-cell interconnections [25–27].
Extracellular DNA release also takes part in both genetic material exchange and gene transfer [28].
Data on lipids as EPM components are still limited. In biofilms, two main groups have been identified,
namely lipid vesicles, in particular in Vibrio fischeri biofilm [29], and lipoconjugates (glycolipid
surfactants, lipopolysaccharides, lipoproteins) [30–33]. It appears then that, while EPM substances act
to provide structure for the biofilm, their biotechnological potential is broad. New applications and
markets for these molecules, including extracellular polymer-based bioproducts, are expected [34].

Biofilm recovery is the first step toward characterizing the specific metabolites. Subsequently,
depending on whether the analysis targets a particular component or not, the samples can be
homogenized, fractionated into separate cells and soluble components, usually via centrifugation,
and/or submitted to extraction in aqueous or nonaqueous solvents [35–39]. Enzymatic digestion can
also be applied to recover a targeted component [35,36].

In this study, we were interested in the biofilms formed by two Vibrio species known to produce
exopolysaccharides in bioreactors. Their ability to form biofilms was evaluated. An extraction process
was proposed to allow for the characterization of EPM components, as well as of both QS signaling and
antimicrobial activities of the extracts. Furthermore, their features were compared with the metabolites
synthesized by planktonic cells.

2. Materials and Methods

2.1. Bacterial Strains and Culture Conditions

Two bacterial strains isolated from deep-sea hydrothermal vents and stored in an Ifremer culture
collection were studied. Vibrio diabolicus CNCM I-1629 was isolated from the dorsal integument of the
hydrothermal vent polychaete annelid Alvinella pompejana near the active hydrothermal vent ELSA at
a depth of 2600 m in a rift system of the East Pacific Rise (12◦48.139 N, 103◦56.309 W), accessed in 1991
during the French–American cruise HERO [40]. The MS969 strain was recovered from an artificial
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colonization module set at the Snake Pit site (23◦22 N, 45◦57 W—depth 3500 m) along the mid-Atlantic
Ridge during the French oceanographic cruise “Microsmoke” in November 1995 [41]. Strains were
stored in glycerol 20% (v/v) at −80 ◦C. They were grown in Zobell medium (4 g/L Tryptone, 1 g/L yeast
extract, and 33.3 g/L aquarium salts).

2.2. Identification of the MS969 Strain

The MS969 strain was cultured on Zobell medium at 28 ◦C over 24 h under 170 rpm agitation.
A total of 500 µL of culture was centrifuged for 10 min at 7500 rpm. The pellet was washed with 300 µL
phosphate buffer saline (PBS) solution and centrifuged again. Then, 200 µL of 10 mM Tris with 1mM
EDTA (ethylenediaminetetraacetic acid) were added to the pellet; bacteria were lysed by heating at
95 ◦C for 10 min and cleared using centrifugation. The 16S rDNA gene was amplified directly from the
supernatant (1 µL) using polymerase chain reaction (PCR) with 8F and 1489R primers as previously
described [42]. PCR amplification was performed using a DreamTaq Green polymerase Master mix
(Thermo Fisher Scientific, Illkirch, France). The sequencing of amplified products was carried out by
Genoscreen (Lille, France). A consensus sequence was built using forward and reverse sequences
with BioEdit software (Figure S1) [43]. Strain identification was performed using nucleotide Blast on
the NCBI nr/nt Nucleotide Collection (National Center for Biotechnology Information). Phylogeny
was inferred from the alignment with reference 16S rDNA sequences retrieved from Genbank using
MEGA7 software (version 7.0) [44] (Table S1). The Escherichia coli type strain sequence (ATCC 11775T;
X80725) was used as the outgroup. The optimal tree was built using the neighbor-joining method
(NJ) [45]. The bootstrap support of nodes was assessed with 1000 replicates [46]. The evolutionary
distances were computed using the Jukes–Cantor method [47].

2.3. Biofilm Assays

Bacterial strains were grown in Zobell medium at 30 ◦C under 180 rpm agitation for 24 h.
After centrifugation, the pellet was rinsed twice with sterile phosphate buffer saline (PBS) solution
and suspended in a PBS or Zobell medium to reach an average OD at 600 nm of 0.5. One volume
of this suspension was used to inoculate various containers. After incubation under very gentle
agitation, planktonic cells were removed, and the adherent biofilm was carefully rinsed with PBS and
subsequently stained for 30 min with one volume of 0.5% (w/v) crystal violet (CV, Sigma-Aldrich, Lyon,
France) prepared in water. The dye solution was removed and the biofilm was washed again thrice
with PBS. The dye bound to the biofilm was solubilized via incubation for 15 min with one volume of
96% ethanol. The CV optical density was measured at 590 nm and directly reflected the amount of
biofilm formed. It was normalized to the OD 600 nm of the broth.

Biofilm formation was evaluated in PBS and Zobell medium with or without 10 g/L glucose.
Two incubation temperatures were tested. Three types of surfaces were also tested: glass, metal,
and plastic containers; in that case, biofilm quantification using CV staining was normalized to the
surface area. When possible, experiments were carried out in triplicates.

2.4. Biofilm Recovery

For each strain, the biofilm formation was performed in Zobell medium in 15 sterile plastic Petri
dishes (90 mm diameter). A total of 10 mL of suspension was prepared in fresh Zobell as described
in Section 2.3. and poured into each dish (OD 0.1 at 600 nm). Incubation was carried out at 20 ◦C
for 72 h under very gentle agitation. After incubation, the upper broths containing the planktonic
cells were collected and the plates were rinsed once with sterile PBS. The biofilm formed on the
surface was collected with a sterile cell scraper with the addition of sterile PBS. The volume of the
recovered adherent cells was measured and an aliquot was fixed in sterile seawater containing 2.5%
formaldehyde; cells in the biofilm were counted in a Thoma chamber with an Optika microscope
model B-192 (100×) (Dutscher, Brumath, France).
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2.5. Preparation of Extracts

As illustrated in Figure 1, extracts TOTB and TOTP were obtained from the total biofilm sample
and total planktonic cell broth, respectively, via ethyl acetate extraction carried out on 5 mL of each
sample (see below). The remainder of each suspension was divided into two equal volumes and
centrifuged (40 min, 8000× g, at 10 ◦C), giving two equal pellets and supernatants. Supernatants of
the two same samples were mixed, filtered on a sterile 0.22 µm cellulose acetate membrane (VWR
International, Fontenay-sous-Bois, France), dialyzed on a 3.5 kDa Spectra Por 3 membrane (Thermo
Fisher Scientific, Illkirch, France), and freeze dried. Supernatants from the biofilm (B) and planktonic
cells (P) were called SnB and SnP, respectively.

One of the pellets was extracted with NaOH via addition of 5 mL of 0.1% (w/v) NaOH. After 4 h
of incubation, acetic acid was added to reach pH 7. The sample was centrifuged (30 min, 8000× g,
at 10 ◦C) and the supernatant was filtered on a sterile 0.22 µm cellulose acetate membrane (VWR,
France), dialyzed on a 3.5 kDa Spectra Por 3 membrane, and freeze dried. Extracts were called AB and
AP for membrane “associated” compounds for biofilm and planktonic samples, respectively.

For the ethyl acetate extraction, 5 mL of ethyl acetate was added to 5 mL of the initial total biofilm
cells and total planktonic cells, as well as to the second pellet, blended for 30 s, and agitated over
15 min to mix the aqueous and solvent phases. The solvent upper phase was collected and the aqueous
phase was subjected to a second extraction using ethyl acetate. The two solvent phases were mixed
and dried under N2. The resulting extracts were called CB and CP, respectively.

Sample volume and yield of each extract were registered.
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Figure 1. Extraction scheme. TOT is the total extract obtained with ethyl acetate treatment; Sn refers to
the broth supernatant; A contains the substances bound to the cell surface that were extracted using
NaOH; C refers to the extraction using ethyl acetate on cell pellets. The extract names are followed by
B for biofilm cells and P for planktonic cells.
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2.6. Chemistry of the Biofilm Matrix

2.6.1. Composition Analysis

Composition analysis was carried out on SnB, SnP, AB, and AP extracts through colorimetric or
fluorimetric methods. The protein content was analyzed using the bicinchoninic assay using a BCA kit
(Sigma- Aldrich, Lyon, France) and bovine serum albumin as the standard [48]. Total carbohydrates
were assayed with orcinol following the Tillmans and Philippi method modified by Rimington in
1931 [49,50] using glucose as the standard. DNA was measured with a Quant it Pico Green ds DNA
assay (Invitrogen, Thermo Fisher Scientific, Illkirch, France); herring sperm DNA was used as the
standard (Sigma- Aldrich, Lyon, France). To quantify the lipids, another extraction was necessary to
remove carbohydrates that interfere with the sulfo-phospho-vanillin (SPV) assay in sulfuric acid. Lipids
were extracted using the Bligh and Dyer method, as modified by Axelsson et al. [51,52]. Briefly, 250 µL
of chloroform and 500 µL of methanol were blended with 200 µL of extract. Again, 250 µL of chloroform
was added and mixed over 30 s, and finally, 250 µL of water was added. After centrifugation (5000 rpm,
10 min, 10 ◦C), the alcoholic upper phase was discarded and the organic phase was dried under N2 or
overnight under an extraction hood. The SPV lipid assay was adapted from Frings et al.’s method [53].
The assay started by adding 200 µL of 98% sulfuric acid to the dried sample. After incubation for
15 min at 100 ◦C, and cooling under tap water, 500 µL of phospho-vanillin, prepared by mixing 120 mg
isovanillin in 20 mL distilled water and adjusting the volume to 100 mL with 85% orthophosphoric
acid, was added. The mixture was first incubated at 37 ◦C under agitation for 15 min, and subsequently
at an ambient temperature in the dark for 45 min. The OD was read at 530 nm. Commercial olive oil at
0 to 2 mg/mL in sulfuric acid was used as the standard. Although the dosage assays were performed
on a fraction of the suspension, each extract yield was calculated for the whole sample.

2.6.2. Electrophoretic Analysis of Proteins, DNA, and Glycopolymers

After the migration in 0.7% agarose gel was prepared as previously described [54], DNA was
stained using SYBR SafeTM (Invitrogen, Thermo Fisher Scientific, France). The same gel was
subsequently stained with the cationic carbocyanine dye Stains-All (SIGMA, France) to reveal
polyanionic glycopolymers, as previously described [55]. Extracts were also analyzed using PAGE on
12% acrylamide gel and Stains-All staining or Coomassie Blue staining [56].

2.6.3. Carbohydrate Characterization Using Gas Chromatography

The monosaccharide composition was determined using gas chromatography according to the
method of Kamerling et al. [57] and Montreuil et al. [58], as previously described [54].

2.6.4. Determination of Molecular Weight

Molecular weight profiles were determined using high-performance size-exclusion
chromatography coupled with a multiangle light scattering detector (MALS, Dawn Heleos-II,
Wyatt Technology, Santa Barbara, CA, USA), a differential refractive index (RI) detector (Optilab Wyatt
technology, Santa Barbara, CA, USA), and a Prominence UV detector (Shimadzu Co., Kyoto, Japan).
HPSEC system was composed of an HPLC Prominence system (Shimadzu Co., Kyoto, Japan), a PL
aquagel-OH mixed, 8 µm (Agilent, Les Ulis, France) guard column (U 7.5 mm × L 50 mm), and a PL
aquagel-OH mixed (Agilent, Les Ulis, France) separation column. The elution was carried out in
1 mL/min 0.1 M ammonium acetate.

2.7. Antimicrobial Activity Assay

Antimicrobial activities of the MS969 strain and of V. diabolicus extracts were assessed using
thirteen indicator strains of aquacultural, food, or medical importance (Table S2) using a miniaturized
method based on the spot-on-lawn assay [59]. Briefly, indicator strains, conserved in glycerol at
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−80 ◦C, were thawed at room temperature. One to four hundred microliters were inoculated in 2 mL of
Trypto-casein soy broth (TSB, Biokar, Grosseron, Couéron, France) or brain heart infusion supplemented
with 1.5% NaCl (BHIS, Biokar, Grosseron, Couéron, France) and incubated for 3 h in a 1.5 mL microtube
at 30 ◦C. Then 500 µL of each suspension were seeded into 40 mL of 55 ◦C-incubated BHIS or TSB
containing 1% agar and poured into a squared Petri dish 120 × 120 mm in size. After drying at ambient
temperature, 5 µL of extracts were spotted onto the surface. Plates were incubated for 24–48 h at 30 ◦C.
A clear halo around the spot provided evidence of the inhibition of the indicator strain growth.

2.8. Effect of Extracts on Quorum Sensing

The effect of samples on QS was evaluated by following the bioluminescence of Vibrio harveyi
(LMG 4044). Each extract was prepared in water; thus, ethyl acetate extracts were dried under N2 and
resolubilized in water. Aqueous extracts (20 µL) were added into the wells of flat- and clear-bottom
96-well white microplates containing 180 µL of Zobell medium seeded with a V. harveyi culture
aliquot; this approximately corresponded to an initial concentration of 106 UFC/mL. A large volume
of this suspension was prepared separately before distribution in order to ensure a good content
homogeneity. Microplates were incubated at 30 ◦C under agitation. The optical density at 600 nm and
bioluminescence were simultaneously monitored over 27 h using the multi-technology microplate
reader VarioskanTMLUX (Thermo Fisher Scientific, Illkirch, France). The luminescence units were
normalized by dividing them per OD 600 nm. Assays were performed four times and were statistically
compared to 92 assays with V. harveyi alone using Student’s test.

2.9. Motility Assays

Motility was evaluated on Zobell or BHI (Biokar, Grosseron, Couéron, France) agar medium dried
over 30 min under a security hood for microbiology. Agar was added at 0.4% (w/v) to detect swarming
or 1.5% (w/v) to detect twitching. Ten microliter droplets of cultures were deposited on the gel and
incubated at 25 ◦C. Petri dishes were photographed to follow the motility. When appropriate, glucose
was added at a 30 g/L final concentration.

3. Results

3.1. Identification of the MS969 Strain

The analysis of the 16S rDNA sequence of the MS969 strain showed that this strain belongs to the
Vibrio genus (Proteobacteria phylum, Vibrionaceae family) and its closest neighbors are Vibrio neptunius
and Vibrio coralliilyticus, which are both representatives of the Coralliilyticus clade [60,61] (Figure 2).

3.2. Biofilm Formation by V. diabolicus CNCM I-1629 and Vibrio sp. MS969

Two Vibrio species were chosen in this study; their origin allowed us to expect high biofilm
formation. Both strains were isolated from deep-sea hydrothermal vents. Vibrio diabolicus CNCM
I-1629 was an epibiont of a polychaete annelid and it produced a well-studied exopolysaccharide
(EPS), namely HE800 [40,62,63], which resembles the well-known glycosaminoglycan hyaluronic acid.
The Vibrio sp. MS969 strain was recovered on a colonization module and it was described for the first
time in 2019 [54].

The biofilm formation by both strains was tested under various conditions, including temperature
(20 ◦C and 30 ◦C), surface type (metal, plastic, glass), incubation time (24 h and 48 h), and suspension
medium nature (PBS or Zobell medium, supplemented with glucose or not) (Figure 3). Whatever the
bacterium, the biofilm amount was higher at 20 ◦C. V. diabolicus adhered better to metal, whereas the
MS969 strain developed a more important biofilm on glass. Glucose inhibited V. diabolicus biofilm
formation, while it promoted that of the MS969 strain. In the latter case, it was possible that glucose
supported the bacterial growth, and thus, the observed effect on the biofilm was most probably indirect.

Subsequent experiments were performed at 20 ◦C without glucose and on a plastic surface.
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The suspension of cells in the Zobell nutritive medium was tested and compared with PBS.
Figure 3c shows that the suspension in the nutritive medium was better for the biofilm formation of
both strains, suggesting a better cell development. The biofilm amount reached a plateau after 72 h
of incubation.
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glucose; biofilm was measured after 24 h and 48 h at 20 ◦C. (c) Kinetics of biofilm formation at 20 ◦C in
plastic tubes; cells were suspended in PBS or in Zobell. The OD of fixed crystal violet was normalized
by dividing it per OD 600 nm.

3.3. Preparation of Biofilm Extracts

Under the optimal conditions determined in the above section, a strong biofilm was formed at the
solid interface on the bottom of the plates and was recovered with a cell scraper. Different extracts were
prepared, both from the biofilm sample and planktonic cells (Figure 1). The cell numbers in biofilm
and planktonic samples were counted and the dry matter recovery yield was measured (Figure 4).
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Figure 4. Recovery yield of each extract from 15 Petri dishes. (a) Amount of recovered cells. (b) Yield
(mg) recovered after freeze drying or evaporation calculated for the whole biofilm or planktonic sample.

For both strains, cell numbers were in the same order of magnitude and planktonic cells were
almost ten times higher than those recovered from the biofilm. Most of the extracted matter was
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recovered either from supernatants (SnB and SnP) or from ethyl acetate extraction of the total suspension
(TOTB or TOTP). Nevertheless, for all the extracts, the recovery yield was higher from V. diabolicus,
especially for the total ethyl acetate extract of planktonic suspension (TOTP). Soluble compounds
collected in the supernatants and NaOH extracts (SnP or SnB and AP or AB, respectively) were largely
equivalent between the biofilm and planktonic cells for V. diabolicus. However, for the MS969 strain,
the extract amounts recovered from planktonic cells were always higher than the equivalent extract
from biofilm cells.

3.4. Biofilm Water-Soluble Components

3.4.1. Biochemical Composition Determination Using Colorimetric or Fluorimetric Assays

Carbohydrate, protein, nucleic acid, and lipid amounts were quantified in water-soluble extracts
using colorimetric and fluorimetric assays (Figure 5).
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Figure 5. Composition analysis of supernatants (Sn) and NaOH extracts (A) from attached cells (B) or
planktonic cells (P). Supernatants recovered directly using biofilm sample centrifugation were labeled
“Sn” and those resulting from NaOH extraction were labeled “A”.

The total amount of analyzed molecules was limited to a maximum of 23% (w/w) of the dry
mass. In several of the assays, the hydrolysis into monomers was necessary. Therefore, in this case,
the hydrolysis might be incomplete, driving under-evaluated amounts. In addition, although the
water-soluble extracts (Sn and A) were dialyzed, the presence of macromolecules, especially the
polyanionic ones, might hinder the total elimination of salt. Nevertheless, carbohydrates represented
the main component, except for the biofilm supernatant of V. diabolicus (SnB). We noticed that extracts
were rich in lipids, a component that is rarely assayed. It represented up to 7.7% (w/w) of the extracts.
In addition, the extracts contained proteins (except the SnB of V. diabolicus) and very low amounts
of DNA.

Carbohydrates, proteins, and DNA have been the main compounds studied in biofilms. Conversely,
lipids have rarely been evaluated. The compounds that constitute the EPM may probably favor the
colonization of various surfaces. In addition, they play an important role in the stability of the EPS
network through various interactions [12,36,64,65]. Our results are rather consistent with previous
work since polysaccharides are usually described as the main component of Vibrio biofilms [66].

3.4.2. Electrophoretic Analysis

Each extract prepared either via centrifugation or by NaOH extraction was analyzed using
electrophoresis (Figure 6).
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Figure 6. Electrophoretic analysis of extracts. Gels were stained with Stains All. (a) PAGE of V. diabolicus
extracts and MS969 strain extracts. 1: O’GeneRuler 1 kb Plus DNA Ladder, 2: Prestained Protein MW
Marker (Thermo Scientific, 26612), 3: SnB, 4: AB, 5: SnP, and 6: AP. (b) Agarose gel of V. diabolicus (3:
SnB, 4: AB, 5: SnP, 6: AP) and MS969 extracts (3′: SnB, 4′: AB, 5′: SnP, 6′: AP). A: GY785 EPS and B:
HE800 EPS were used as standards [67,68].

Supernatants (Sn) of either surface-adhered (SnB) or planktonic cells (SnP) displayed the same
migration pattern. NaOH extracts (AB and AP) also featured the same pattern on PAGE and
displayed several bands. Agarose gel analysis showed that the V. diabolicus SnB extract contained
a high-molecular-weight polydisperse compound that resembled the HE800 EPS produced by
V. diabolicus on Zobell supplemented with 30 g/L glucose [54], although the colorimetric assay
detected only traces of carbohydrates (Figure 5). This suggests that degradation of biofilm extracts into
monomers for the colorimetric assay was not efficient. A similar band was detected in the planktonic
NaOH extract (AP, lane 6). On the other hand, the extracts from the MS969 strain showed pink bands
in the lower part of the gel, a color often observed for some sulfated glycosaminoglycans [69].

Neither DNA nor protein was detected in the electrophoresis gels. This result was correlated
to the low amount of DNA and protein quantified using the colorimetric and fluorometric methods,
as shown in Figure 5.

3.4.3. Osidic Composition

The osidic composition of samples were determined using gas chromatography (Figure 7).
The analyzed osidic amount of all extracts was low, especially in the biofilm cells. It reached

a maximum of 10% (w/w) of dry mass. This might be explained by the uncomplete HCl/MeOH hydrolysis
of these complex samples required by the gas chromatography analysis. Carbohydrate compounds
seemed more difficult to recover from biofilm samples than from planktonic ones, especially the SnB
and AB of V. diabolicus. Nevertheless, both V. diabolicus biofilm and planktonic cells soluble extracellular
compounds (SnB and SnP) seemed to exhibit a similar osidic pattern. Glucuronic acid (GlcA) was the
main component, followed by N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc)
in similar amounts. These two extracts also contained the neutral sugars mannose (Man), galactose
(Gal), and glucose (Glc). The NaOH extract of biofilm cells (AB) consisted of glucose only, and that of
planktonic cells (AP) featured GlcA and GalNAc as the main components. No GlcNAc was detected
in AP.

GalNAc, GlcA, and neutral sugars (Glc, Gal, Man, and rhamnose (Rha)) were detected in soluble
exopolymers of the MS969 strain biofilm, as well as in planktonic broth supernatant (SnB and SnP).
SnB also contained GlcNAc. Mannose was the main component of SnB and SnP. On the contrary,
NaOH extracts (AB and AP) featured Glc, Rha, and GlcA. In addition, Man was detected in AB.
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Figure 7. Osidic composition (% w/w) of V. diabolicus and MS969 extracts. GalNAc:
N-Acetylgalactosamine, GlcNAc: N-Acetylglucosamine, GalA: Galacturonic acid, GlcA: Glucuronic
acid, Glc: Glucose, Gal: Galactose, Man: Mannose, Fuc: Fucose, Rha: Rhamnose. Added inserts zoom
on extracts containing low level of sugars. The osidic composition of EPS produced in the presence of
30 g/L glucose is indicated for both strains [54].

3.4.4. Size Exclusion Chromatographic Profiles

Each extract was analyzed using HPSEC-MALS to determine the molecular weight pattern.
Elution profiles with refractive index (RI) and ultraviolet (UV) detection at 280 nm were obtained
(Figure 8).

The refractometric index is related to the amount of carbohydrates and nucleic acids, and UV
profiles are related to proteins, peptides, and other components that absorb wavelength of 280 nm.
Both chromatographic profiles were in accordance with the previous observations. Indeed, a large salt
peak was detected using RI at the column total volume (12-min elution). This might partly explain the
low level of the total amount of analyzed molecules (Figures 5 and 7).

All extracts of V. diabolicus exhibited three families of peaks (7–8 min, 8–10 min, and 10–11 min
retention time) in the RI profile, corresponding to high-, medium-, and low-molecular-weight
carbohydrates as determined by the MALS detector. Only SnP (planktonic cells supernatant) contained
a high molecular weight carbohydrate with a small UV absorption. This could be attributed to
an anionic polysaccharide. Medium-molecular-weight compounds were found in AB and AP extracts
(NaOH extracts) with a low UV absorption. Both extracts presented quite similar peaks with a higher
intensity for AP.

RI profiles of MS969 extracts were quite different in molecular weight repartition. There was no
very high molecular weight compound in SnB extract, but all the extracts featured a peak at 8 min
elution time, which absorbed UV. The AP extract presented two peaks, at 8 and 9.5 min, whereas AB
extract peaks were detected at 8 min and 10.5 min. The UV profiles were very similar from one extract
to another.
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Since both Vibrio strains produced EPSs of biotechnological importance when glucose was added
to planktonic growth medium, we were interested in the identification of those produced by the
biofilm and planktonic cells. Sutherland et al. [15] suggested that EPSs present in biofilms certainly
closely resemble the corresponding polymers synthesized by planktonic cells. The HE800 EPS is
produced by V. diabolicus in shaken flasks or in aerated bioreactors containing the Zobell medium
supplemented with glucose; its linear tetrasaccharidic repeating unit consists of two GlcA residues
and two N-acetyl hexosamines: one GlcNAc and one GalNAc [68]. Although GC analysis of SnB gave
only very low amounts of sugars, its overall osidic profile, together with SnP, seemed to be similar
to the HE800 EPS. However, mannose was present in these two extracts, suggesting that another
compound was co-extracted. Sugars recovered in the AB extract were also in very low amounts but
only glucose was identified. This may suggest that the glycopolymer (as indicated by HPSEC-MALS)
was similar to cellulose. Bacterial cellulose has already been described in biofilms of other Vibrionaceae,
such as Aliivibrio fischeri [21]. Comparative sequence analyses also revealed the presence of a cellulose
biosynthesis cluster in diverse bacteria, especially several Proteobacteria strains, of which the Vibrio
species is a member [21].

The EPSs produced in excess of carbon source (glucose) by the MS969 strain cultured in shaken
flasks was composed of neutral sugars including rhamnose, galactose, glucose, and glucuronic acid.
Interestingly, it was the first time that a sulfate group, which is known to promote biological activities,
was identified in an EPS produced by a Vibrio strain [54]. The pink color seen in the electrophoresis in
this study might also suggest that extracts prepared from MS969 (SnB, SnP, AB, and AP) contained
sulfated compounds. SnB and SnP osidic composition resembled that of the MS969 exopolysaccharide.
Mannose was present in both extracts and seemed to be a common supplemental sugar in Sn extracts
of both strains. This sugar could result from the extraction of cell membrane compounds. SnB also
contained GlcNAc. Nevertheless, in V. cholerae EPSs (VPS), GlcNAc has already been described in 20%
of the molecules, the rest of them contained Glc instead [66]. The AB and AP osidic profiles were similar.
The RI profile from HPSEC analysis also suggested that carbohydrates may be slightly different in cell
supernatants and cell surface (AB and AP extracts). It has already been found that exopolysaccharides
have a great significance in biofilm formation by Vibrio spp. The symbiosis polysaccharide (Syp) is
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involved in the colonization of the squid Euprymna scolopes by V. fischeri [70]. Syp-like clusters have also
been found in V. diabolicus and V. neptunius [71]. Other EPSs critical for biofilms have been described in
Vibrio parahaemolyticus [72] or in Vibrio vulnificus [73].

3.5. Motility Assay

Colonization of a solid medium was tested at two agar concentrations on Zobell and BHI media
that was eventually supplemented with 30 g/L glucose (Figure 9).
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each Petri dish was totally colonized in 3 days. Movement in small groups on the nutritive surface 
was clearly visible. In media supplemented with glucose, motility on the BHI-based medium was 
conserved but reduced on Zobell 0.4% agar and inhibited on Zobell 1.5% agar. 

The MS969 strain displayed a high motility on BHI 0.4% agar medium and colonized the whole 
Petri dish (90 mm diameter) in 3 days. This was also the case on Zobell with 0.4% agar but the mat 
appeared less dense (not shown). No motility was detected when agar was at a 1.5% concentration. 
Glucose, when added at 30 g/L, completely inhibited the biofilm and the strain was only able to form 
a colony with a maximum 14 mm diameter. 

Three bacterial motility types have been described. First, swimming is an individual movement 
in liquid medium. Second, bacteria display swarming when they move in small groups and in an 
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30 g/L glucose.

The motility of V. diabolicus on each medium (Zobell or BHI with 0.4 or 1.5% agar) was high since
each Petri dish was totally colonized in 3 days. Movement in small groups on the nutritive surface
was clearly visible. In media supplemented with glucose, motility on the BHI-based medium was
conserved but reduced on Zobell 0.4% agar and inhibited on Zobell 1.5% agar.

The MS969 strain displayed a high motility on BHI 0.4% agar medium and colonized the whole
Petri dish (90 mm diameter) in 3 days. This was also the case on Zobell with 0.4% agar but the mat
appeared less dense (not shown). No motility was detected when agar was at a 1.5% concentration.
Glucose, when added at 30 g/L, completely inhibited the biofilm and the strain was only able to form
a colony with a maximum 14 mm diameter.

Three bacterial motility types have been described. First, swimming is an individual movement
in liquid medium. Second, bacteria display swarming when they move in small groups and in
an organized way on semi-solid surface. Depending on strain, cells undergo a morphology change
by lengthening and one or two flagella forms, which allows for a rapid colonization of new surfaces.
Swarming was detected on 0.4% (w/v) agar medium. Third, twitching mobility is due to type IV pili
whose contraction allows the bacterial cells to move by slipping in small groups on a solid surface;
it was evaluated on 1.5% agar medium. Flagella involved in swimming and swarming play a role
during the adhesion initial phase of biofilm formation, whereas type IV pili participate in the biofilm
maturation [74]. Flagella and pili are often present in Vibrio cells [75,76]. Raguenes et al. [40] have
shown that V. diabolicus cells display one single flagellum in liquid medium and many lateral pili on
a solid medium, which can contribute to swarming. In this study we saw that both Vibrio species
displayed swarming motility and V. diabolicus also exhibited twitching motility.

3.6. Antimicrobial Activities

Screening for antimicrobial activities of bacterial strains was carried out using the spot-on-lawn
approach in which indicator cultures were grown within the solid medium [59]. Extracts of biofilm and
planktonic cells produced in this study were tested against 13 indicator strains (Table S2, Figure 10).
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For both strains, extracts obtained with ethyl acetate were the only ones to display some
antimicrobial activities. Interestingly, inhibitory activities of both strains were detected against Listeria
innocua and Brochothrix thermosphacta. In addition, V. diabolicus was able to inhibit the growth of
Staphylococcus epidermidis (both TOTB and TOTP extracts). TOTB and CP extracts of the MS969 strain
were able to limit the growth of B. thermosphacta.

Swarming can hinder the detection of antimicrobial activities using the classical spot-on-lawn
method in which both the antimicrobial producer and indicator cultures are grown simultaneously on
and in, respectively, the same solid media under the same conditions of incubation [59]. Preparation
of extracts was therefore an efficient approach to studying the antimicrobial activities of swarming
bacteria. In this study, we reported antimicrobial activities targeting S. epidermidis, L. innocua, and
B. thermosphacta. Potential antibacterial compounds were previously identified in Vibrio spp. [77],
especially in V. neptunius [78]. Moreover, we have shown that the extracts prepared from biofilm-grown
cells may produce specific biologically active compounds. Although it needs to be confirmed, this result
opens the way to the investigation of new antimicrobial compounds.

3.7. Quorum-Sensing Signaling

All extracts were added into microplate wells containing Zobell medium seeded with a V. harveyi
culture aliquot. V. harveyi growth and quorum-sensing regulated bioluminescence were monitored
over 24 h (Figure 11).
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None of the extracts influenced V. harveyi growth but its luminescence was decreased by the
NaOH extracts of V. diabolicus (AB and AP) and by the NaOH extract of the MS969 biofilm (AB).
Interestingly, the amount of light produced was increased by the biofilm extracts of MS969 (SnB
and TOTB) suggesting that the MS969 strain released quorum-sensing (QS) signal molecules in the
extracellular matrix.

Quorum-sensing signaling is an important regulatory pathway in Vibrio species and has been
well-studied in A. fischeri [79] and V. harveyi [80]. Bioluminescence in V. harveyi is regulated by the
N-acyl homoserine lactone-based system, as well as two other systems, including an autoinducer
AI-2 [81]. In the MS969 strain, biofilm-specifically released compounds have been shown to promote
bioluminescence. This suggests that a quorum-sensing pathway similar to one of the three V. harveyi
QS systems was involved in biofilm formation of the MS969 strain. The V. diabolicus biofilm may
be regulated by signal molecules not recognized by V. harveyi to produce bioluminescence, or most
probably, they were not enough to be effective.

4. Conclusions

In this study, we described a relevant protocol to characterize the biofilm components of two
Vibrio species, both in total biofilm and in several aqueous or organic solvent extracts. The chemical
composition, as well as QS signaling and antimicrobial activities of the extracts, were analyzed. In the
future, the procedure should be further improved to better eliminate salts before the hydrolysis steps
for colorimetric and GC analyses. The global composition (carbohydrate, protein, lipid, and nucleic
acid) of the biofilm matrix showed that carbohydrate was the main component. The carbohydrates
chemical composition and molecular weight may be slightly different in the biofilm cell supernatants
and cell surface. Interestingly, in one case, a biofilm-specific carbohydrate, consisting only in glucose,
was identified. The biofilm appeared thus as a specific bacterial phenotype. Therefore, it is potentially
a source of biologically active compounds, such as polymers endowed with better biological and
functional properties than those already known. Depending on their nature, chemical composition,
and structure, the biotechnological potential of the biofilm polymer can be considered in a wide range
of uses, such as cryoprotectants, emulsifiers, heavy metal chelators, bioactives for human health and
well-being, and as a source of high-value sugar monomers or enzymes [18–20,82].

Antimicrobial resistance is a global public health issue affecting both human and animal health.
At the same time, the presence of bacterial contaminants in foodstuffs is causing important economic
losses. Therefore, it is urgent to market new antimicrobial molecules targeting, in particular,
multi-resistant pathogenic strains, and thus presenting new mechanisms of action. Furthermore,
while bacterial genome sequencing shows the existence of numerous genetic clusters that encode the
biosynthesis of bioactive metabolites, a large majority of them remain inactive under the planktonic
growth mode commonly used in lab experiments [83]. By investigating the underlying regulation
pathways of biofilms, such as QS signaling, we will pave the way toward the future production of
innovative metabolites.
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