On the thermal consolidation of Boom clay

Type Article
Date 2000-04
Language English
Author(s) Delage P1, Sultan NabilORCID1, Cui Yj1
Affiliation(s) 1 : Ecole Natl Ponts & Chaussees, CERMES, Dept Geotech, F-77455 Marne Le Vallee 2, France.
Source Canadian Geotechnical Journal (0008-3674) (Natl Research Council Canada), 2000-04 , Vol. 37 , N. 2 , P. 343-354
DOI 10.1139/cgj-37-2-343
WOS© Times Cited 267
Keyword(s) clays, thermal consolidation, adsorbed water, permeability, temperature effects, radioactive waste disposal
Abstract

When a mass of saturated clay is heated, as in the case of host soils surrounding nuclear waste disposal at great depth, the thermal expansion of the constituents generates excess pore pressures. The mass of clay is submitted to gradients of pore pressure and temperature, hydraulic and thermal flows, and changes in its mechanical properties. In this work, some of these aspects were experimentally studied in the case of Boom clay to help predict the response of the soil, in relation to investigations in the Belgian underground laboratory at Mol. Results of slow-heating tests with careful volume change measurements showed that a reasonable prediction of the thermal expansion of the clay-water system was obtained by using the thermal properties of free water. Despite the density of Boom clay, no significant effect of water adsorption was observed. The thermal consolidation of Boom clay was studied through fast-heating tests. A simple analysis shows that the hydraulic and thermal transfers are uncoupled. Experimental results from fast-heating tests showed that the consolidation coefficient does not change significantly with increased temperature, due to the opposite effect of increasing permeability and decreasing porosity. The changes of permeability with temperature were investigated by running constant head measurements at various temperatures. An indirect analysis, based on estimation of the coefficient of volume change m(v), showed that the indirect method of estimating the permeability from consolidation tests should be considered carefully. Intrinsic permeability values were derived by considering the change of the viscosity of free water with temperature. A unique relationship between the intrinsic permeability and the porosity was observed, with no dependence on temperature, confirming that the flow involved in the permeability test only concerns free water.

Full Text
File Pages Size Access
Author's final draft 21 217 KB Open access
Top of the page