FN Archimer Export Format PT J TI Measurements of Enhanced Near-Surface Turbulence Under Windrows BT AF Zippel, Seth F. Maksym, Ted Scully, Malcolm Sutherland, Peter Dumont, Dany AS 1:1;2:1;3:1;4:2;5:3; FF 1:;2:;3:;4:PDG-ODE-LOPS-SIAM;5:; C1 Woods Hole Oceanographic Inst, Woods Hole, Massachusetts, USA IFREMER, Univ. Brest, CNRS, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, Brest, France Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada C2 WHOI, USA IFREMER, FRANCE UNIV QUEBEC (UQAR-ISMER), CANADA SI BREST SE PDG-ODE-LOPS-SIAM UM LOPS IN WOS Ifremer UMR copubli-int-hors-europe IF 3.373 TC 7 UR https://archimer.ifremer.fr/doc/00593/70552/68722.pdf LA English DT Article DE ;Ocean;Atmosphere-ocean interaction;Boundary layer;Langmuir circulation;In situ oceanic observations;Surface observations AB Observations of waves, winds, turbulence, and the geometry and circulation of windrows were made in a shallow bay in the winter of 2018 outside of Rimouski, Québec. Water velocities measured from a forward-looking pulse-coherent ADCP mounted on a small zodiac show spanwise (cross-windrow) convergence, streamwise (downwind) velocity enhancement, and downwelling in the windrows, consistent with the view that windrows are the result of counter-rotating pairs of wind-aligned vortices. The spacing of windrows, measured with acoustic backscatter and with surface imagery, was measured to be approximately twice the water depth, which suggests an aspect ratio of 1. The magnitude and vertical distribution of turbulence measured from the ADCP are consistent with a previous scaling and observations of near-surface turbulence under breaking waves, with dissipation rates larger, and decaying faster vertically than what is expected from a shear-driven boundary layer. Measurements of dissipation rate are partitioned to within, and outside of the windrow convergence zones, and measurements inside the convergence zones are found to be nearly an order of magnitude larger than those outside with similar vertical structure. A ratio of time scales suggests that turbulence likely dissipates before it can be advected horizontally into convergences, but the advection of wave energy into convergences may elevate the surface flux of TKE and could explain the elevated turbulence in the windrows. These results add to a limited number of conflicting observations of turbulence variability due to windrows, which may modify gas flux, and heat and momentum transport in the surface boundary layer. PY 2020 PD JAN SO Journal Of Physical Oceanography SN 0022-3670 PU American Meteorological Society VL 50 IS 1 UT 000507867000001 BP 197 EP 215 DI 10.1175/JPO-D-18-0265.1 ID 70552 ER EF