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Supplementary Table 1.  Summary of mean (±SD) weight (mg) of siliceous material (W) initially added to be 
digested in the various digesters, along with the weight (mg) of silicon (Si) contained in each material sample. Eight 
replicates of each material were digested in each experiment.  

 

MATERIAL

W 2.50 ± 0.00 2.50 ± 0.00 2.50 ± 0.00 2.50 ± 0.01 2.50 ± 0.01
Si 1.12 ± 0.00 1.25 ± 0.00 1.19 ± 0.00 1.03 ± 0.01 1.08 ± 0.00
W 3.00 ± 0.01 3.00 ± 0.01 3.00 ± 0.01 3.00 ± 0.01 3.00 ± 0.00
Si 1.37 ± 0.00 1.40 ± 0.00 1.46 ± 0.00 1.24 ± 0.00 1.34 ± 0.00
W 3.33 ± 0.01 3.33 ± 0.01 3.33 ± 0.00 3.33 ± 0.00 3.33 ± 0.01
Si 1.27 ± 0.00 1.35 ± 0.00 1.27 ± 0.00 1.16 ± 0.00 1.16 ± 0.00
W 8.98 ± 0.01 8.99 ± 0.01 8.98 ± 0.01 8.98 ± 0.01 8.98 ± 0.00
Si 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00
W 6.44 ± 0.01 6.44 ± 0.01 6.43 ± 0.01 6.44 ± 0.01 6.44 ± 0.01
Si 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00

1% 5% 22% 0.2M 0.5M
Sodium carbonate Sodium hidroxide

Frustules of Thalassiosira

Spicules of Petrosia

Spicules of Chondrilla

Bentonite

Kaolinite

Supplementary Table 2.  Summary of core features, including original cruise labels, geomorphological and 
geographical settings, coordinates, and depth. Core numbers were given according to North-to-South latitude of the 
collection site. See Supplementary Discussion 1 for further details and references. 
 

 
 

Core Core Ocean Seafloor Geographical Latitude Longitude Depth
# label or sea compartment site (º) (º)  (m)
1 51719_13 NE Atlantic Slope basin Porcupine Seabigth 51.058 -12.912 2025
2 FC062 NW Atlantic Seamount Flemish Cap 48.7728 -45.46625 1163
3 KS34 NE Atlantic Continental shelf Bay of Brest 48.3133 -4.40945 15.5
4 0058A NW Atlantic Seamount Geodia ground, Flemish cap 46.8487 -43.750446 830
5 MLB2017 NW Atlantic Continental shelf Vazella ground, Sambro Bank 43.89 -63.076 160
6 K11 NE Atlantic Seamount Galicia Bank 42.8848 -11.56047 2119
7 C2000 Mediterranean Continental shelf Portlligat 42.2917 3.29001 3
8 TG36 Mediterranean Continental rise Girona 42.017 3.902 1900
9 KF14 Mediterranean Basin Balearic Sea 40.527 3.50166 2070

10 TG51bis NE Atlantic Continental shelf Gulf of Cadiz 36.7818 -6.96633 124
11 ALM6 Mediterranean Basin Alboran Sea 36.3562 -2.61866 1456
12 JC120 NE Pacific Abbysal plain Equatorial Northeastern Pacific 16.9132 -122.99695 4290
13 TG3 NW Atlantic Continental rise Adjacent to Demerara Plain 11.1964 -54.36472 4739
14 SO200 Indian Ocean Continental slope Sumatra -0.8594 97.81493 3840
15 75/GC05 SW Pacific Continental slope Great Barrier Reef -16.42 146.21 1100
16 PC501 SE Pacific Abbysal plain Southern Ocean -60.5347 -108.3028 5204
17 TG15 SW Atlantic Continental slope Antarctic Peninsula -62.9319 -59.4631 882
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Supplementary Fig. 1│ Geographical location of examined sediment cores relative to the distribution of “total” 
BSi at the seafloor (updated after Lisitzin1,2,  Hurd3, and Dittert4). Sampled sediments (yellow asterisks and numbers) 
represent a wide variety of marine environments. Cores were numbered in increasing order according to the latitude of 
the collection site, from North to South. Further information on cores can be found in Supplementary Table 1 and in 
Supplementary Discussion 1. Pioneering work by Lisitzin summarized the gross distribution of “total” BSi (as weight 
% of dry sediment) in the uppermost sediment layer of the world's oceans. He did it so by digesting 2000 sediment 
samples in hot 5% sodium carbonate for 5 hours, a method herein demonstrated to dissolve only 53.76 ± 1.98% and 
48.81±2.45% of the spicules mass of Petrosia ficiformis and Chondrilla caribensis, respectively. Therefore, it 
underestimated about 50% of the sponge BSi in the sediments. Despite that shortcoming, the gigantic Lisitzin's work 
became of widespread importance. It  established the notion of 3 “belts” of recent BSi accumulation, grossly reflecting 
global patterns of abundance of diatoms and radiolarians in the water column: 1) an almost continuous, 1000 to 2000 
km-wide band around the globe in the Southern Ocean, with a northern limit at the Antarctic Convergence (45ºS to 
55ºS); 2) an equivalent similar northern band, better developed in the Pacific, Japan Sea and Bering Sea; and 3) a 
nearly-equatorial 20ºN-20ºS band in the Indian and Pacific Oceans, which is less marked in the Atlantic Ocean. 
Lisitzin's mapping also established the  notion that siliceous sediments are poorly represented between the parallels 20º 
and 40º in northern and southern hemispheres, roughly coincidentally with zones of low abundance of diatoms and 
radiolarians in the plankton2. Those general patterns fostered the view that the BSi accumulating at the ocean bottom 
proceeded almost exclusively from a rain of siliceous planktonic organisms, which indirectly led to consider as 
irrelevant any further attempt to estimate the BSi contribution from benthic organisms. Despite the significance of 
Lisitzin's work, the truth is that the method he used to digest sediments missed not only about half of the sponge BSi, 
but, as noticed by DeMaster5, it also dissolved  an undetermined amount of lithogenic silica, for which no correction 
was ever applied. Here we have shown (Fig. 1) that his method dissolves aluminum-silicate benthonite and kaolinite in 
about 11.95 ± 0.34 % and 3.08 ± 0.12 %, respectively.  
 
 
Supplementary Discussion 1.  The investigated cores stand for a wide array of 

depositional environments. Continental shelves are represented by core 3 (Bay of Brest, 

France, North Eastern Atlantic)6, core 5 (Sambro Bank, Canada, North Western 

Atlantic)7,8, core 7 (Portlligat Bay, Spain, Western Mediterranean)9,10, and core 10 (Gulf 

of Cadiz, Spain, North Eastern Atlantic)11. All 5 cores account for markedly different 

depositional environments. For instance, cores 3 and 7 come from shallow bays, but the 

former with high primary productivity and a detrital bottom hosting a rich sponge 

community12, while the latter has oligotrophic conditions and a sandy bottom almost 

entirely occupied by a sea grass meadow and a comparatively poor sponge fauna. Yet this 
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latter bay appears to function as a concentration area that accumulates resuspended 

materials from adjacent shelf bottoms, what would explain the abundance of sponge 

spicules, including skeletal pieces from species that are not known to live within the bay. 

Cores 5 and 10 come from the distal zone of the continental shelf, and, more importantly, 

core 5 accounts for a dense monospecific aggregation of the hexactinellid sponge Vazella 

pourtalesii13, while core 10 comes from a deltaic area with sediments at the distalmost 

continental  shelf, where sponges are rare.    

  Continental slopes are represented by cores 14 (Sumatra margin, Eastern Indian 

Ocean), 15 (North Eastern Australian, Great Barrier Reef Slope, Western Pacific), and 17 

(Antarctic slope, Southern Ocean). Cores 14 and 15 are from sediments receiving 

deposition from coral reef assemblages above14,15. Core 17 received deposition from rich 

siliceous benthic and planktonic communities in the area of the Bransfield Strait 

(Antarctica)16,17,18. 

Seamounts and plateaus are represented by cores 2, 4, and 6. The latter core 

receives deposition from the sponge-rich benthic community at the Galicia Bank 

seamount (Northeastern Atlantic)19,20,21. Cores 2 and 4 come from the slope of Flemish 

Cap Plateau (Northwestern Atlantic, off Canada)22,23,24, but core 4 was sampled from an 

aggregation of Geodia spp. sponges, while core 2 is from an area with scarce sponge 

presence. It is also worth noting the peculiarity of the Recent depositional environment 

in core 2, with Holocene sedimentation rates (0.01-0.02 mm y-1) being sufficiently low 

and bottom current strength sufficiently high to erode away modern sediments, 

minimizing rates of BSi accumulation in the upper sediments and burial. The layer of 

exposed sediment at the bottom, according to correlations with Heinrich Layer 

stratigraphy25, appears to be about 12 ky old,  therefore  reflecting a combination of 

Pleistocene preservation and Holocene deposition.  

The continental rise is represented by cores 8 and 13. The former receives 

deposition from productive pelagic communities of the Gulf of Lion (Northwestern 

Mediterranean), influenced by the terrestrial inputs of seasonal Girona rivers26 and Rhône 

River27,28. Core 13 (Subequatorial Southwestern Atlantic) receives the depositional 

influence from the Orinoco River mouth29,30 and is adjacent to Demerara Abyssal Plain. 

Because their open-water nature, those sediments were included in the “basin” 

compartment. Both areas are poor in sponge fauna.  

The basin bottoms are represented by cores 1, 9, 11, 12, and 16, but, again, with 

important between-core differences in depositional environments. Core 1 (Southwest of 
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Ireland, Northeastern Atlantic)31, located in the northern zone of the slope basin 

“Porcupine Seabight”, might receive depositions from local sponge aggregations32,33. 

Cores 934 and 1135,36 are both receiving deposition from Mediterranean oligotrophic areas 

and comparatively sponge-poor benthic communities. Yet core 9 (northern Balearic 

Sea)37 represents even a less productive Mediterranean zone than core 11 (Alboran Sea)38, 

since the latter might occasionally receive material from benthic assemblages on adjacent 

banks39. Core 12 (Subequatorial Northeastern Pacific)40 receives deposition from both 

pelagic communities fostered by rich-nutrient upwellings and abyssal benthic 

communities from the adjacent Clipperton-Clarion Fracture Zone (CCFZ) 41, although 

with scarce sponges. Core 16 (Southern Ocean) receives deposition from rich planktonic 

communities commonly dominated by siliceous microorganisms and builds a benthic 

environment that facilitates BSi preservation42,43,44, leading to formation of biosiliceous 

oozes. 

 

 
Supplementary Fig. 2 | Sponge, radiolarian and silicoflagellate BSi in sediments. a-n, Sponge spicules in the 
superficial sediment of core #1 (a), #2 (b), #3 (c), #4 (d), #5 (e), #8 (f), #9 (g), #11 (h), #12 (i), #13 (j), #14 (k), #15 (l), 
#16 (m), and #17 (n). o-v, Sponge spicules buried at 50 cm in core #1 (o), #2 (p), #3 (q), #6 (r), #10 (s), #13 (t), #14 
(u), and #15 (v). w-x, Radiolarian skeletons in the superficial sediment of core 16 (w) and buried at 50 cm in core 17 
(x). (y) Silicoflagellate skeleton buried at 50 cm in core 17. Note that delicate tiny spicules of demosponges (r, v) and 
hexactinellid (u) sponges are well preserved even after being buried for 14.7, 3.6 and 1.6 kiloyears, respectively. 
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Supplementary Table 3. Contribution (average ± SD) of diatoms, sponges, radiolarians and silicoflagellates to the 
BSi content in the 1-cm thick uppermost layer of sediments. 

 

 
 

 

Supplementary Discussion 2. The abundance of sponge BSi in sediments, herein 

quantified for the first time, was long suspected. For instance, several Ocean Drilling 

Program Reports warned literally that "the scarcity of studies on sponge spicules is not 

because of a lack of spicules, as spicules are often abundant in marine sediments"45,46. 

Microscopy inspection of sediments from the continental rise and abyssal plane at the 

Gulf of Mexico ranked spicules as "abundant" to "dominant", whereas diatoms and 

radiolarians were only "frequent" to "common". Sponge spicules also occurred in 96% of 

the 1,426 sediment samples collected from open waters deeper than 200 m in the North 

Atlantic47. Spicules have been reported to dominate BSi sediments of coral reefs48 and 

rocky coasts49. They also form meter-thick mats at the continental shelf and slope in 

Arctic and Antarctic areas50,51. 

 
Supplementary Discussion 3. Sponges are sessile organisms. Unlike in the case of 

diatom frustules, their siliceous spicules do not reach the sediment as a rain from the water 

column, but experiencing restricted lateral transport and limited resuspension from the 

decaying sponge bodies. Consequently, rates of deposition and burial of sponge BSi are 

core #
diatoms sponges radiolaria silicoflagellates

avg ± SD avg ± SD avg ± SD avg ± SD
1 1.875 ± 0.436 0.080 ± 0.034 0.148 ± 0.005 0 ± 0
2 2.383 ± 0.514 1.275 ± 0.284 0.242 ± 0.132 0 ± 0
3 1.472 ± 0.169 1.391 ± 0.241 0 ± 0 0 ± 0
4 0.142 ± 0.310 76.314 ± 38.147 0.078 ± 0.079 0 ± 0
5 0.424 ± 0.165 0.334 ± 0.026 0.001 ± 0.000 0.0004 ± 0.0001
6 0.515 ± 0.123 2.491 ± 0.297 0.042 ± 0.017 0 ± 0
7 0.022 ± 0.033 0.496 ± 0.300 0 ± 0 0 ± 0
8 1.073 ± 0.101 0.012 ± 0.007 0 ± 0 0 ± 0
9 1.033 ± 0.131 0.045 ± 0.064 0 ± 0 0 ± 0
10 1.029 ± 0.066 0.042 ± 0.023 0.0001 ± 0.0001 0 ± 0
11 0.701 ± 0.123 0.061 ± 0.034 0 ± 0 0 ± 0
12 0.715 ± 0.190 0.135 ± 0.026 0 ± 0 0 ± 0
13 1.228 ± 0.120 0.287 ± 0.069 0 ± 0 0 ± 0
14 2.471 ± 0.249 1.044 ± 0.896 0.051 ± 0.050 0 ± 0
15 0.333 ± 0.166 0.587 ± 0.042 0.015 ± 0.018 0 ± 0
16 98.564 ± 8.534 0.125 ± 0.003 5.936 ± 1.301 0.173 ± 0.044
17 45.692 ± 2.316 2.572 ± 0.861 0.026 ± 0.010 0 ± 0

BSi in uppermost sed. (mg Si g-1 sed.)
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little related to the sediment deposition rate (Supplementary Fig. 5), except for the fact 

that the faster sediment deposition, the faster the burial of sponge BSi. In general, the 

magnitude of sponge BSi burial is expected to be more related to both the local abundance 

of sponge communities51,52,53,54 and episodic events of massive sponge mortality55,56. 

Mean rates of sponge BSi burial spanned two orders of magnitude across cores of 

the “continental-margin-&-seamount” compartment. It reflects the large variety of 

depositional environments that were sampled. It also means that the approach is 

considering both the very positive and negative environments in terms of sponge BSi 

abundance and burial (i.e., sponge aggregations vs. areas with very poor sponge fauna), 

along with different intermediate situations. In consequence, subsequent additions of 

information coming from the study of new cores is more likely to reduce the errors 

associated to our means than to modify substantially the mean themselves. For this reason, 

our approach is expected to be resilient to the addition of future data. 

For calculating preservation of both sponge and radiolarian BSi, a constant rate of 

BSi deposition within each core for the time period required to build 50 cm of sediment 

is assumed. Such period ranged from 440 to 14,700 years in the set of cores, being core 

12 a 74,000 years-old outlier (Table 2). There is evidence that some sponge grounds have 

existed continuously over the last 130 milennia24, that glass-sponge reefs have been 

growing continuously through the last 9,000 years57, and that the growth of some giant 

hexactinellid spicules required  up to 11,000 years to be completed58. These examples of 

extreme individual and population longevity indicate that the sponge assemblages, 

particularly in deep waters, have relatively slow dynamics and that can be stable over 

periods of millennia. Relatively constant rates of BSi deposition are therefore plausible 

over the concerned periods.  

Our approach yielded overrated (>100%) sponge BSi preservation in four cores 

(i.e., 23.5% of cores). Interestingly, three of those cores (#3, 16, 17) came from sites 

where rates of accumulation and preservation for diatom BSi are known to be greater than 

in the rest of the ocean44,59. These overrated preservations likely reflect favorable 

conditions for BSi preservation44,60,61 coupled to past local episodes of massive mortality 

in the sponge assemblages55. In a fourth core (#8), sponge BSi occurred in extremely low 

values, the lowest in the study. Under such BSi scarcity, the finding by pure chance of 

one more or one less spicule in sediment replicates from 0 cm or in those from 50 cm may 

have an impact on the estimated average preservation (%). For these reasons, overrated 

cores were never considered when calculating average preservation for sponge BSi. For 
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subsequent calculations involving the overrated cores, the average BSi preservation 

(45.2±27.4%) resulting from the 13 remaining cores was used. This made a conservative 

approach, since an averaged preservation is used for sediments in which preservation is 

known to be greater44,59,62 than the average in marine sediments. Interestingly, the 

resulting average for sponge BSi preservation comes into general agreement with an 

approximate 50% decrease in the number of sponge spicules between 0 and 50 cm noticed 

in the only available studies of  coastal sediments in this regard49,63.  

 In the case of radiolarians, preservation was also overrated in the same two cores 

of the Southern Ocean (#16, 17) than sponge BSi did, and, again, in core 10, where 

radiolarians recorded their lowest abundance. As for sponges, the three overrated cores 

were never considered when calculating average preservation of radiolarian BSi. Any 

calculation involving the overrated cores was based on the average preservation value 

(6.8%) resulting from the rest of cores. In this regard, a scenario considering a radiolarian 

BSi preservation of only 6.8% in the biosioliceous oozes (scenario 1 in Supplementary 

Table 4) can be defined as very conservative. Therefore, we explored two plausible 

alternative scenarios to evaluate the effect of such constraint. An alternative scenario 

(scenario 2) was to assume that the preservation of  radiolarian BSi in the biosiliceous 

oozes would be similar to the average preservation (10.2%) estimated for BSi in 

sediments of the Southern Ocean62. Under this scenario, a global burial flux of 11.3±5.0 

x 10-2 Tmol Si y-1 resulted for radiolarians. A third scenario (scenario 3) was to assume a 

radiolarian preservation in the oozes equal to the maximum preservation found in our set 

of cores (28.7%). It yielded a global burial flux of 20.4±5.6 x 10-2 Tmol Si y-1. Altogether, 

it means that, even when using relaxed scenarios for BSi preservation, the global burial 

flux of Si through radiolarian skeletons consistently results in a modest contribution, 

ranging from 0.09 to 0.20 Tmol Si y-1 (Supplementary Table 4). The mean point of that 

interval (0.15 Tmol Si y-1) would still represent only 2.4% of the global biological sink. 

 
Supplementary Table 4. Mean (±SD) preservation rates and burial fluxes of radiolarian BSi under 3 different scenarios 
of preservation (%) in the biosiliceous oozes. Scenario 1 assumes preservation of 6.8%, as resulting from the average 
of the investigated cores, Scenario 3 assumes the maximum preservation found in our set of cores (28.7%). Scenario 2 
considers an intermediate preservation (10.7%), which corresponds to the value estimated in the literature62 for BSi 
preservation in the Southern Ocean. 
 

 

OCEAN COMPARTMENT Compartment
extension
(km2 x 106)

radiolarian oozes 5.340 38.74 ± 8.49 61.17 ± 13.41 163.91 ± 35.92 0.01 ± 0.00 0.01 ± 0.00 0.03 ± 0.01
radiolaria-rich diatom oozes 19.464 38.74 ± 8.49 61.17 ± 13.41 163.91 ± 35.92 0.03 ± 0.01 0.04 ± 0.01 0.11 ± 0.02
rest of "radiolarian" ocean 337.076 4.91 ± 11.98 4.91 ± 11.98 4.91 ± 11.98 0.06 ± 0.10 0.06 ± 0.10 0.06 ± 0.10
GLOBAL OCEAN 361.880 -- -- -- 0.09 ± 0.05 0.11 ± 0.05 0.20 ± 0.06

6.8% 10.7% 28.7%6.8% 28.7%10.7%

Radiolarian BSi preservation (mg Si m-2 y-1) Radiolarian BSi burial flux (Tmol Si y-1)
Scenario 1 Scenario 2 Scenario 3Scenario 2Scenario 1 Sceneario 3
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Supplementary Fig. 3│ Buried sponge spicules. a-c, Nearly entire tilostyle buried in 5m of highly carbonated, 4,500 
year-old sediments of a Posidonia oceanica meadow (core 7). Despite this sediment favoring BSi digestion, both the 
axial canal (b, arrow) and the spicule surface (c) show only incipient signs of dissolution, revealed by tiny pits. d-f, 
Spicule fragment (d) in the same sediment sample, showing an axial canal (e, arrow) that has not yet been widened by 
dissolution. Likewise, the spicule surface shows only incipient signs of dissolution in the form of small pits (f). 
 
 
 

 
 
Supplementary Fig. 4│a, The burial rate of sponge BSi poorly correlates the rate of sediment deposition, in agreement 
with a previous study49. This is so because sponges are sessile and, unlike in the case of planktonic diatoms, their BSi 
does not reach the sediment as a silica rain from the water column, but rather through restricted lateral transport and 
limited resuspension from the decaying bodies. The magnitude of the sponge BSi burial will depend primarily on the 
local abundance of sponges. The sediment deposition rate will mostly determine the speed at which the sponge BSi 
gets buried, minimally affecting the magnitude of the sponge BSi burial flux.  b,  Sponge BSi preservation (%) does 
not correlate total BSi in the sediments. This is apparently shocking, since chemical rules dictate that the level of total 
BSi in sediments controls the DSi saturation of the interstitial seawater and, therefore, its avidity to dissolve BSi 
structures, a process well known from diatom frustules. Yet, there is also experimental evidence that sponge BSi is 
refractory to dissolution in DSi-unsaturated seawater52 and basic solutions64, this study, what disrupts the theoretically 
expected relationship. The reasons for the comparatively high resistance to dissolution of the sponge BSi remain 
unclear, but its complexation with dissolution-resistant organic molecules such chitin65 could be involved.  
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Supplementary Fig. 5│Radiolarian-rich ooze. Patches of ocean floor where sediments contain abundant skeletons 
of siliceous radiolarians. Radiolarian oozes are in yellow and radiolarian-rich diatom oozes are in green (modified from  
Dutkiewicz et al61; see Methods). 
 
 
 
Supplementary Methods.  Sediment age was calculated from deposition ratios or age 

information available in the scientific literature of either the cores themselves or 

sediments from adjacent sites, as it follows: core 131 core 224, core 366, core 423, core 57,8, 

core 620,21 , core 710, core 827,67, core 934,37, core 1011, core 1135,36, core 1240, core 1329,30, 

core 1468, core 1515, core 1642, core 1716,17,18. Sediment biomass was obtained from the 

wet bulk density, either obtained from the above-cited literature or estimated from core 

depth through the Tenzer and Gladkikh's regression equation69, 

ρ (D) = [1.66±0.02] - D x [(5.1±0.5) x 10-5], 

where "ρ" is density in g cm-3, "D" is ocean depth in m, "1.66" is the nominal sediment 

density of the upper sedimentary layer at sea level, and "5.1 x 10-5" is a coefficient 

reflecting that density decreases proportionally (relative to the nominal value) at a rate of 

-0.051 g cm-3. 

Density values of BSi vary across organism types. For sponges, it varies from 2.03 

to 2.13 g cm-3, depending on the species70. Density varies from 1.7 to 2.1 g cm-3 in 

radiolarian silica71. In the calculations, we have used values of 2.12 g cm-3 for marine 

sponges, 1.9 g cm-3 for radiolarians and 2.0 g cm-3 for silicoflagellates72.  
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