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Abstract. We present the Copernicus in situ ocean dataset
of temperature and salinity (version 5.2). Ocean subsurface
sampling varied widely from 1950 to 2017 as a result of
changes in instrument technology and the development of in
situ observational networks (in particular, tropical moorings
for the Argo program). Thus, global ocean temperature data
coverage on an annual basis grew from 10 % in 1950 (30 %
for the North Atlantic basin) to 25 % in 2000 (60 % for the
North Atlantic basin) and reached a plateau exceeding 80 %
(95 % for the North Atlantic Ocean) after the deployment of
the Argo program. The average depth reached by the profiles
also increased from 1950 to 2017. The validation framework
is presented, and an objective analysis-based method is de-
veloped to assess the quality of the dataset validation pro-
cess. Objective analyses (OAs) of the ocean variability are
calculated without taking into account the data quality flags
(raw dataset OA), with the near-real-time quality flags (NRT
dataset OA), and with the delayed-time-mode quality flags
(CORA dataset OA). The comparison of the objective analy-
sis variability shows that the near-real-time dataset managed
to detect and to flag most of the large measurement errors, re-
ducing the analysis error bar compared to the raw dataset er-
ror bar. It also shows that the ocean variability of the delayed-
time-mode validated dataset is almost exempt from random-
error-induced variability.

1 Introduction

Estimating the temperature and salinity ocean state is critical
for documenting the evolution of the ocean and its role in
the present climate. To do so, the scientific community relies
on in situ measurements at a global scale and from global
datasets.

Among the global datasets, one can cite the World Ocean
Database (Boyer et al., 2013; hereafter WOD) and the EN4
database (Good et al., 2013; http://www.metoffice.org/, last
access: May 2018) distributed by the UK Meteorological Of-
fice. Here, we present CORA (Coriolis Ocean dataset for
ReAnalysis), a dataset distributed by the Copernicus Ma-
rine Environment Monitoring Service (hereafter CMEMS)
and produced by Coriolis. CORA differs from these ear-
lier datasets in terms of choices in the construction and the
production of the dataset. Indeed, WOD is validated with
the highest quality control methods at 102 vertical levels,
whereas the EN4 profiles are limited to a maximum of 400
vertical levels and are automatically validated (Ingleby and
Huddleston, 2007). CORA conversely retains data at the
highest vertical resolution. The choice of reducing the num-
ber of levels in the data validation and in the dataset con-
struction helps to quickly cluster new measurements in the
dataset and provides easy-to-handle datasets. On the other
hand, these methodologies result in a loss of measurements
potentially available for the scientific community through the
vertical sampling of the profiles or in the data validation. In
the construction of CORA, all the measurements available
are kept, and then an automatic validation is first performed,
followed by a manual and/or individual check (Gaillard et
al., 2009; Cabanes et al., 2013). This validation framework

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://www.metoffice.org/


1602 T. Szekely et al.: The CORA 5.2 dataset

requires the production of two datasets: a near-real-time val-
idated dataset distributing the profiles within days after col-
lection and a delayed-time validated dataset covering in year
n the historical period up to year n− 1. This choice, made in
the early versions of CORA, has been retained in the latest
one that we describe here.

A global ocean heat content (GOHC) increase has been
observed on decadal timescales, whether it is in the upper
layers of the ocean (Domingues et al., 2008; Ishii and Ki-
moto, 2009; Levitus et al., 2009), below the thermocline (Von
Schuckmann and Le Traon, 2011), or in the abyss (Purkey
and Johnson, 2010). In addition to the influence of the map-
ping method and the baseline climatology (Abraham et al.,
2013; Cheng and Zhu, 2015; Boyer et al., 2016; Gouretski,
2018), the data validation performed on in situ measurements
has a direct influence on the estimation of global ocean in-
dicators such as GOHC, global freshwater content, and sea
level height (Abraham et al., 2013; Gouretski, 2018). As an
example, differences in the GOHC estimation in the Johnson
et al. (2012) analysis compared to the Lyman et al. (2010)
analysis have been shown to result from quality control is-
sues. The particular case of expendable bathythermograph
(XBT) measurement (Levitus et al., 2009; Cheng et al., 2016)
influence on the GOHC estimation is well documented. Sys-
tematic errors in other instrument types may also introduce
systematic biases, leading to biases in the GOHC estimation
(Lyman et al., 2006; Willis et al., 2007). The validation of a
quality control method is thus a critical task to ensure that the
dataset flags are accurate enough to flag erroneous measure-
ments without biasing the dataset. The uncertainty surround-
ing the quality assessment of a large oceanographic dataset
being a critical topic in ocean climate studies, we propose
here a method of global dataset quality assessment and ap-
ply it to near-real-time validated and delayed-time-mode val-
idated datasets.

We will first list the data sources of the CORA measure-
ments in Sect. 2. A description of the CORA data space and
time repartition will be reported on Sect. 3. Then, the quality
control procedure will be described in Sect. 4. Lastly, grid-
ded temperature and salinity fields are calculated using an
objective mapping that is presented in Sect. 5. The results of
the dataset validation and quality assessment are finally dis-
cussed in Sect. 6.

2 Data providers

The CORA 5.2 dataset is an incremental version of the
previous CORA datasets, covering the period 1950 to the
present and distributed by CMEMS. Most of the CORA
profiles are first collected by the Coriolis data center and
validated in near-real-time mode. Coriolis is a Global Data
Assembly Center (DAC) for the Argo program (Roem-
mich et al., 2009). It collects Argo profiles from the re-
gional Data Assembly Centers (DACs) and distributes them

to the community. Coriolis also collects XBT, CTD (con-
ductivity, temperature, depth), and XCTD measurements
from French and European research programs as well as
from the Global Telecommunication System (GTS), Vol-
untary Ship System (VOS), and subtropical mooring net-
works (TAO/TRITON/RAMA/PIRATA programs from the
Pacific Marine Environmental Laboratory – PMEL). A ma-
jor effort has also been made to include smaller datasets
in the Coriolis dataset that are available in delayed-time
mode, such as ice-tethered profiler (ITP) and CTD profiles
from the ICES program, sea mammal measurements from
MEOP (http://www.meop.net, last access: May 2018), and
validated surface drifter data. Delayed-time-mode measure-
ments have also been downloaded from the Word Ocean
Database (WOD13) and the French Service Hydrographique
de la Marine (SHOM). It should be noted that in the case of a
profile distributed by Coriolis in real-time mode and by one
of these datasets in delayed-time mode, the delayed-time-
mode validated profile replaces the real-time-mode profile in
the CORA database.

Last, recent comparisons of the CORA profile positions
with the EN4 dataset (https://www.metoffice.gov.uk/, last ac-
cess: May 2018) have shown that some of the profiles dis-
tributed in EN4 were not in the CORA previous versions. A
partnership with the EN4 teams allowed us to detect and to
import most of those profiles. A total of 5 069 864 profiles
have been imported in this way, covering the period 1950–
2015. However, contrary to the other measurements, the pro-
files from the EN4 database are not reported with a pressure
measurement, but instead with depth and with a maximum
number of reported levels in an individual profile set to 400.
The issue of the inhomogeneity in the dataset with respect to
the vertical sampling will be discussed.

3 Dataset description

CORA aims to provide a comprehensive dataset of in situ
temperature and salinity measurements from 1950 to 2017.
The oceanic temperature and salinity measuring instruments
have, however, radically changed during the last 70 years.
As a result, the origin and characteristics of data distributed
in the CORA dataset widely vary in time (Fig. 1). Most of the
profiles collected prior to 1965 are mechanical bathythermo-
graph (MBT) measurements or Nansen casts. From the late
1960s to 1990, the most common profiles are from the ex-
pendable bathythermographs (XBTs) developed during the
1960s and widely used by navies. Most of the XBT profiles
collected during this period are T-4 type sensors, measuring
temperature above 460 m of depth.

The development of the Sippican T-7 instrument with
a maximum depth of 1000 m slowly increased the num-
ber of measurements between 460 and 1000 m during the
1980s (see Fig. 2 for the dataset measurement distribution
with depth). An instrument capable of measuring conductiv-
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Figure 1. Yearly number of distributed profiles sorted by instrument type.

ity, temperature, and pressure (CTD) was developed in the
1960s, allowing for an accurate estimation of sea salinity
and temperature. The yearly number of CTD profiles in the
CORA dataset then slightly increased, reaching a plateau of
about 20 000 profiles in the early 1990s.

During this period, the largest density of profiles is found
in the North Atlantic Ocean, with a coverage ratio, calcu-
lated on a 3◦ per 3◦ grid with a 1-year time step, increasing
from 30 % in 1950 to a plateau of 60 %–70 % in the 1970s
(Fig. 3). The North Pacific mean sampling rate is lower than
10 % before 1965, with the largest portion of the collected
profiles located close to the Japanese and North American
coasts and along a transect connecting the US west coast
to the Hawaiian archipelago (not presented). It quickly in-
creases from 1965 to 1970 to reach about 50 % in the early
1980s with a more homogeneous spatial resolution. Before
1974 in the other ocean basins, most of the collected profiles
are found in the coastal zone and along a few ship tracks. The
coverage then slightly increases in the western part of the In-
dian Ocean and in the eastern part of the South Pacific Ocean,
increasing the associated basin sampling rate from 10 % in
1965 to 20 %–25 % in 1990. The Austral Ocean sampling
rate remains, however, around 5 % during the whole period.

During the 1990s, the yearly number of XBT profiles
strongly decreased, while the number of bottles and CTD
profiles slightly increased. The counterintuitive behavior is
mostly caused by a lack of XBTs in the Coriolis database
during the 1990s. The yearly number of XBTs should indeed
decrease slowly during the 1990s and reach the CORA level
by the end of the decade. This problem should, however, be
fixed in the next version of CORA. The measurements pro-

vided are, however, deeper than in the previous decade, lead-
ing to better coverage below 500 m of depth (Fig. 2). The
profile number then exponentially increases since the devel-
opment of the TAO/RAMA/PIRATA equatorial mooring pro-
gram throughout the 1990s. During this time, the North At-
lantic and the North Pacific Ocean spatial sampling rates de-
crease, and the global ocean sampling rates reach a plateau at
20 %. The ocean sampling rate rapidly increases in the early
2000s thanks to the development of autonomous profilers and
the worldwide Argo program.

The global ocean sampling rate reaches 70 % before the
mid-2000s with a maximum of 85 % in the northern Atlantic
Ocean. Notice the simultaneous growth of the autonomous
profiler measurements (Fig. 1) and the increasing number of
measurements below 1000 m of depth in Fig. 2. In the Austral
Ocean, the sampling is sharply increased from 8 to 40 % in
2005–2006 and then grows slowly up to 50 % in 2017. This
increase in the Austral Ocean coverage is a combined conse-
quence of Argo deployments, mostly north of 55◦ S, and the
collection from CTD casts mounted on sea mammals, in par-
ticular between Kerguelen Island and the Antarctic continent
(Roquet et al., 2011).

It must be emphasized that a fraction of the profile number
increase in the early 2000s results from data acquisition from
high-frequency measurement devices such as ocean drifters,
thermosalinographs (TSGs, both near the ocean surface), or
undulating CTDs either towed or untowed (ScanFish, Sea-
Soar, gliders, etc.). Indeed, each undulating CTD profile and
each independent TSG or drifter measurement is treated as
an independent profile, while one could also cluster them by
instrument or by cruise. The dataset structure we retained is,
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Figure 2. Yearly number of measurements as a function of depth.

Figure 3. Yearly filling ratio of the 3◦ latitude per 3◦ longitude gridded field of ocean basins.

however, easier to handle by the ocean reanalysis commu-
nity and leads to a more homogeneous dataset file structure.
This dataset structure is also adopted for the mooring mea-
surements, which in some cases also collect data at high fre-
quency. This large number of mooring data induces a large
increase in measurements such as at 250 and 500 m depths,
whereas at the surface, the large increase is due to data from
TSGs and drifting buoys.

4 Data quality control

The measurements collected by the Coriolis data center are
distributed to the scientific community with a near-real-time
quality control flag within days of the data reception and with

a delayed-time-mode validation quality control within a year.
The Coriolis data center validation workflow scheme is given
in Fig. 4.

The quality control flags applied on the CORA dataset
are associated with a measured or a calculated variable
(TEMP_QC, PSAL_QC, DEPTH_QC, PRES_QC), with
on the date and position variable (POSITION_QC and
JULD_QC), and with the corresponding adjusted variables
when they exist. The QC flag values applied during the qual-
ity control process vary from 1 to 4, with 1: good data, 2:
probably good data, 3: probably bad data, and 4: bad data.

Numerous measurements distributed by Coriolis have,
however, been validated by scientific teams prior to integra-
tion into the Coriolis streamflow. The most important of these
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Figure 4. Coriolis database validation process.

datasets are the delayed-time-mode validated Argo profiles,
the tropical mooring dataset distributed by PMEL, the sea
mammal measurements validated by the MEOP project, and
the TSG measurements validated by the GO-SUD project.
In such cases, the current practice at Coriolis is to retain the
flags from the imported database and to run the delayed-time-
mode tests afterwards.

4.1 Near-real-time validation

The near-real-time dataset validation tests are mostly taken
from the Argo real-time quality control tests (Wong et al.,
2009). The goal is to distinguish the spurious measurements
from the good measurements and to flag them quickly. The
test checks are designed to detect well-known types of errors.
A global range test and a regional range test are performed to
detect obvious errors with respect to known ocean variabil-
ity. The bounds of those two tests are very large with respect
to the known ocean variability to ensure that no bad flag is
incorrectly attributed. A spike test and a gradient test are per-
formed to detect measurement spikes in the temperature and
salinity fields. The test is based on the comparison of the tem-
perature and salinity vertical gradient to a threshold. The test
thresholds are set large enough to lower the number of incor-
rect spike detections corresponding to a sharp, yet correct,
thermocline or halocline. The stuck value test aims to detect
temperature or salinity profiles with a constant value within
the vertical reported inaccurately.

A second step in the near-real-time quality control is per-
formed daily on the Argo profilers distributed by Coriolis us-
ing an objective mapping detection method (Gaillard et al.,
2009). Following the framework developed by Bretherton et
al. (1976), the residual of the objective analysis depends on
the covariance from data point to data point. Thus, this sec-
ond check step aims to detect measurements departing from
other data in the vicinity. The correlation scale in the objec-
tive analysis varies with depth and latitude. Spurious detec-
tions can, however, occur when profiles located on both sides
of a frontal zone are within a correlation radius. Therefore,
detected profiles are visually checked by a primary investi-

gator (hereafter PI) to distinguish erroneous measurements
from correct measurements.

Lastly, a quality control based on altimetry comparisons is
also performed on a quarterly basis to improve the real-time
validated dataset (Guinehut et al., 2009). A PI inspection is
also performed on profiles flagged as suspicious by compar-
ison with altimetric sea level.

4.2 Delayed-time-mode validation tests

The delayed-time-mode validation is performed on a yearly
basis. This validation framework is based on tests more strin-
gent than the near-real-time validation process, which re-
quires a systematic visual control by an oceanographer. The
controlled profiles are those that have not been controlled in
the previous version of CORA. Therefore, most of the con-
trolled profiles for a given version of CORA are the pro-
files measured during the previous year but not controlled
for the earlier version. The profiles for which the measure-
ments have been updated or adjusted since the latest version
are, however, controlled. Last, some datasets covering the
historical period may have been incorporated in the Corio-
lis dataset, which are then controlled in delayed-time mode
in CORA.

The delayed-time mode validation process is schematized
in Fig. 4. The profiles to be validated are first checked by the
CORA tests. The checks raise an alert flag on suspicious pro-
files, which are then visually checked. For CORA, the vali-
dation checks are applied until all the tests are successful.
If a single-check test fails, the profile is put aside for visual
check and the following tests are not applied. The profiles un-
detected by the CORA tests, and thus not visually controlled,
are assessed by a second set of tests developed by the CLS
company. The suspicious profiles are also visually controlled
and manually flagged. Last, all the tested measurements are
gathered in the CORA database with the updated flags.

A first quality check aims to complement the real-time QC
procedure with redundant tests that have a sharper threshold
than NRT.

4.2.1 Data file consistency test

This test checks the obviously out-of-range position
(|Lat|> 90 and |Lon|> 180 and out-of-range immer-
sion (PRES > 12 000 dbar and DEPTH > 12 000 m or
PRES <−2.5 dbar and DEPTH <−2.5 m). The tests are
redundant with the NRT checks and are designed to avoid
any writing error in the CORA file. The few detections are
visually checked.

4.2.2 Depth check, stability check, vertical check

The depth check, stability check, and vertical check were ini-
tially developed by the UK Met Office for the EN4 dataset
validation. They were added to the CORA validation frame-
work after a collaborative comparison of the two dataset val-
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idation methods with the UK Met Office team. This study
has shown that most of the profiles flagged in EN4 and not
in CORA were detected by these three tests and that apply-
ing a visual control to the profiles detected in this way re-
sults in more accurate flags. The tests have been described
in Ingleby and Huddleston (2007). The stability test detects
density inversions for profiles wherein both temperature and
salinity are available. The density inversions with 0> d/ρ >
−0.03 kg m−3 are dismissed. Both temperature and salinity
are visualized for profiles with larger density inversion. Ex-
perience has shown, however, that most of the density inver-
sions detected in this way are caused by small spikes in the
salinity measurements, probably a consequence of anomalies
in the conductivity measurement or alignment with temper-
ature when estimating salinity. The spike test is designed to
detect the temperature and salinity spikes and steps. It runs
with a threshold of temperature and salinity variability vary-
ing from 5 ◦C at the surface to 1.5 ◦C below 600 m of depth
for temperature and from 1 PSU at the surface and 0.2 PSU
below 300 m of depth for salinity. These tests differ from the
real-time QC test since the trigger points are lower. They,
however, sometimes create “false positive” detection either
by detecting the wrong point on a spurious profile or by de-
tecting a correct measurement. A systematic PI visual flag
selection is then performed on each of the detected profiles.

4.2.3 Level disorder and duplicated levels

The profiles with a non-monotonous PRES or DEPTH vector
are detected, and the PRES or DEPTH vector is flagged in or-
der to be monotonous. This test has been requested by CORA
end users, the oceanographic reanalysis community, to have
a user-friendly dataset to work with. Most of the detected
profiles are indeed measurements with a very slow sinking
speed near the surface, giving pressure vector inversion when
exposed to the sea surface swell. Most of the detections are
thus confined to the surface layer. Exceptions may, however,
occur in the case of Black Sea Argo floats for which a re-
current problem of slow sinking speed is found at the sub-
surface due to the low salinity level of the Black Sea. Last,
“hedgehog” type profiles, with very spiky temperature, salin-
ity, and pressure vectors, which are often caused by transmis-
sion mistakes on Argo floats, are detected by this test.

4.2.4 Global range

The global range test aims to detect obvious measure-
ment mistakes. Temperature measurements under −3 ◦C or
over 43 ◦C and salinity measurements under 0 PSU or over
46 PSU are detected. This test has a very low detection rate,
but it still detects some erroneous profiles each year. Most of
them are profiles with a nonclassical shape so that they avoid
detection by redundant tests (min–max test or climatological
test). A recent example was an Argo float grounded near Mo-
gadishu, Somalia, measuring a temperature exceeding 43 ◦C,

whereas the corresponding pressure was just above 0 dbar so
that the measurement avoided the other NRT and delayed-
time-mode tests confined to depths between 0 and 2000 m.

The following step of the CORA data validation is per-
formed in the Coriolis data center to detect profiles diverg-
ing from the known ocean variability. Each temperature and
salinity profile is compared with the minimum and maximum
measured value reference profiles. Those profiles originate
from reference fields on a gridded mesh with 1◦ resolution
horizontal hexagonal cells of 20 m thickness. The reference
fields are the maximum and minimum measured values on a
set of 1.2 million Argo profiles, vertically interpolated from
the surface to 2000 m of depth. The field coverage is in-
creased, especially in the inner seas and in the Austral Ocean,
which are badly covered by the Argo network, by CTDs from
the World Ocean Database, and sea mammal measurements
from the MEOP database. The CORA 5.2 measurements are
compared to the minimum and maximum reference values
of the corresponding cell and the upper and lower adjacent
cells in the same grid column. The profiles containing mea-
surements exceeding the reference values are checked by an
oceanographer. The min–max method is relaxed on the con-
tinental shelf since the min–max sampling is insufficient in
the continental shelf zones. The temperature and salinity pro-
files measured over a bathymetry inferior to 1800 m are com-
pared to a climatology field (ARIVO; Gaillard et al., 2008)
to which 10 times the climatological standard deviation field
is added or subtracted. This criterion has been added since
the minimum and maximum reference field is mostly based
on the ARGO measurements and is ill defined in the ocean
regions the Argo floats struggle to reach. Due to the lack of
accuracy of the global climatologies near the coasts and on
some shelves, the profiles lying above the 250 m isobath are
not tested with this method. See Gourrion et al. (2019) for
further discussion on the min–max field.

A third validation is performed with the In Situ Analysis
System (ISAS) objective analysis tool, following the method
developed by Gaillard et al. (2009). During the objective
analysis process, the profile analysis residual is compared to
the analysis residual of neighboring profiles. This validation
test is similar to the validation performed by the Coriolis data
center in near real time with the Argo floats. The scope of the
test is, however, extended to other profiles (XBT, CTD, etc.)
and to Argo profiles that have been updated in the Coriolis
database too late to be part of the near-real-time validation.

A last set of delayed-mode validation tests has been devel-
oped by the CLS research and development team and aims to
complement the validation tests. These tests provide sharper
expertise on bias detection, spike detection, and ocean vari-
ability in the continental shelf zones. These tests also aim
to complement the Coriolis real-time quality check tests for
measurements directly included in the delayed-mode dataset.
The CLS tests are divided into two categories. A density
check test is applied to detect small density inversions in the
measurement. This test differs from the Coriolis density in-
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version test since it focuses on single-point spikes on den-
sity profiles, instead of checking spikes or steps on tempera-
ture and salinity profiles, with a simple yet reliable algorithm.
This test is reliable, so the detected suspicious levels are au-
tomatically flagged. A second set of tests is applied to detect
smaller errors. These tests aim to detect unlikely extremes in
temperature and salinity by comparing measurements to re-
gional upper and lower bounds and World Ocean Atlas 2013
climatology. Tests are also applied on vertical density inver-
sions, spikes, and offsets with respect to the climatology. By
the end of the validation process, about 10 % of the applied
flags are based on CLS detection and 90 % are based on Cori-
olis detections.

5 CORA 5.2 quality control results

The relevance of ocean climate studies strongly depends on
the accuracy of ocean measurements. Systematic data errors
might thus result in biasing the estimation of ocean-state in-
dicators such as the GOHC, the global ocean freshwater con-
tent, or the global mean steric height (Levitus et al., 2009).
Furthermore, random measurement and data error may lead
to overestimations of the ocean variability. Therefore, indi-
rectly, one can assess the reliability of the global dataset by
estimating the influence of the quality control on global met-
rics such as the ocean mean temperature and salinity and the
associated variability.

Two mappings of ocean temperature and salinity based on
the CORA dataset measurements are calculated: a raw esti-
mation (GOHCraw) that considers every measurement with-
out taking the data quality flags and a flagged estimation
(GOHCflg) that only considers the good and probably good
QCs.

Interpolated fields are calculated following the method
presented by Forget and Wunch (2006) that has the advan-
tage of not biasing mean fields and not relying on specifying
them. The global ocean is divided in 1◦ per 1◦ grid cells with
10 m vertical layers from the surface to 1500 m of depth. A
first estimation of the mean parameter for a given month is
given by calculating the mean of the temperature or the salin-
ity data measured in a given cell. The variance field is esti-
mated by taking the variance of the measurements located
in a given cell if the number of available measurements is
greater than 4.

A spatial weighting function is defined:

G(i,j)= e
−
(lp−−l(i,j))2

r2l
−
(Lp−−L(i,j))2

r2L , (1)

with rl and rL the latitude and longitude decorrelation scales,
both taken as equal to 5◦ at any point in the ocean, and lp and
LP the latitude and longitude of a grid point.

The combined mean is then

T (i,j)=
∑
p

Gp (i,j)TPnP

N(i,j)
, (2)

with

N (i,j)=
∑
P

GP (i,j)nP. (3)

The combined variance is estimated with a similar operator:

var(T )(i,j)=
∑
p

Gp (i,j)var(TP)nP

N(i,j)
, (4)

with nP the number of measurements available in the
summed grid point, Tp− the mean temperature at the grid
point, and N(i,j) the total number of measurements in-
volved in the calculation of a grid point value.

The values of rl and rL are set to 5◦ longitude and latitude
in order to include enough grid points with data in this av-
eraging. To reduce the calculation time of the analysis, each
N(i,j) calculation is performed on a 20 per 20 grid point
window.

The objective analysis is performed in three steps for the
global dataset. A first analysis is performed on a raw dataset,
considering all available profile measurements. All the QC
flags are considered good. A second analysis is performed on
the same data profiles considering the QC available in NRT
mode. A third one is performed on the same profiles consid-
ering the QC available in delayed-time mode.

The ocean data coverage is sometimes insufficient to per-
form the monthly objective analysis on the whole ocean.

As a result, we have limited this study to the latitude be-
tween 60◦ N and 60◦ S since the ocean data coverage is too
sparse out of these limits, leading to random anomalies in the
temperature and salinity variability. Figure 5 shows an esti-
mation of the ocean layer covered by the objective analysis
as a percentage of the ocean layer surface between 60◦ N and
60◦ S. It shows that the ocean coverage is higher for tem-
perature than for salinity objective analysis. The upper layer
coverage is very close. It varies from 95 % in 2005 to over
98 % after 2012. The 1475–1525 m depth layer departs from
the others since it has a global coverage lower than the others,
starting from 65 % in January 2005. It converges to over 98 %
after 2014. A monthly variability is observed in the Argo de-
velopment period (2005–2010). It is probably caused by the
slow arrival of Argo profilers in the southern zones. This be-
havior lasts until 2012 in the deeper layer.

Figure 6 shows the percentage of good and probably good
QC flags in the NRT and CORA datasets compared to the
RAW dataset. It shows that the yearly tendencies for the pro-
portion of good and probably good flags are almost the same
at all depths. In any case, CORA and NRT differ by less than
0.5 %. The proportion of good and probably good tempera-
ture flags varies from a minimum of 92 % in 2006 to a plateau
of about 98 % after 2013. The 975–1025 m depth and 1475–
1525 m depth layers depart from the others, with a 1 % to
2 % lower rate between 2005 and 2013. Punctual decreases
in good and probably good temperature flag rates are ob-
served in late 2007, late 2012, late 2014, and at the beginning
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Figure 5. Coverage of the temperature (dashed line) and salinity (solid line) objective analysis.

Figure 6. Percentage of good flags (flags 1 and 2) in the analyzed layers for the NRT dataset (solid line) and for the CORA dataset (dashed
line): (a) temperature, (b) salinity.

of 2016 for the surface and subsurface layers. These spikes
are caused by a sharp increase in the number of profiles dis-
tributed from a tropical mooring from the RAMA network.
These profiles are indeed first distributed in the Coriolis
dataset as TESAC profiles transmitted from the Global Tem-
perature and Salinity Profile Program (GTSPP). The profiles

corresponding to tropical moorings are usually later replaced
by the corresponding measurements transmitted by PMEL,
and the TESAC profiles are deleted from the database. In
this particular case, the TESAC profiles had been retained
and flagged as bad profiles instead. The yearly number of
profiles in the RAW dataset is thus strongly increased, but

Ocean Sci., 15, 1601–1614, 2019 www.ocean-sci.net/15/1601/2019/



T. Szekely et al.: The CORA 5.2 dataset 1609

Figure 7. Mean salinity standard deviation in the 0–50 m layer (a), 75–125 m depth layer (b), and 275–325 m depth layer (c). The raw dataset
(red), NRT dataset (blue), CORA dataset (black) are represented.

the corresponding number for the NRT and CORA dataset is
not. The good and probably good salinity flag rate tendency
is opposite to the good temperature flag rate, with a maxi-
mum of over 98 % before 2010 and then a decrease to a level
of about 94 % with high interannual variability after 2011.

The mean 0–50, 75–125, 275–325, 475–525, 975–1025,
and 1475–1525 m depth salinity standard deviations ana-
lyzed by the method (Eq. 4) from 2005 to 2016 are shown
in Figs. 7 and 8. The mean salinity standard deviation is av-
eraged between 60◦ N and 60◦ S for each dataset analysis.
The comparison of the raw dataset analysis with the NRT
analysis and the CORA analysis shows the gain in dataset
quality resulting from the QC performed. In the raw dataset
analysis, numerous random mistakes result in a high average
salinity standard deviation. The raw dataset standard devia-
tion is, however, lower in the early period at almost all levels,
despite a rather high global level for the 475–525 m depth
layer and a variability spike in late 2006 in the bottom layer.
This lower variability level is probably a consequence of the
Argo program development from 2005 to 2008, with the low
coverage in the southern oceans preventing the emergence of
high-level values. During this period, a large seasonal vari-
ability is present in the upper layers, varying from 0.2 PSU
during winter to 0.4 PSU during summer in the surface layer.
The peaks in ocean variability are thus correlated with peaks
in ocean coverage (see Fig. 5). The objective analyses also
have a higher proportion of shipborne measurements, CTDs
for instance, essentially made during summer, compared to

the autonomous measurements in the same years. We can
thus assume that the lower number of profiles during winter
does not allow us to correctly sample the subsurface ocean
fronts, leading to an underestimated wintertime ocean vari-
ability. The increase in the amount of Argo float data from
2005 to 2008 slowly decreased this bias in the ocean vari-
ability estimation. The raw dataset surface salinity standard
deviation increases during the 2010–2016 period at all depth
levels, with a 0.6 PSU amplitude and spikes up to 1.2 PSU in
2010 in the surface layer, as well as spikes varying from 0.9
to 1.2 PSU in the other layers.

The NRT analysis is very close to the CORA analysis be-
fore 2008. This behavior is a consequence of the low number
of measurements corresponding to this period collected or
updated in the database after the validation of the last ver-
sion of the CORA dataset. The flags in the NRT and CORA
datasets are indeed the same except when an updated version
of a profile is loaded in the database or a new profile is loaded
in the Coriolis database. On the other hand, large discrepan-
cies between the NRT and the CORA datasets are recorded
between 2009 and early 2012 and between late 2013 and
2016. Another fraction of the discrepancy between the NRT
and the CORA error bars is caused by non-Argo profiles up-
dated in the Coriolis database without delayed-time-mode as-
sessment. Most of these measurements are sea mammal pro-
files in the northern Pacific Ocean or mooring data imported
from the GTSPP (Global Temperature and Salinity Profile
Program; https://www.nodc.noaa.gov/GTSPP/, last access:
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Figure 8. Mean salinity standard deviation in the 475–525 m depth layer (a), 975–1025 m depth layer (b), and 1475–1525 m depth layer (c).
The raw dataset (red), NRT dataset (blue), and CORA dataset (black) are represented.

May 2018) TESAC messages with biased salinity sensors.
Sea gliders with a 5 to 10 PSU bias in salinity were also
documented. Moreover, despite a lower number of profiles
flagged, a few CORA-flagged Argo profiles have biases large
enough to strongly increase the analyzed ocean variability.
Some of the spikes in the NRT ocean variability documented
in the upper layers, the late 2007 to 2008 spike for instance,
are observed in the surface layers since they are caused by
biased instruments operating at the surface to subsurface lay-
ers. Some other spikes in the ocean variability, the 2009–
2011 spike for instance, are caused by biased Argo measure-
ments and thus impact the ocean variability from the surface
to 2000 m of depth.

A striking feature is the corresponding spike visible in the
NRT analysis and in the raw dataset analysis in late 2010,
which suggests that major data errors have not been flagged
in the dataset during the NRT validation. Further exploration
of this anomaly has shown that a fraction of the larger error
bar in the NRT analysis is caused by an issue in the update of
delayed-time-mode processed Argo profiles. In a few cases
when salinity measurements present large drifts, the Argo PIs
can decide that the salinity drift is too high to be adjusted. In
these cases, the PI provides to the global DAC a delayed-time
version of the profiles with an adjusted temperature field but
with a practical salinity field with fill values and a salinity
QC field filled with “4” values (bad measurement status). In
some cases, the Coriolis data center had updated the profiles
by getting the temperature-adjusted field but without creat-

ing a salinity-adjusted field. The available salinity field in the
Coriolis data center is therefore the original salinity field that
might not have been flagged at 4. In this study, a handful
of these profiles, often associated with large salinity mea-
surement drifts (for instance, salinity values on the order of
20 PSU in the Indian Ocean), have produced large error bars
in the NRT analysis fields. This issue will be soon tackled in
the Coriolis database.

The CORA analysis salinity standard deviation slowly
varies in time, with 0.15 PSU in the surface layer, 0.1 PSU in
the 75–125 m depth layer, 0.08 PSU in the 275–325 m depth
layer, and below 0.05 PSU in the deeper layers. This behavior
is a consequence of the delayed-time-mode validation pro-
cess, which strongly reduces the number of random mistakes
in the dataset. This variability is probably a function of the lo-
cal data resolution, the oceanic variability, and measurement
errors. The slow variability of the CORA salinity standard
deviation and its reasonable range suggests that remaining
errors in the dataset will not have a large importance. Thus,
this product is likely to present a low error amplitude.

Figures 9 and 10 show time series of the mean tempera-
ture standard deviation of the CORA, NRT, and RAW analy-
sis. As anticipated, the mean temperature standard deviation
time series is noisy and rather high in the RAW dataset case.
The mean amplitude varies almost linearly between 1.2 ◦C
in the 0–50 m depth layer and 0.4 ◦C in the 1475–1525 m
depth layer, except for the 975–1025 m depth layer with a
1.2 ◦C spike. A striking feature is the decreasing mean tem-
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Figure 9. Mean temperature standard deviation in the 0–50 m layer (a), 75–125 m depth layer (b), and 275–325 m depth layer (c). The raw
dataset (red), NRT dataset (blue), and CORA dataset (black) are represented.

perature standard deviation amplitude in time for the RAW
analysis. The reason for this behavior is rather unclear. One
shall assume that the overall quality of the oceanographic
in situ temperature measurement improves because of im-
provements in the temperature sensor. On the other hand, it
might also be the decrease in the number of deployed XBTs
in the 2010s that reduces the number of random errors in the
dataset, since the XBT instruments are known to produce er-
roneous measurements when they are not handled properly.

The NRT analysis and CORA analysis time series are
rather close in all the analyzed layers, except for a 0.8–
1 ◦C spike in 2014–2015, which was detected in all layers
but the 1475–1525 m depth layer and enhanced in the 475–
525 m and in the 975–1025 m depth layers. This anomaly is
related to the flag of numerous XBT measurements during
the CORA delayed-time-mode validation process. XBTs are
indeed more likely to fail (spikes or bias caused by a stretch-
ing of the XBT wire or a contact between the XBT wire and
the ship hull) or result in a bad estimation of the measure-
ment depth. Most of the flagged XBTs are T-4 and Deep Blue
models. These models do not usually measure in situ temper-
ature below 460 m of depth and 760 m of depth, respectively,
leading to correlated anomalies in the upper layers with no
impact on the ocean variability below 800 m of depth.

The CORA analysis variability has a mean amplitude of
0.85 ◦C with a clear seasonal cycle of about 0.3 ◦C in the
0–50 m layer. The CORA analysis mean variability ampli-
tude averages 0.95 ◦C in the 75–125 m depth layer, with a
monthly variability uncorrelated with the seasonal cycle. The
seasonal cycle amplitude is null in the deeper layers, with

a CORA analysis mean variability amplitude of 0.6 ◦C in
the 275–325 m depth layer, 0.4 ◦C in the 475–525 m depth
layer, 0.2 ◦C in the 975–1025 m depth layer, and 0.1 ◦C in
the 1475–1525 m depth layer. The higher-frequency variabil-
ity decreases with depth and is almost null in the deeper lay-
ers, as seen in Figs. 9 and 10. The noisy shape of this high-
frequency variability is probably a result of ocean monthly
variability and the changing locations of the ocean profiles.

The 2014–2015 spike in the ocean variability, detected in
all the layers except for the deeper one in the NRT analy-
sis, is caused by many XBT profiles. Most of those profiles
are deployed in the Indian Ocean across a transect linking
the Gulf of Aden to Perth, Australia, corresponding to mea-
surements performed by the Ship of Opportunity Program
(Goni et al., 2009). The profiles have been extracted from
the World Ocean Database and thus have not been validated
with the Coriolis real-time validation framework. Many bi-
ases and spikes, probably due to issues with the probes or
with poor insulation of the XBT wires, have been flagged
in delayed-time mode. The largest part of the upper layer
spikes in the NRT and RAW analyses is a result of these erro-
neous measurements. In addition to the usual issues with the
XBT measurements, the profiles sometimes indicated nega-
tive values at subsurface depths or temperatures of 36.269 ◦C
at depth located above the maximum functioning depth of
the XBT (460 m of depth for T-4 and T-6, 760 m depth for
Deep Blue). These unrealistic values were not flagged after
extraction from the WOD dataset, resulting in exponential
growth of the local amplitude of temperature standard devi-
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Figure 10. Mean temperature standard deviation in the 475–525 m depth layer (a), 975–1025 m depth layer (b), and 1475–1525 m depth
layer (c). The raw dataset (red), NRT dataset (blue), and CORA dataset (black) are represented.

ation in the RAW and NRT analysis in the 475–525 m depth
and 975–1025 m depth layers.

A closer look at the vertical profiles of the temperature
and salinity mean variability (Figs. 9 and 10) shows that
the CORA analysis temperature and salinity variability is far
smaller than the RAW analysis and the NRT analysis esti-
mation. The depth variability of the temperature and salinity
mean variability is moreover closer to the expected oceanic
variability, with maximum ocean variability at the surface
or close to the subsurface and decreasing variability below
the ocean mixed layer depth. We, however, lack a reference
high-quality dataset to compare with to prove that the CORA
dataset is not decreasing the global ocean variability by over-
flagging good data. Indeed, one should keep in mind that
most of the flags applied on these profiles are manually ap-
plied by physical oceanographers after receiving a detection
alert, and the rate of flagged profiles in the CORA analysis
is lower than the rate announced for a reference dataset and
analysis based on automatic quality control tests (Gouretski
et al., 2018).

6 Conclusions

The CORA dataset is an extensive dataset of temperature and
salinity measurements. Efforts have been made to provide the
scientific community with information as close as possible
to the physical measurement and to perform a strict qual-
ity control on all profiles. The CORA dataset indeed stands
out from the EN4 dataset since the delayed-time-mode val-

idation is based on automatic detections and systematic PI
decisions, reducing the number of mistaken bad flags. In ad-
dition to that, the profiles are not subsampled and the time
series (TSGs and drifters) are distributed. It also stands out
from the WOD dataset since all measurements within a pro-
file are validated in delayed-time mode, reducing the number
of mistaken measurements.

Moreover, this study develops an innovative method to
assess the overall quality of a dataset. This method shows
improvements of the dataset quality flags thanks to Coriolis
real-time QC and the CORA delayed-time-mode QC frame-
works. This method, however, lacks a comparison with an
analysis based on other datasets to ensure that the CORA val-
idation framework is not constraining its description of the
ocean variability by over-flagging good measurements. This
discussion shall be further pursued. This method is based on
the mapping of the ocean variability. It is thus implicit that
the ocean sampling is homogeneous and sufficient to perform
a monthly analysis. These conditions are met at a global scale
and for ocean measurements from the surface to 2000 m of
depth since the full deployment of the Argo network. Last,
the ocean data coverage is, however, insufficient to have a
global coverage before 2005 (see Fig. 3 for the ocean basin
data coverage ratio), especially at depth larger than 1000 m
between 1990 and 2005 and at depth larger than 500 m be-
fore 1990, as seen in Fig. 2. The method will thus have to
be adapted to the ocean data coverage to provide a synoptic
view of the dataset quality.
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