Trace element proxies of seafloor hydrothermal fluids based on secondary ion mass spectrometry (SIMS) of black smoker chimney linings

Evans Guy N. ^{1, *}, Tivey Margaret K. ¹, Monteleone Brian ¹, Shimizu Nobumichi ¹, Seewald Jeffrey S. ¹, Rouxel Olivier ²

¹ Woods Hole Oceanog Inst, 360 Woods Hole Rd, Woods Hole, MA 02543 USA.
 ² Inst Francais Rech Exploitat Mer, Ctr Brest, Technopole Brest Iroise, Marine Geosci Unit, Plouzane, France.

* Corresponding author : Guy N. Evans, email address : gevans@framingham.edu; mktivey@whoi.edu

bmonteleone@whoi.edu; nshimizu@whoi.edu; jseewald@whoi.edu; orouxel@ifremer.fr

Abstract :

Sampling of paired black smoker chimney linings and seafloor hydrothermal vent fluids supports the development of trace element proxies for sulfide mineral deposition environments by facilitating analyses of trace element partitioning between mineral and fluid phases under well-constrained physiochemical conditions. Here, concentrations of Co, Ni, Ga, Ag, and In in chalcopyrite lining 22 black smoker chimneys (29 for Co, Ag, and In) are measured using secondary ion mass spectrometry (SIMS) calibrated against inductively coupled plasma mass spectrometry (ICP-MS) and NIST-traceable reference solutions. To provide additional data on the trace element concentrations of vent fluid pairs for 19 of the 29 black smoker chimney linings investigated, this paper also presents new ICP-MS data for 33 hydrothermal vent fluids collected from the Tahi Moana-1, ABE, Tu'i Malila, and Mariner vent fields on the Eastern Lau Spreading Center and Valu Fa Ridge.

The chalcopyrite black smoker chimney linings investigated represent a variety of temperature (269-395 degrees C), chemical (e.g., pH (at 25 degrees C) = 2.3-4.4), and geologic conditions. Electron microprobe results indicate that mineral stoichiometry ranges from stoichiometric chalcopyrite to mol Cu : mol Fe = 0.65. Trace element concentrations obtained by SIMS are: Co (<2 ng/g-760 mu g/g), Ni (<17 ng/g-454 mu g/g), Ga (<0.9 ng/g-48 mu g/g), Ag (60 mu g/g-3800 mu g/g), In (<0.5 ng/g-270 mu g/g). Concentrations of Ag in chalcopyrite strongly correlate with the free ion activity ratio of {Ag+}:{Cu+} in paired vent fluids, with high Ag concentrations or low-pH vent fluids with high Ag concentrations attributable to subsurface Ag remobilization. Chalcopyrite with low Ag precipitates from low-pH Cu-rich fluids unaffected by extensive Ag remobilization. Concentrations of Ga and In in chalcopyrite exhibit a negative trend with vent fluid pH, possibly reflecting the strength of Ga and In OH- complexes. Thus, Ga and In concentrations differentiate Ag-rich chalcopyrite formed from near-neutral Cu-poor vent fluids or that formed from Ag-rich

low-pH vent fluids. In contrast, Co and Ni exhibit no trend with fluid data, but correlate with mineral Cu:Fe ratios, possibly reflecting the greater availability of Fe(II) lattice sites or paired substitution of 2+ ions.

Overall, this study demonstrates the potential of paired vent fluid and black smoker chimney samples to provide insight into the partitioning of trace elements in sulfide mineral deposition environments and related proxies of important fluid parameters such as pH and metal concentrations. This study also demonstrates the utility of SIMS to precisely analyze trace elements in chalcopyrite at high spatial resolutions and low detection limits.

Keywords : Seafloor massive sulfide, Chalcopyrite, Ore, Mineral, pH

51 1. INTRODUCTION

Deep-sea hydrothermal vents are unique locations where actively forming seafloor 52 massive sulfide (SMS) deposits and venting hydrothermal fluids can be directly accessed and 53 sampled. However, SMS deposits and hydrothermal vent fluids are often sampled, analyzed, and 54 reported in separate studies causing information about the correspondence between SMS deposit 55 chemistry and corresponding hydrothermal vent fluids to be lost or overlooked. Systematic 56 57 collection and analyses of paired SMS deposit and hydrothermal fluid samples provide detailed constraints on the formation conditions of SMS deposits. For example, previous studies have 58 quantitatively investigated the fractionation of stable sulfur and metal isotopes and the 59 60 partitioning of trace elements between hydrothermal fluids and sulfide minerals (e.g., Ono et al., 2007; Rouxel et al., 2008; John et al., 2008; McDermott et al., 2015). 61

To further investigate trace element partitioning between hydrothermal vent fluids and sulfide mineral deposits, this study focuses on precise trace element analyses of the innermost linings of black smoker chimneys. Because these linings formed in direct contact with venting hydrothermal fluids, their chemistry can be expected to reflect the physiochemical conditions imposed by the fluids. Previous analyses of several of the black smoker chimney linings investigated here have shown that these linings are in close sulfur-isotopic equilibrium with corresponding hydrothermal vent fluids (McDermott et al., 2015).

Models for the formation of black smoker chimney deposits typically differentiate
between two major stages of deposit formation (Haymon, 1983; Goldfarb et al., 1983). First,
heating of seawater by venting hydrothermal fluids leads to the precipitation of an initial
chimney wall dominantly composed of anhydrite (CaSO₄), with metal sulfide minerals occurring
as interstitial grains. Following physical and chemical separation of venting hydrothermal fluids

74 from surrounding seawater by the initial chimney wall, a second stage of black smoker chimney 75 formation is characterized by precipitation of a massive sulfide lining along the interior surface of the chimney wall and concentric zonation within the wall as minerals continue to dissolve and 76 precipitate according to steep temperature and chemical gradients (Fig. 1A). Above $\sim 250^{\circ}$ C, 77 second-stage massive sulfide linings typically contain chalcopyrite (CuFeS₂) or a Cu-Fe-S 78 intermediate solid solution with a chemical composition between that of chalcopyrite and 79 80 isocubanite (CuFe₂S₃) (Haymon, 1983; Goldfarb et al., 1983). Zinc-iron sulfides ((Zn,Fe)S) such 81 as wurtzite and sphalerite are also common, especially at lower temperatures. Iron-sulfides, pyrite/marcasite (FeS₂) and pyrrhotite (Fe(1-x)S_x), are likewise common within chimney walls, but 82 83 are rarely found along the interior surfaces of black smoker chimneys in direct contact with hydrothermal vent fluids. 84

85 Previous studies have noted a close correspondence between the mineralogy of second-86 stage black smoker chimney linings and vent fluid characteristics including temperature, sulfur fugacity, and pH (e.g., Tivey, 1995; Tivey et al., 1999; Kawasumi and Chiba, 2017; Evans et al., 87 2017). However, these mineralogical indicators can only distinguish between broad ranges of 88 temperature and chemical composition. Analyses of trace elements in black smoker chimney 89 linings provide an additional and potentially more precise indicator of vent fluid temperatures 90 and chemistry. For example, the Fe content of sphalerite and wurtzite has been demonstrated to 91 closely reflect vent fluid temperature and sulfur fugacity, which is subsequently indicative of 92 vent fluid H₂ concentrations (e.g., Hannington et al., 1995; Keith et al., 2014; Kawasumi and 93 Chiba, 2017). Similarly, the trace element contents of pyrite in SMS deposits have been related 94 to the physiochemical parameters of hydrothermal fluids, which are in turn related to geologic 95 processes including fluid-sediment reactions, phase separation, subsurface mixing with seawater, 96

and magmatic volatile inputs (Keith et al., 2016). Such successes motivate the search for
additional trace element proxies concerning fundamental vent fluid characteristics such as
temperature, pH, and elemental concentrations.

The concentrations of many trace elements in chalcopyrite (and Cu-Fe-S intermediate 100 solid solutions) along the innermost linings of black smoker chimneys are at or below the ~100s 101 molar parts per million detection limits of electron microprobe (e.g., Tivey et al., 1995; Tivey et 102 103 al., 1999; Craddock, 2009; Evans et al., 2017). Techniques that offer lower detection limits, such 104 as laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), proton microprobe (PIXE), and secondary ion mass spectrometry (SIMS), have also been used to 105 106 investigate the composition of black smoker chimney linings (e.g., Butler and Nesbitt, 1999; 107 Ryan, 2001; Layne et al., 2005). However, these studies have been hampered by a lack of suitable matrix-matched reference materials requiring results must to be reported in relative 108 109 rather than absolute concentrations (e.g., Butler and Nesbitt, 1999; Layne et al., 2005). More recently, some LA-ICP-MS measurements of trace elements in sulfide minerals have been 110 calibrated using pressed sulfide powder precipitates, doped Li-borate glasses, or synthetic 111 sintered doped sulfides (Maslennikov et al., 2009, Danyshevsky et al., 2011; Wohlgemuth-112 Ueberwasser et al., 2015). While these methods offer more reliable results reported as absolute 113 concentrations, understandings of the relationship between concentrations of trace elements in 114 hydrothermally precipitated sulfide minerals and corresponding hydrothermal fluids remain 115 imprecise. 116

This study investigates relationships between the trace element contents of copper-iron
sulfide minerals (primarily chalcopyrite) in black smoker chimney linings and paired
hydrothermal vent fluids from a selection of seafloor hydrothermal vent fields exhibiting a

120 variety of temperature and chemical characteristics. Trace element concentrations in black smoker chimney linings were measured using SIMS, which offers sufficiently high spatial 121 resolution (spot diameter = $40 \mu m$) and low detection limits (~ 1 ng/g) to analyze generally fine-122 grained and trace-element poor samples (Fig. 1B). To calibrate SIMS measurements against 123 matrix-matched references materials, chalcopyrite grains were carefully picked from a subset of 124 the black smoker chimney linings and analyzed by solution inductively coupled plasma mass 125 spectrometry (ICP-MS) calibrated against NIST-traceable reference solutions. To normalize 126 SIMS secondary ion ratios against major element concentrations and to investigate possible 127 effects of mineral stoichiometry on trace element concentrations, selected samples were 128 129 additionally analyzed by electron microprobe. The resulting data and comparisons between the 130 trace element contents of black smoker chimney linings and the physiochemical parameters of paired hydrothermal vent fluids makes it possible to search for and identify trace element proxies 131 of vent fluid parameters recorded in the chemistry of black smoker chimney linings. 132

133

134 2. SAMPLE DESCRIPTION

135 2.1. Black Smoker Chimney Linings

Black smoker chimney linings were obtained from samples stored at the Woods Hole
Oceanographic Institution (WHOI). These samples were originally collected from active seafloor
vent fields including those along the southern East Pacific Rise between 17°34'S and 17°37'S
(AT-03, Leg 28), the Main Endeavour Field on the Juan de Fuca Ridge (AII-118, Leg 22; AT-03,
Leg 30), the Lucky Strike vent field on the Mid-Atlantic Ridge (DIVA1), the Beebe/Piccard vent
field on the Mid-Cayman Rise (AT18-16), the Vienna Woods, Fenway, Satanic Mills, Roman
Ruins, Roger's Ruins, Suzette, and North Su vent fields in the Manus Basin (MGLN06MV), and

143 the Tahi Moana-1, ABE, Tu'i Malila, and Mariner vent fields in the Lau Basin (TN236; RR1507). Together, these samples represent a variety of geologic settings including fast-144 spreading (southern East Pacific Rise), intermediate-spreading (Endeavour Segment of the Juan 145 de Fuca Ridge), slow-spreading (Lucky Strike), and ultraslow-spreading (Mid-Cayman Rise) 146 mid-ocean ridges, and back-arc basins (Lau Basin and Manus Basin), covering a range of vent 147 fluid temperatures (274–395°C), pH (pH_{25°C} = 2.3-4.4), and metal concentrations (Table 1 and 148 149 references therein). Black smoker chimney samples from the Main Endeavour Field include those collected prior to the seismic swarm and inferred tectonic/volcanic event that occurred in 150 1999 (Alv1931) and immediately following (Alv3474-3-1 and Alv3480-4; Johnson et al., 2000). 151 152 This event led to changes in the temperature and composition (pH, chlorinity, dissolved H₂) of hydrothermal fluids venting at the Main Endeavour Field including a temporary increase in 153 154 temperature and decreases in chlorinity and pH (Seewald et al., 2003; Seyfried et al., 2003; 155 Lilley et al., 2003).

156

157 2.2.Hydrothermal Vent Fluids

This study additionally presents new data on the concentrations of trace elements in 158 hydrothermal vent fluids from the Tahi Moana-1, ABE, Tu'i Malila, and Mariner vent fields 159 sampled during cruises TN236 (2009, R/V Thompson) and RR1507 (2015, R/V Roger Revelle). 160 These vent fields are located along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge 161 (VFR) back-arc spreading centers in the Lau Basin of the southwestern Pacific Ocean (Ferrini et 162 al., 2008; Evans et al., 2017). Published data for fluids paired with black smoker chimney 163 164 samples from the southern East Pacific Rise include temperature, pH, and major element concentrations, but do not include concentrations of Co, Ni, Ga, Ag, or In (O'Grady, 2001). 165

166 More comprehensive trace element data are available for vent fluids collected from the Main

167 Endeavour Field in 1999 (Co, Ni, and Ag; Seyfried et al., 2003), the Manus Basin in 2005 (Co

and Ag; Craddock, 2009), and the Beebe/Piccard vent field in 2012 (Co; McDermott et al., 2018).

169

170 3. METHODS

171 3.1. Hydrothermal Vent Fluids

172 3.1.1. Sample Collection and Shipboard Analyses

173 Hydrothermal vent fluids from the actively venting Tahi Moana-1, ABE, Tu'i Malila and Mariner vent fields were collected using the remotely operated vehicle, Jason II. One to three 174 175 fluid samples from each vent were collected in 150 mL isobaric gas-tight (IGT) samplers (Seewald et al., 2002). Vent fluid temperatures were measured using a thermocouple mounted on 176 the inlet snorkel of the IGT sampler. Following shipboard recovery, fluid samples were analyzed 177 178 for pH at room temperature using a Ag/AgCl combination reference electrode that was calibrated daily. Aliquots for major element- and trace metal analyses were transferred to acid-washed 179 high-density polyethylene (HDPE) Nalgene[™] bottles and aliquots for trace metal analysis were 180 acidified with analytical-grade Optima[™] HCl prior to storage. In many fluid samples a 181 precipitate "dregs" fraction formed upon initial collection and cooling of the sample. This was 182 recovered from the inside of the IGT sampling bottle by rinsing with Milli-Q filtered water and 183 high-purity acetone; precipitates were collected on 0.22 µm pore-size, 44 mm diameter Nylon 184 filters. 185

186

187 3.1.2. Digestion of Dregs and Filter Fractions

188 Aliquots of hydrothermal fluid samples for minor and trace element analysis by ICP-MS were filtered into HDPE Nalgene[™] bottles through 0.22 µm pore-size, 22 mm diameter 189 Nuclepore[®] nylon filters to remove additional precipitates (a.k.a. the "filter" fraction) that might 190 have formed during storage. Syringes, filters, filter units, and fluid handling equipment were all 191 acid-cleaned with 0.8 M HNO₃ prepared from analytical grade Optima[®] HNO₃ (Thermo Fisher 192 Scientific, Agawam, MA) and Milli-O filtered water. Visible particles sticking to the sides of 193 194 laboratory vessels were transferred with the aid of Milli-Q filtered water and high-purity ethanol. 195 Precipitate filter and dregs fractions were then digested in reverse aqua regia (three parts 16 M analytical grade Optima[®] HNO₃ to 1 part 12 M analytical grade Optima[®] HCl by volume) in 196 197 SavillexTM digestion vials and left at 70°C until dry. Samples were then brought up in 5 mL of 0.8 M HNO₃ and left to dry a second time to remove any remaining HCl. Finally, these samples 198 were brought up in 30 mL 0.8 M HNO₃ and stored in HDPE Nalgene® bottles prior to analysis. 199 200

201 3.1.3. Major and Trace Element Analysis

Analyses of major elements (Na, K, Li, Ca, Mg) were conducted on diluted samples of dissolved aliquots of hydrothermal fluids by ion chromatography at WHOI. Analyses of minor elements (Fe, Mn) and trace elements (Cr, Co, Ni, Cu, Zn, Ga, Rb, Mo, Ag, Cd, In, Sn, Cs, Au, and Pb) were carried out on diluted samples of "dissolved" fractions and digested "filter" and "dregs" fractions using the Element 2 inductively coupled plasma mass spectrometer at the Plasma Mass Spectrometry Facility at WHOI.

To calculate the metal concentrations of the initial hydrothermal fluid venting at the seafloor, the separate contributions of the dregs-, filter-, and dissolved fractions were summed. Data were then extrapolated from the composition of local seawater to an endmember 211 hydrothermal composition containing zero-Mg (Von Damm et al., 1985; Trefry et al., 1994; 212 Metz and Trefry, 2000). While this method is generally effective, significant uncertainties arise when mineral deposit particles care inadvertently entrained during vent fluid sampling. 213 Furthermore, recovery of dregs- and filter fractions can be incomplete. If multiple fluid samples 214 have been taken from the same vent, then the quality of fluid sampling can be confirmed if 215 multiple samples extrapolate to similar zero-Mg endmember concentrations. Alternatively, likely 216 217 sampling artifacts can be identified if multiple samples extrapolate to extremely different 218 endmember compositions. In some cases, the likely quality of fluid sampling can also be inferred by comparison with replicate samples from the same vent field that exhibit similar temperature, 219 220 pH, chlorinity, etc. However, if only one fluid sample has been taken from a given vent, the 221 quality of fluid sampling cannot be definitively determined.

222

223 3.2. Black Smoker Chimney Linings

3.2.1. Sample Collection and Preparation

Black smoker chimney samples were collected from active seafloor vent fields using the manipulator grab arms of the remotely operated vehicle, *Jason II*, or the human occupied vehicles *Alvin* or *Nautile*. SMS deposit samples were photographed and air-dried following shipboard recovery and transferred to climate-controlled storage upon arrival at WHOI.

229

230 3.2.2. Electron Microprobe Analysis

Electron microprobe analyses of black smoker chimney linings were conducted using
the JEOL JXA-8200 at the Massachusetts Institute of Technology Electron Microprobe Facility.
Analyzed spots were located along the innermost edges of black smoker chimneys adjacent to

fluid conduits in areas free of visible inclusions and preferably next to the circular pits left by
SIMS analyses. Concentrations of Cu, Fe, and S were calibrated against an in-house chalcopyrite
(CuFeS₂) reference material. Count times were 40 s for each element. As evaluated by multiple
measurements on the same sample, measurement precision is ~0.5 wt%. Mass totals of accepted
analyses are between 99 wt% and 101 wt%. Analyses of Co, Ni, and Ag were also attempted.
However, concentrations of these elements are generally below detection limits and do not offer
quantitative analyses.

241

242 3.2.3 Secondary Ion Mass Spectrometry (SIMS)

243 In preparation for SIMS analysis, black smoker chimney samples were cut, mounted in epoxy, polished to 1 µm grit with diamond and/or alumina abrasives, and gold coated. Trace 244 element analyses were obtained using the Cameca IMS 1280 ion microprobe at the Northeast 245 National Ion Microprobe Facility at WHOI. Secondary ion intensities were measured for ⁵⁹Co⁺, 246 ⁶⁰Ni⁺, ⁶⁹Ga⁺, ¹⁰⁹Ag⁺, ¹¹³In⁺, and ¹¹⁵In⁺. Secondary ion intensities of trace elements are reported as 247 a ratio against the secondary ion intensity of ${}^{63}Cu^{16}O^+$, which was found to be more stable than 248 that of ⁵⁴Fe¹⁶O⁺. Measurements of ⁷⁵As⁺ and ⁷⁴Ge⁺ were also attempted. However, ⁷⁵As⁺ was 249 found to be heterogeneous in chalcopyrite and ion intensities for ⁷⁴Ge⁺ were below detection 250 limits in all black smoker chimney samples investigated. 251

Spot sizes of ~40 µm enabled analyses of the innermost linings of black smoker
chimneys, including samples with finely intergrown chalcopyrite and wurtzite or chalcopyrite
and pyrite. A typical mass resolving power of ~10,000 enabled adequate peak separation (Fig. 2).
Detection limits were set at three standard deviations above the mean ion intensity measured on
background mass 54.7. This was evaluated to be 0.25 counts per second (cps) or 5×10⁻⁵ cps / cps

257 ⁶³Cu¹⁶O⁺. Quantitative determination limits were set at ten standard deviations above the mean secondary ion intensity measured on the background mass 54.7. This was evaluated to be 0.6 cps 258 or 1.2×10^{-4} cps / cps 63 Cu¹⁶O⁺. Machine settings, typical secondary ion intensities and associated 259 errors for ⁶³Cu¹⁶O⁺, detection limits, and determination limits are listed in Table 2. 260 To monitor for possible wurtzite/sphalerite and/or pyrite inclusions, intensities on masses 261 corresponding to ⁵⁴Fe¹⁶O⁺ and ⁶⁴Zn¹⁶O⁺ were also measured. Likely sputtering of mineral 262 inclusions was particularly notable in black smoker chimney linings composed of intergrown 263 264 chalcopyrite and wurtzite. Accordingly, spots with anomalously high ⁶⁴Zn¹⁶O⁺ intensities and correspondingly low ⁶³Cu¹⁶O⁺ intensities were removed from the dataset prior to statistical 265 266 analysis. For each black smoker chimney sample, sample means and standard errors were calculated over the total number of measurements on that sample in each analytical session. 267 Reported trace element ratios obtained during different sessions were then reconciled by 268 269 reference to common samples analyzed during multiple sessions. During each session, black smoker chimney samples shown to be homogeneous with respect to several of the trace elements 270 of interest were used as provisional reference materials to monitor machine stability using the 271 sample-standard bracketing method (typically five sample spots bracketed by two standard spots). 272 The standard error of secondary ion ratios measured on these provisional reference materials was 273 typically < 15% of the mean secondary ion ratio. 274

Additional statistical modeling of SIMS results in the construction of calibration curves and subsequent comparisons with fluid or mineral parameters were carried with Microsoft Excel software using the LINEST and other appropriate functions. The number of samples (n) was taken to be the total number of SIMS spot analyses. The number of distinct sample averages (c) was taken to be the total number of black smoker chimney linings included in each comparison. 280

281 3.2.4. Digestion and ICP-MS Analysis of Picked Chalcopyrite Grains

To generate SIMS calibration curves, chalcopyrite from a subset of the black smoker 282 chimney linings analyzed by SIMS was picked for total acid digestion and analysis by ICP-MS 283 against NIST-traceable reference solutions. Picked grains were obtained from the innermost 284 linings of black smoker chimneys within 1 mm of the main fluid conduit by coarse crushing with 285 286 an agate motor and pestle followed by careful picking with non-metal tools. Sample grains were 287 then individually examined under a Leica Stereo Zoom 6 Photo microscope and transferred to a separate container in order to ensure minimally tarnished samples of purest possible chalcopyrite. 288 289 Additionally, polished sections of the same samples were examined under a reflected light 290 petrographic microscope to ensure that samples in this subset did not contain visible inclusions 291 of other minerals along the chimney lining.

Samples of picked chalcopyrite grains were weighed to a precision of ~ 0.05 mg before being digested in reverse *aqua regia* (1 part 12 M HCl : 3 parts 16 M HNO₃, by volume) in acidcleaned Savillex digestion vials and diluted in 30 mL of 0.8 M HNO₃ before being transferred to Teflon-coated bottles. Sample solutions were then prepared for measurement by ICP-MS by further diluting aliquots of the 30 mL sample dilutions with 0.8 M HNO₃ containing 1 ng/g Sc and 1ng/g Y as internal spikes to a target strength of 2 μ g/g Cu for trace element analyses and a target strength of 50 ng/g Cu for major element analyses.

Major and trace element analyses of digested chalcopyrite (and cubanite) picks were obtained using the Element 2 (Thermo Fisher Scientific, Waltham, USA) at the Plasma Mass Spectrometry Facility at WHOI. ICP-MS analyses were calibrated against serial dilutions of Specpure® plasma solutions with 0.8 M HNO₃ containing 1 ng/g Sc and 1 ng/g Y as internal spikes. Relative errors of the analysis were estimated by repeat measurements of the samesample solution and are generally on the order of 10%.

305

306 3.3. Thermodynamic Modelling of Aqueous Complexing

To compare the measured trace element chemistry of black smoker chimney linings with 307 the hydrothermal fluid chemistry at *in situ* temperatures and pressures present at the seafloor, the 308 309 activities of aqueous complexes and free ions were calculated using the EQ3/6 software package 310 (Wolery, 1992) and thermodynamic data compiled in the SUPCRT92 database (Johnson et al., 1992) modified as described by Tivey et al. (1999) and Tivey (2004), which include the Fe-Cl 311 312 complex data of Ding and Seyfreid (1992). Thermodynamic data for Co, Ni, and In chloride complexes and Ga and In hydroxide complexes were obtained from the SLOP07 database 313 available at http://geopig3.la.asu.edu:8080/GEOPIG pigopt1.html (Shock et al., 1997; 314 315 Sverjensky et al., 1997). Model inputs are presented in Table 3. The dissociation reaction constants for selected complexes at various temperatures are listed in Supplementary Table S1. 316 Of particular interest for the comparison between black smoker chimney linings and 317 hydrothermal vent fluids is the calculation of *in situ* pH, which may be several pH units above 318 shipboard measurements conducted at 25°C. In contrast, calculations of in situ pH have been 319 shown to be within 0.1–0.4 units of in situ measurements of vent fluid pH conducted at the 320 seafloor, suggesting that these thermodynamic calculations lead to a close approximation of 321 actual in situ pH (Ding et al., 2005). 322

323

324 4. RESULTS

4.1. Trace Elements Concentrations in Black Smoker Chimney Linings

326	A total of 29 black smoker chimney samples were analyzed for Co, Ag, and In using
327	SIMS of which 22 were additionally analyzed for Ni and Ga. To generate calibration curves and
328	quantify SIMS measurements picked chalcopyrite grains from five of these samples were
329	analyzed by ICP-MS. The stoichiometry of 14 of these samples was determined using electron
330	microprobe analysis. Trace element analyses obtained by SIMS are reported as secondary ion
331	ratios (Table 4) and absolute concentrations (Table 5) based on calibration curves obtained by
332	comparing SIMS and ICP-MS results (Fig. 3).
333	
334	4.1.1. Evaluation of SIMS Calibration Curves
335	Trace element calibration curves were constructed based on analyses of selected black
336	smoker chimney samples by SIMS and solution ICP-MS calibrated against NIST-traceable
337	solution standards (Fig. 3). These samples are characterized by monomineralic linings,
338	reproducible SIMS measurements, and untarnished (or mildly tarnished) grains of picked
339	chalcopyrite. Total sample recovery based on ICP-MS analyses of major elements in grains of
340	chalcopyrite picked from the innermost linings of black smoker chimneys range from $86 \pm 6 \text{ wt\%}$
341	to 108 ± 5 wt% with the exception of one sample with 63 ± 3 wt % total recovery (Table 5).
342	Concentrations of Zn, Ca, Ba, and Si account for less than 0.3 wt% of this sample, suggesting
343	that the gap in total recovery cannot be explained by contamination with other common SMS
344	deposit minerals (e.g., sphalerite/wurtzite, anhydrite, barite, amorphous silica; Table 6).
345	Following the assumption that differences in mass balance are primarily caused by the inefficient
346	or unrecorded transfer of small sample grains between different laboratory containers, reported
347	major and trace element mass fractions have been normalized to 100% recovery.

348 In general, concentrations of trace elements are consistent between different picks of the same sample and different digestions of the same pick (Table 6). In contrast, concentrations of 349 trace elements vary widely between samples of different black smoker chimneys, both within a 350 given vent field and between different vent fields. Ranges of trace element concentrations in 351 picked grains of chalcopyrite analyzed by solution ICP-MS are (Table 7): Co $(0.3 \mu g/g - 150$ 352 $\mu g/g$), Ni (30 $\mu g/g - 1120 \mu g/g$), Ga (0.3 $\mu g/g - 40.4 \mu g/g$), Ag (100 $\mu g/g - 2900 \mu g/g$), In (5.9 353 $\mu g/g - 77 \mu g/g$). High background counts of 400 – 670 cps for Ni⁶⁰ in ICP-MS analyses, possibly 354 an artifact of Ni cones used in the Element 2, mean that only two samples, Alv3299-6-1 and 355 Alv3296-3, can be accurately analyzed for Ni by ICP-MS. However, these two samples are 356 357 sufficient to construct adequate calibration curves. Moreover, SIMS analyses are not affected and high-quality measurements of Ni in black smoker chimney linings can be achieved with low 358 359 detection limits.

Based on the combined ICP-MS and SIMS analyses, suitable calibration curves for Co, Ni, and Ag can be drawn for the full range of concentrations exhibited by the black smoker chimney linings investigated in this study (Fig. 3). Calibration curves can also be drawn for Ga and In, albeit within a limited concentration range (Fig. 3). Uncertainties in the slopes of the calibration curves based on calculated 95% confidence intervals are: Co (6.5%), Ni (10.9%), Ga (5.4%), Ag (9.9%), and In (22.0%).

For Ga and In, reasonably precise calibration curves are achieved between the concentrations of $0 - 10 \,\mu\text{g/g}$ for Ga and $0 - 40 \,\mu\text{g/g}$ for In. A main factor that may affect the quality of SIMS calibration curves is the extent of trace element homogeneity at mm- to cmscales. Small amounts of zinc sulfide contamination in aliquots of picked chalcopyrite grains could explain the uncertainty of the Ga and In calibration curves at higher concentrations. However, arguments against this explaniation include a lack of significant correlations between
Zn and any of these elements in ICP-MS analyses of picked grains and an absense of intergrown
wurtzite or sphalerite observed under the petrographic microscope. Alternatively, Ga and In
could be less homogeneously distributed in chalcopyrite chimney linings than Co, Ni, and Ag.
This explanation is supported by SIMS analyses where the relative standard errors over multiple
spots are typically greater for Ga and In than for Co, Ni, and Ag.

377

378 4.1.2. SIMS Analyses of Trace Elements Concentrations in Black Smoker Chimney Linings 379 The concentrations of trace elements in black smoker chimney linings based on SIMS measurements and calibration curves cover the following ranges: Co (< 2 ng/g to 760 µg/g), Ni 380 (< 17 ng/g to 454 µg/g), Ga (< 0.9 ng/g to 48 µg/g), Ag (60 µg/g to 3800 µg/g), In (<0.5 ng/g to 381 $270 \mu g/g$) (Table 5). For the purposes of this paper, the abundance and homogeneity of trace 382 elements in each black smoker chimney lining is approximated by the mean and standard errors 383 (1σ) of all SIMS measurements obtained on that sample. Reported uncertainties of trace element 384 concentrations reflect only the uncertainties derived from multiple SIMS analysis and do not 385 386 reflect the additional uncertainties associated with the slopes of the calibration curves. The reasoning behind this presentation is to maintain focus on the extent of natural variability of trace 387 element concentrations within each sample rather than propagating the uncertainties of the 388 calibration curves discussed in section 4.1.1. 389

In general, the variability of trace element concentrations between samples of black
smoker chimney linings is larger than the variability within a single sample. Arranged in
descending order, concentrations of Co and Ni are: Mid-Cayman Rise > southern East Pacific
Rise ~ Main Endeavour Field (post-event) > SuSu Knolls > PACMANUS ~ Eastern Manus
Basin ~ Main Endeavour Field (pre-event) ~ Valu Fa Ridge ~ Eastern Lau Spreading Center.

395 Concentrations of Co and Ni are typically higher in black smoker chimney samples from basalthosted vent fields than in those from felsic-hosted back-arc vent fields in the Lau and Manus 396 Basins with the exception of samples from SuSu Knolls, which exhibit intermediate Co and Ni 397 concentrations (Fig. 4). Additionally, the log concentrations of Co and Ni covary (log₁₀(Co) vs. 398 $\log_{10}(\text{Ni})$: R²= 0.85; p < 0.0001) in basalt-hosted and SuSu Knolls samples, with the highest 399 concentrations of both Co and Ni present in sample J2-613-16-R1 from the Beebe/Piccard vent 400 401 field on the Mid-Cayman Rise (Fig. 4). Concentrations of Co and Ni in samples from felsic-402 hosted systems other than SuSu Knolls are low and do not covary. Concentrations of Ga are higher in black smoker chimney linings from felsic-hosted vent systems, while Ag and In exhibit 403 404 no obvious association with the lithology of host rocks or geologic settings. The log concentration of Ga and In weakly covary ($log_{10}(Ga)$ vs. $log_{10}(In)$: $R^2 = 0.37$, p = 0.0056). 405

The homogeneity of trace elements in black smoker chimney linings was evaluated by 406 407 calculating the standard error of the SIMS count ratios, reported as a percentage of the mean secondary ion ratio. The extent of trace element homogeneity varies widely between samples. 408 However, relative standard errors (1 σ) for the majority of samples lie between 5% and 25% for 409 Co, Ni, and Ag and between 5% and 50% for Ga and In. The median relative standard errors for 410 all black smoker chimney samples examined in this study are: Co (40%), Ni (14%), Ga (29%), 411 Ag (24%), and In (35%). For Co, relative standard errors negatively correlate with Co 412 concentration. If only the 12 samples containing > $1 \mu g/g$ Co are considered, the median relative 413 standard error for Co is reduced to 13%. The relative standard errors of other trace elements do 414 not correlate with concentration. 415

416

417 4.1.3. Stoichiometry of Black Smoker Chimney Linings

The stoichiometry of 14 of the black smoker chimney linings analyzed by SIMS was analyzed by electron microprobe. The molar ratios of Cu:Fe for all but two of these samples are equivalent to chalcopyrite within error (i.e., 0.95 < Cu:Fe < 1.01). Exceptions include sample Alv3299-6-1 from the southern East Pacific Rise with a Cu:Fe molar ratio of 0.93 and sample J2-613-16-R1 from the Beebe/Piccard vent field on the Mid-Cayman Rise with a Cu:Fe molar ratio of 0.65.

The Cu:Fe molar ratios of samples evaluated by electron microprobe correlate with concentrations of Co and Ni ($R^2 = 0.97$ for Cu:Fe vs. Co; $R^2 = 0.98$ for Cu:Fe vs. Ni, Fig. 5). While regression lines and correlation coefficients are strongly controlled by sample J2-613-16-R1, correlation coefficients calculated without including this sample remain statistically significant (Cu:Fe vs. Co: $R^2 = 0.55$, p = 0.0035; Cu:Fe vs. Ni: $R^2 = 0.73$, p = 0.0004) and lackof-fit calculations indicate that linear regression models can appropriately fit the data.

431 4.2. Hydrothermal Vent Fluids

A total of 60 hydrothermal vent fluid samples were collected from 33 active vents (12 in 432 2009 and 21 in 2015) at the Tahi Moana-1, ABE, Tu'i Malila, and Mariner vent fields. Of these 433 samples, 45 contained < 10 mmol/kg Mg, indicative of low extents of seawater entrainment prior 434 to or during sampling (< 20% seawater by mass). Reported ranges of endmember fluid 435 concentrations are based on reproducible duplicate samples obtained from 27 of the 33 vents. A 436 full report of calculated zero-Mg endmember compositions of low-Mg vent fluids is presented in 437 Table 8. Additionally, Supplementary Tables S2 – S5 contain the separate contributions of the 438 dissolved-, filter-, and dregs fractions and the total concentrations of analyzed elements in these 439 fluids prior to calculation of the zero-Mg endmember values. 440

441	The temperature, pH _{25°C} , and zero-Mg endmember concentrations of major ions (Na, Li,
442	K, Ca) of vent fluids examined in this study have been reported in Seewald (2017).
443	Concentrations of Mn, Fe, Cu, Zn, Co, Ni, Ga, and Ag are available for ELSC/VFR vent fluids
444	collected in 2009 and 2015, while concentrations of In are only available for vent fluids from the
445	ABE, Tu'i Malila, and Mariner vent fields collected in 2015. No significant difference in vent
446	fluid concentrations is observed between samples collected in 2009 and those collected in 2015.
447	
448	4.2.1. Mn, Fe, Cu, Zn, and Cd
449	Ranges in endmember fluid concentrations for Mn, Fe, Cu, Zn and Cd are: Mn (240 \pm 27
450	μ mol/kg – 6,090 ± 50 μ mol/kg), Fe (48 ± 3 μ mol/kg – 14,000 ± 300 μ mol/kg), Cu (4 ± 1
451	μ mol/kg – 300 ± 16 μ mol/kg), Zn (37 ± 1 μ mol/kg – 1,800 ± 100 μ mol/kg), Cd (54 ± 4 nmol/kg
452	$-1,5600 \pm 40$ nmol/kg). Metal concentrations are typically greater in the higher-temperature
453	(308–364°C), lower-pH (pH _{25°C} = 2.2–2.7) fluids collected from the Mariner vent field than in
454	the lower-temperature (232–317°C), higher-pH (pH _{25°C} = $3.7-4.5$) vent fluids collected from the
455	Tahi Moana-1, ABE, and Tu'i Malila vent fields (Fig. 6). Likewise, endmember Zn and Cd
456	concentrations show similar levels of enrichment in the lower-pH, higher-temperature vent fluids
457	from the Mariner vent field relative to fluids from higher-pH, lower-temperature vent fluids from
458	other ELSC/VFR vent fields (Table 7; Fig. 6). However, some overlap occurs between Zn-rich
459	vent fluid samples from the Tu'i Malila vent field and Zn-poor vent fluid samples from the
460	Mariner vent field.
461	

Relative to measurements of Mn, Fe, Cu, Zn, and Cd, measurements of Co, Ni, Ga, Ag, 463 and In in hydrothermal vent fluids are more sparse and less precise. This can be attributed to the 464 lower concentrations of these elements and the importance of the dregs fraction in determining 465 concentrations of these elements. Dregs fractions are less routinely measured than dissolved 466 fractions and are more likely to be incompletely recovered and/or affected by contamination with 467 deposit minerals. Nevertheless, reproducible measurements of trace metals, including Co, Ni, Ga, 468 Ag, and In were achieved (Table 7). Ranges of endmember fluid concentrations are: Co (73 ± 1 469 $nmol/kg - 500 \pm 130 nmol/kg$), Ni, (76 $\pm 3 nmol/kg - 1,100 \pm 600 nmol/kg$), Ga (2 $\pm 0 nmol/kg$) 470 -280 ± 28 nmol/kg), Ag (2 ± 1 nmol/kg - 100 ± 14 nmol/kg), and In (40 ± 4 nmol/kg - 240 ± 50 471 472 nmol/kg).

473 Endmember Co concentrations are 1-4× greater in Mariner vent fluids than in other ELSC/VFR vent fluids (Table 7; Fig. 7). Gallium concentrations are 1-5× greater in vent fluids 474 from the Mariner vent field than in vent fluids from the ABE and Tu'i Malila vent field, which 475 476 are in turn greater than Ga concentrations in vent fluids from the Tahi Moana-1 vent field (Table 7; Fig. 7). Relatively fewer reproducible measurements were obtained for Ni and Ag, inhibiting 477 a definitive comparison between vent fields. However, endmember Ni concentrations are highest 478 in fluids from the Mariner vent field while concentrations of Ag in Mariner vent fluids lie within 479 the range of concentrations exhibited by other vent fields (Table 7, Fig. 7). 480

Because In was used as an internal spike during ICP-MS analyses of fluids collected in 2009 and in analyses of all dissolved fractions, analyses of In are only available for the dregs and filter fractions of fluids collected in 2015. Based on these data, endmember In concentrations are approximately 2–4× greater in vent fluids collected from the Mariner vent field than in vent fluids from the ABE and Tu'i Malila vent fields (Table 7; Fig. 7). In was not analyzed in Tahi
Moana-1 vent fluids, which were collected in 2009.

487

488 5. DISCUSSION

489 5.1. Incorporation of Trace Elements into Black Smoker Chimney Linings

Results of optical microscopy and electron microprobe analyses indicate that the black 490 smoker chimney linings investigated in this study are composed of chalcopyrite (CuFeS₂) or Cu-491 Fe-S intermediate solid solutions that are chemically intermediate between chalcopyrite and 492 cubanite (CuFe₂S₃). Based on analyses of X-ray synchrotron and Mössbauer spectral data, Pearce 493 et al. (2006) conclude that the crystal chemistry of chalcopyrite is best modelled as 494 Cu(I)Fe(III)S(-II)₂. Similarly, analysis of Mössbauer spectra by Greenwood and Whitfield (1968) 495 496 and subsequent analysis of X-ray synchrotron data by Goh et al. (2006) lead these authors to conclude that the crystal chemistry of cubanite is best modelled as Cu(I)Fe(II)Fe(II)S(-II)₃. 497 498 Of the various trace elements investigated in this study, Ag and In have been previously proposed to occur as lattice substitutions in chalcopyrite (Ag(I) for Cu(I) and In(III) for Fe(III); 499 Huston et al., 1995). This determination was based on four criteria: (1) the crystal chemistry of 500 the host mineral, (2) experimental studies on the solubilities of the elements of interest in the 501 host mineral, (3) the presence or absence of minerals that contain major concentrations of the 502 elements of interest (e.g., Lenaite (AgFeS₂) and Roquesite (CuInS₂)), and (4) variations in the 503 concentrations of the elements of interest between and within samples (Huston et al., 1995). 504 Extending this logic to the SIMS analyses of trace elements in black smoker chimney linings 505 presented here, it is likely that Co, Ni, and Ga also exist as lattice substitutions in chalcopyrite. 506

507	Based on shared valence state and the existence of gallite (CuGaS ₂), Ga(III) is proposed
508	to substitute for Fe(III) in the chalcopyrite crystal lattice. The reproducibility of SIMS data for
509	Co and Ni in chalcopyrite and Cu-Fe-S solid solutions lining black smoker chimneys similarly
510	suggests that these elements are present as lattice substitutions. However, the low concentrations
511	of these elements in chalcopyrite and correlation between Co and Ni concentrations and the
512	Cu:Fe molar ratio of Cu-Fe-S solid solutions suggest that these elements preferentially substitute
513	for the Fe(II) site present in more Fe-rich intermediate solid solutions (Fig. 5). Previous studies
514	have likewise reported the presence of high Co concentrations in Fe-rich intermediate solid
515	solutions (e.g., CuFe ₂ S ₃ , CuFe ₃ S ₄ , Rouxel et al., 2004).
516	
517	5.2. Effects of Hydrothermal Fluid Chemistry on Mineral Trace Element Concentrations
518	This study focuses on the chemistry of black smoker chimney linings formed in direct
519	contact with venting hydrothermal fluids under well-constrained physiochemical conditions.
520	Thus, concentrations of Co, Ni, Ga, Ag, and In measured by SIMS may be directly compared
521	with the temperature and chemistry of venting hydrothermal fluids, presented here or in previous
522	studies (Seyfried, 2003; Craddock, 2009; Reeves et al., 2011; Mottl et al., 2011; Seewald, 2017;
523	Evans et al., 2017; McDermott et al., 2018).
524	This study does not address the chemistry of minerals formed within the chimney wall,
525	for which the relevant physiochemical parameters are less certain (e.g., Tivey, 1995). Moreover,
526	this study centers attention on black smoker chimney linings that exhibit spatial homogeneity
527	with respect to Co, Ni, Ga, Ag, and In and are thus most likely to reflect the physiochemical

528 parameters of sampled vent fluids. Detailed investigation of trace element distributions in

529	samples exhibiting spatial heterogeneity (e.g., Ag in J2-213-6-R1) and possible connections with
530	spatio-temporal varability in venting hydrothermal fluids remains for future study.
531	
532	5.2.1. Trace Element Partitioning of Ag
533	The incorporation of Ag(I) derived from the fluid as a trace element substituting for Cu(I)
534	in chalcopyrite lining a black smoker chimney may be represented by the following ion exchange

535 reaction:

536
$$\operatorname{Ag}^{+} + \operatorname{CuFeS}_{2(s)} \leftrightarrow \operatorname{Cu}^{+} + \operatorname{AgFeS}_{2(s)}$$
 (1)

where $AgFeS_{2(s)}$ and $CuFeS_{2(s)}$ represent endmember components in a Ag-containing chalcopyrite solid solution. Based on the above chemical reaction, the following mass action expression may be written:

540
$$K_{eq} = \frac{\{\text{Cu}^+\}\{\text{AgFeS}_{2(s)}\}}{\{\text{Ag}^+\}\{\text{CuFeS}_{2(s)}\}}$$
(2)

where K_{eq} is the equilibrium constant for reaction 1. Because trace levels of AgFeS₂ are present 541 in chalcopyrite solid solutions examined during this study, the mole fraction and activity of 542 543 CuFe_{2(s)} can be assumed to be unity. The activities of Ag⁺ and Cu⁺ in the corresponding hydrothermal fluids may be calculated from the temperature, major element chemistry, and 544 measured concentrations of Ag and Cu using EQ3/6 and the vent fluid compositions listed in 545 Table 3. The ability to calculate thermodynamic activities at in situ temperatures and pressures is 546 necessary because the activity of Ag⁺ and Cu⁺ in hydrothermal fluids is largely controlled by the 547 formation of Cl⁻, and HS⁻ complexes, a phenomenon that becomes more important at higher 548 549 temperatures.

To more directly consider the measured concentrations of Ag in black smoker chimney linings rather than the unmeasured thermodynamic activities, the equilibrium reaction equation may be rewritten:

553

$$K_{eq} = \frac{X_{\text{AgFeS2}}\gamma_R}{\{\text{Ag}^+\}/\{\text{Cu}^+\}}$$
(3)

where X_{AgFeS2} is the mole fraction of AgFeS₂ in the solid and γ_R is an unknown Raoult's activity coefficient that relates the mole fraction of AgFeS₂ in chalcopyrite to its thermodynamic activity.

Based on measured data, the molar concentration ratio of Ag:Cu in chalcopyrite lining 556 black smoker chimneys is significantly correlated with the molar concentration ratio of Ag:Cu in 557 the corresponding hydrothermal vent fluids ($R^2 = 0.89$, p < 0.0001), and with the free ion activity 558 ratio of $\{Ag^+\}$: $\{Cu^+\}$ ($R^2 = 0.91$, p < 0.0001; Fig. 8). Following the equations outlined above, the 559 slope of the best-fit line represents the value $\frac{K_{eq}}{\gamma_{P}}$, which is equal to 0.67 ± 0.12. Overall, these 560 correlations suggest that the concentration of Ag in chalcopyrite lining black smoker chimneys 561 records the activity ratios of $\{Ag^+\}$: $\{Cu^+\}$ that, because aqueous complexing of Ag^+ and Cu^+ are 562 similar, record the ratio of Ag:Cu in the corresponding hydrothermal fluids. 563

A potentially more practical, but less precise method of describing the distribution of trace elements between two different phases assumed to be in thermodynamic equilibrium is the partition coefficient, defined by the following equation (McIntire, 1963):

567
$$D = \left(\frac{Tr}{Cr}\right)_{S} / \left(\frac{Tr}{Cr}\right)_{L}$$
(4)

where *D* is the partition coefficient, $\left(\frac{Tr}{cr}\right)_{S}$ is the ratio of the concentration of the trace element to that of the major or "carrier" element in the solid and $\left(\frac{Tr}{cr}\right)_{L}$ is the ratio of the concentration of the trace element to that of the major element in the liquid or aqueous phase (McIntire, 1963). The partition coefficient, *D*, for the trace element substitution of Ag into chalcopyrite can be calculated with the following equation:

573
$$D = \frac{[Cu^+]X_{AgFeS2(s)}}{[Ag^+]X_{CuFeS2(s)}}$$
(5)

Equation 5 is analogous to Equation 2, but differs by the use of concentrations rather than thermodynamic activities. Unlike the value $\frac{K_{eq}}{\gamma_R}$, the partition coefficient does not take into account the effects of aqueous complexing, which are related to the chemistry and composition of the hydrothermal fluid. However, the calculated partition coefficient based on concentrations alone is 0.67±0.14, which is the same value as $\frac{K_{eq}}{\gamma_R}$, within error.

579 That the Ag concentrations of chalcopyrite in black smoker chimney linings primarily reflect the Ag:Cu concentration ratios of corresponding hydrothermal vent fluids supports recent 580 work indicating that the stoichiometry and stability of Cl⁻ and HS⁻ complexes with Ag⁺ are 581 similar to those of Cu⁺ over a wide range of physiochemical conditions relevant to black smoker 582 583 chimneys (Akinfiev and Zotov, 2001; Pokrovski, 2013). Unfortunately, the SLOP07 database does not include data on Cu bisulfide complexes, which are potentially important in controlling 584 the activity of $\{Cu^+\}$ in sulfur-rich hydrothermal fluids. Follow-up investigations that include 585 more explicit modeling of the Cl⁻ and HS⁻ complexes of both Ag⁺ and Cu⁺ in the fluids presented 586 here would be valuable in providing a clearer understanding of the potential role of these 587 complexes in controlling Ag and Cu concentrations in hydrothermal vent fluids. 588

With the exception of a few samples collected from the PACMANUS vent fields of the 589 Manus Basin, the log concentrations of Ag in black smoker chimney linings also correlate with 590 hydrothermal fluid pH (Fig. 9), either measured shipboard (pH_{25°C} vs. $log_{10}(Ag)$: R² = 0.53, p = 591 0.003), or as calculated for *in situ* conditions ($pH_{in situ}$ vs. $log_{10}(Ag)$: $R^2 = 0.34$, p = 0.027). This 592 pattern can be explained by partitioning of Ag into chalcopyrite as a function of the {Ag⁺}:{Cu⁺} 593 activity ratio in hydrothermal fluids and the effects of vent fluid pH on this ratio. Lower pH vent 594 595 fluids, which result from higher reaction zone temperatures and/or the influence of acidic magmatic volatiles, contain higher Cu concentrations than less acidic vent fluids (Fig. S1). 596 Because vent fluid Ag concentrations are observed to exhibit less sensitivity to differences in 597 hydrothermal fluid pH relative to Cu, lower pH vent fluids have lower {Ag⁺}:{Cu⁺} ratios than 598 599 higher pH vent fluids (Fig. S1). Accordingly, chalcopyrite formed from lower pH vent fluids will tend to contain lower concentrations of Ag, reflecting the typically lower {Ag⁺}:{Cu⁺} ratio. 600 However, some low pH vent fluids contain very high concentrations of Ag, which has been 601 attributed to remobilization of previously deposited Ag-rich metal sulfides in the subsurface 602 (Craddock, 2009). In such cases, Ag concentrations in chalcopyrite lining black smoker 603 604 chimneys are high, reflecting elevated $\{Ag^+\}$: $\{Cu^+\}$ ratios in the corresponding hydrothermal 605 fluids (e.g., Fig. 8, sample J2-208-1-R1, pair with Fig. 9, sample RMR1). Thus, Ag-rich chalcopyrite in black smoker chimneys linings can either precipitate from higher-pH, Cu-poor 606 vent fluids, or from Ag-rich low-pH vent fluids. 607

To differentiate between Ag-rich formed from higher-pH, Cu-poor vent fluids, and that formed from Ag-rich low-pH vent fluids, additional mineralogical or geochemical evidence may be necessary. For example, previous studies have shown that zonation of copper-iron- and zinc sulfides and strong correlations between concentrations of Ag and Zn in bulk samples are 612 indicative of formation from low-pH fluids (Tivey et al., 1999; Kristall et al., 2011; Evans et al.,
613 2017).

614

615 5.2.2. Concentrations of Ga and In: Indicators of Vent Fluid pH

On the basis of shared valence state, similar ionic radius, and the existence of the minerals gallite (CuGaS₂) and lenaite (CuInS₂), Ga(III) and In(III) most likely substitute for Fe(III) in the chalcopyrite crystal lattice. However, Ga and In concentrations in chalcopyrite lining black smoker chimneys do not correlate with Ga and In concentrations of the corresponding vent fluids, where measured, nor do they correlate with the calculated $\{Ga^{3+}\}:\{Fe^{3+}\}$ or $\{In^{3+}\}:\{Fe^{3+}\}$ ratios of these fluids, though data on Ga and In complexes at *in situ* conditions are limited (Fig. S2).

623 Intriguingly, log concentrations of Ga and In in chalcopyrite lining black smoker chimneys do correlate with the measured pH (pH_{25°C} vs. $log_{10}(Ga)$: R² = 0.51, p = 0.002; pH_{25°C} 624 vs. $log_{10}(In)$: R² = 0.53, p = 0.0009) and calculated *in situ* pH for corresponding vent fluids (pH_{in}) 625 situ vs. $\log_{10}(Ga)$: R² = 0.51, p = 0.002; pH_{in situ} vs. $\log_{10}(In)$: R² = 0.35, p = 0.01). High Ga and In 626 627 concentrations in chalcopyrite black smoker chimney linings are associated with low-pH vent fluids (Fig. 9). A possible explanation for the observed correlations is complexing of Ga and In 628 by OH⁻⁻ at higher pH. Experimental investigations of Ga and In speciation as a function of pH 629 have indicated that the activities of free Ga^{3+} and In^{3+} are both lower at higher pH, a 630 phenomenon that has been attributed to the formation of Ga and In OH⁻ complexes (Wood and 631 Samson, 2006; Fig. 10). Thermodynamic modelling performed here likewise indicates that Ga is 632 predominantly complexed as Ga(OH)⁺² while In is primarily complexed as InCl⁺² and 633 634 secondarily as $In(OH)^{+2}$. In considering this hypothesis, it should also be noted that

635 thermodynamic data for the Cl⁻ and OH⁻ complexes of Ga³⁺ and In³⁺ are highly uncertain (Wood 636 and Samson, 2006). This uncertainty and the fact that few measurements of Ga and In in 637 hydrothermal fluids are available may explain the lack of correlation between calculated 638 ${Ga^{3+}}:{Fe^{3+}}$ or ${In^{3+}}:{Fe^{3+}}$ ratios in hydrothermal fluids and the Ga and In concentrations of 639 chalcopyrite in corresponding black smoker chimney linings.

The observed correlations between the Ga and In concentrations in chalcopyrite lining 640 641 black smoker chimneys and hydrothermal fluid pH provide a useful empirical proxy of 642 hydrothermal fluid pH. When combined with Ag, the addition of Ga and In as indicators of hydrothermal fluid pH allows for differentiation between Ag-rich chalcopyrite precipitated from 643 644 near-neutral, Cu-poor vent fluids and similarly Ag-rich chalcopyrite precipitated from lower-pH Ag-rich vent fluids. Specifically, high Ag concentrations accompanied by low Ga and In 645 646 concentrations in chalcopyrite are indicative of precipitation from near-neutral, Cu-poor 647 hydrothermal fluids while high Ag, Ga, and In concentrations in chalcopyrite are indicative of precipitation from low-pH, Ag-rich hydrothermal fluids, likely related to subsurface 648 remobilization of previously deposited Ag-rich sulfide deposits. 649

650

5.2.3. Co and Ni Concentrations More Strongly Reflect Crystallography

As with Ag, Ga, and In, concentrations of Co(II) and Ni(II) in black smoker chimney linings likely reflect both substitution into the mineral lattice and concentrations in the vent fluid relative to Fe(II). Concentrations of Co and Ni in black smoker chimney linings show no clear correlations with total Co or Ni vent fluid concentrations, the free ion activities of these elements, or the activity ratios of these elements to those of Cu or Fe in corresponding vent fluids. As noted, concentrations of Co and Ni do correlate with the Cu:Fe ratio of the copper-iron-sulfide host mineral (Fig. 5), which has also been noted in previous studies (Rouxel et al., 2004). This
suggests that crystallography plays a significant role in determining the Co and Ni concentrations
of black smoker chimney linings, and Co and Ni concentrations in the mineral are not related to
fluid metal concentrations in as straightforward a manner as was observed for Ag, Ga, and In.
Specifically, a molar excess of Fe over Cu increases the availability of Fe(II) lattice sites for
which Co(II) and Ni(II) preferentially substitute.

Previous studies have noted that Fe-rich Cu-Fe –S solid solutions are associated with 664 lower sulfidation states that are in turn associated with H2-rich fluids generated by hydrothermal 665 reactions involving mafic or ultramafic host rocks (Kojima and Sugaki, 1985; Sack and Ebel, 666 2006; Einaudi, 2006; Kawasumi and Chiba, 2017). Data presented here confirm that copper-iron 667 sulfide black smoker chimney linings from mafic-hosted Mid-Cayman Rise and southern East 668 Pacific Rise vent fields are generally more Fe-rich and contain higher Co and Ni concentrations 669 than their back-arc basin counterparts (Fig. 5). However, even in chimneys lined solely with 670 stoichiometric chalcopyrite, no correlations are observed between Co or Ni concentrations of the 671 black smoker chimney linings and hydrothermal fluid chemistry (Fig. 11), likely reflecting a lack 672 673 of availability of Fe(II) lattice sites for which Co(II) and Ni(II) can substitute and suggesting a possibility of paired substitutions. Thus, the Co and Ni concentrations of black smoker chimney 674 linings have not been shown to provide effective proxies of hydrothermal fluid chemistry beyond 675 existing mineralogical indicators (e.g., Lusk and Bray, 2002). 676

677

678 5.3. Concentrations of Trace Metals in ELSC/VFR Hydrothermal Fluids

679 Metal concentrations in hydrothermal fluids are initially set in high-temperature hydrothermal reaction zones, where chemically evolved seawater reacts with rocks (± magmatic 680 volatiles) below the seafloor (e.g., Seewald and Seyfried, 1990). As hydrothermal fluids travel 681 upward from these subsurface reaction zones to vents at the seafloor, metal concentrations may 682 be additionally modified by the precipitation and dissolution of SMS deposits and other minerals. 683 The extent to which the concentration of an element is modified by mineral precipitation and 684 685 dissolution depends on the partitioning of that element between minerals and hydrothermal fluids 686 and the extent of mineral precipitation/dissolution relative to the flux of hydrothermal fluid. Elements that occur as major or trace elements in chalcopyrite and other sulfide minerals may be 687 688 especially sensitive to the precipitation and remobilization of previously deposited sulfide 689 minerals.

The similarity of ELSC/VFR vent fluids collected in 2015 to those collected in 2009 and 690 2005 with respect to temperature, pH, and element concentrations suggests that vent fluid 691 temperatures and chemistry have remained relatively stable during this time period. Vent fluids 692 collected from the Mariner vent field exhibit a bimodal range of chlorinity and H₂S contents that 693 694 has been attributed to phase separation at the seafloor and in the shallow subsurface (Takai et al, 2008; Mottl et al., 2011). However, there is no indication of systematic changes in the 695 compositions of high chloride or low chloride vent fluids at the Mariner vent field between 696 697 repeat visits. Metal concentrations in the high-temperature, low-pH vent fluids collected from the Mariner vent field are higher than those in lower-temperature, higher-pH vent fluids collected 698 699 from other ELSC/VFR vent fields (Fig. 6, 7; Table 8). The magnitude of this enrichment varies 700 by element with Fe and Cu exhibiting the greatest enrichment and Ag exhibiting the least.

Concentrations of Co, Ga, Zn, Cd, and In are also enriched in Mariner vent fluids, but to a lesser
extent than Fe and Cu (Fig. 7).

Endmember concentrations of Mn in hydrothermal vent fluids including those from the 703 ELSC/VFR exhibit a negative trend with hydrothermal fluid pH with the highest Mn values 704 predominantly associated with fluids of pH < 3 (Fig. S3). Endmember Mn concentrations do not 705 correlate with vent fluid exit temperatures (Fig. S3). These patterns are consistent with the 706 707 previously proposed hypothesis that Mn concentrations reflect the temperature, pH, and other 708 chemical conditions of the hydrothermal reaction zone, but are not significantly modified by mineral precipitation during subsequent cooling as the minerals that precipitate do not contain 709 710 significant quantities of Mn (Seewald and Seyfried, 1990). Some relatively high-pH, high-Mn 711 vent fluids from the Mariner vent field reflect mixing with seawater, which buffers the pH of hydrothermal fluids, but does not significantly alter endmember Mn concentrations. Relatively 712 713 low Mn concentrations in low-Cl fluids collected from the Juan du Fuca Ridge point to the additional importance of Cl-complexing in controlling Mn concentrations (Seyfried et al., 2003). 714 715 Endmember concentrations of Fe and Cu in ELSC/VFR and other vent fluids exhibit a negative trend with fluid pH and a positive trend with vent fluid exit temperatures (Fig. S3). This 716 is consistent with the hypothesis that Cu and Fe concentrations are controlled by the temperature-717 and pH-dependent precipitation of sulfide minerals, including chalcopyrite (Seewald and 718 Seyfried, 1990). Measured concentrations of Cu in hydrothermal vent fluids show a greater 719 degree of variability than those of Fe. This can be accounted for by the greater sensitivity of Cu 720 721 measurements to mineral (e.g. chalcopyrite) precipitation during the collection of vent fluid samples and the relatively high concentrations of Cu in the dregs and filter fractions that may not 722 have been quantitatively recovered during sample processing. Ratios of Cu to Fe in hydrothermal 723

fluids may be additionally affected by fluid redox and sulfidation states, though these patterns
may be obscured by temperature-dependent precipitation of chalcopyrite and associated removal
of Cu (Seyfried and Ding, 1993).

Endmember concentrations of Zn exhibit a negative trend with vent fluid pH and no trend 727 with respect to vent fluid exit temperatures (Fig. S3). This is consistent with experimental data 728 indicating that Zn concentrations initially set in the hydrothermal reaction zone equilibrate more 729 730 slowly than Cu and Fe during subsequent cooling (Seewald and Seyfried, 1990). An additional 731 factor may be the pH-dependence of sphalerite (ZnS) saturation temperatures, which causes Zn to be precipitated at higher temperatures under higher pH conditions (Evans et al., 2017). Several 732 733 vent fluids from the relatively high pH Tu'i Malila vent field are enriched in Zn compared to the other vent fluids (Fig. S3). Previous studies of hydrothermal vent fluids from the Vai Lili vent 734 field on the VFR (Fouquet et al., 1993), the TAG hydrothermal mound on the Mid-Atlantic 735 736 Ridge (Tivey et al., 1995; Metz and Trefry, 2000), and the PACMANUS vent fields in the Manus Basin (Craddock, 2009) have reported highly elevated (and often correlated) 737 738 concentrations of Zn, Cd, Ga, Ag, and Pb associated with vent fluids of lower temperature and pH than high-temperature black smoker vent fluids from the same vent field. The higher 739 concentrations of these metals have been attributed to remobilization of previously deposited 740 sulfide minerals within the subsurface (Fouquet et al., 1993; Tivey et al., 1995; Metz and Trefry, 741 2000; Craddock, 2009). Elevated concentrations of Zn, Cd and Ag concentrations among some 742 Tu'i Malila vent fluids (e.g., TM16, TM17) suggest sub-surface remobilization of Zn-bearing 743 massive sulfides within the Tu'i Malila vent field. 744

Analyses of Ga and In in hydrothermal vent fluids are rare. Among the data presented
here, concentrations of Ga in vent fluids from the mafic-hosted Tahi Moana-1 vent field (Ga =

747 2-15 nmol/kg) are lower than those from the basalt-andesite hosted ABE (Ga = 6-110 nmol/kg) and Tu'i Malila vent fields (Ga = 6-130 nmol/kg) despite overlapping vent fluid temperatures 748 and pH (Fig. 7 Fig. S4, Table 8). This suggests that vent fluid Ga concentrations may be partially 749 controlled by host-rock lithology in addition to temperature and pH. However, the Ga 750 concentrations of ELSC and VFR vent fluids are broadly similar to vent fluid Ga concentrations 751 of 25 - 67 nmol/kg reported for vent fluids from the north and south Cleft segments of the 752 753 southern Juan de Fuca Ridge and the black smoker complex of the TAG hydrothermal mound 754 (Metz and Trefry, 2000). Vent fluid In concentrations reported here for ELSC and VFR vent fluids (In = 30-240 nmol/kg; Table 8) are substantially higher than the 2.8 - 3.5 nmol/kg 755 756 reported for vent fluids from the Rainbow vent field, one of the few vent fields for which vent fluid In concentrations have been analyzed (Douville et al., 2002). This comparison is surprising 757 758 given the higher temperatures (362–364°C), generally lower pH (pH (at 25° C) = 2.8–3.2), and higher Cl concentrations (745–756 mmol/kg) of Rainbow vent fluids (Douville et al., 2002). 759 760

761 6. CONCLUSIONS

Based on the comparison of Co, Ni, Ga, Ag, and In concentrations in black smoker 762 chimney linings and hydrothermal fluid chemistry presented in this paper, two factors stand out 763 764 as controlling trace element concentrations in chalcopyrite lining black smoker chimneys. The 765 first is the free ion activity ratio of trace elements relative to that of the major element being replaced in the crystal lattice (e.g., Ag(I) for Cu(I), Ga(III) and In(III) for Fe(III)). In the case of 766 Ag replacing Cu, the free ion activity ratio of $\{Ag^+\}$: $\{Cu^+\}$ primarily reflects the total Ag:Cu 767 768 concentration ratio, which in turn reflects the combined effects of fluid pH and, in some cases, 769 elevated Ag concentrations that likely reflect remobilization of previously deposited sulfides. In the case of Ga or In replacing Fe, the dominant control on the free ion activity ratios of {Ga³⁺}:{Fe³⁺} and {In³⁺}:{Fe³⁺} is not the total concentrations of Ga or In, but rather the relative concentrations of complexing ligands, Cl⁻ and OH⁻. Among seafloor hydrothermal fluids associated with black smoker chimneys, the variation in Cl⁻ concentrations is less than the variation in OH⁻ concentrations associated with pH. Thus, the Ga and In contents of chalcopyrite lining black smoker chimneys provides an effective proxy of vent fluid pH.

776 The second important controlling factor is crystallography, which is most evident in the preferential partitioning of Co(II) and Ni(II) into Fe-rich Cu-Fe-S solid solutions. The influence 777 of crystallography on the partitioning of Co and Ni is demonstrated by correlations between the 778 779 Co and Ni concentrations and Cu:Fe ratios of black smoker chimney linings, as well as the comparative lack of correlation between the Co and Ni concentrations of black smoker chimney 780 linings and hydrothermal fluid chemistry. Because of the strong effect of crystallography on Co 781 782 and Ni concentrations, these elements are unlikely to provide useful proxies of fluid chemistry unless the effects of crystallography can more quantitatively understood and accounted for. 783

Overall, this study demonstrates the potential of using paired samples of black smoker 784 chimneys and hydrothermal vent fluids to investigate the partitioning of trace elements between 785 hydrothermal fluids and sulfide minerals and to develop proxies of important hydrothermal fluid 786 parameters such as pH. Additionally, this study demonstrates the utility of SIMS in achieving 787 quantitative measurements of trace elements in sulfide minerals (specifically chalcopyrite) at 788 high spatial resolutions and low detection limits. As such, SIMS has potential for use in a variety 789 of contexts where the trace element content of fine-grained sulfide minerals is unknown. 790 Avenues for future work include examination of additional trace elements and/or minerals, 791

793	of the fundamental controls of trace element partitioning in sulfide minerals.
794	
795	ACKNOWLEDGEMENTS
796	We thank the captains and crews of the R/V Atlantis III, the R/V Melville, the R/V Roger
797	Revelle, the R/V Thomas G. Thompson, and the team of the ROV Jason II for their expertise in
798	recovering fluid and SMS deposit samples from active vent fields. Margaret Sulanowska's help
799	with sample preparation is gratefully acknowledged. This work was supported by the National
800	Science Foundation [grant numbers OCE-1038135 to GNE and MKT, OCE-1038124, OCE-
801	0241796, OCE-1233037 to JSS and NSF Graduate Research Fellowship to GNE]. The Northeast
802	National Ion Microprobe Facility gratefully acknowledges support from the National Science
803	Foundation Instrumentation and Facilities Program, Division of Earth Sciences, and from the
804	Woods Hole Oceanographic Institution.
0.05	

investigation of SMS deposits beyond the linings of black smoker chimneys, and further analysis

805

807

816

820

792

- 806 REFERENCES
- Akinfiev, N. N., and Zotov, A. V. (2001) Thermodynamic description of chloride, hydrosulfide,
 and hydroxo complexes of Ag(I), Cu(I), and Au(I) at Temperatures of 25–500°C and
 pressures of 1–2000 bar. *Geochem. Int.* 39(10), 990–1006.
- Benézéth, P., Diakonov, I. I., Pokrovski, G. S., Dandurand, J. L., Schott, J., and Khodakovsky, I.
 L. (1997) Gallium speciation in aqueous solution. Experimental study and modelling:
 Part 2. Solubility of α-GaOOH in acidic solutions from 150 to 250 C and hydrolysis
 constants of gallium (III) to 300 C. *Geochim. Cosmochim. Acta*, 61(7), 1345–1357.
- Berglund, M. and Wieser, M. E. (2011) Isotopic compositions of the elements 2009 (IUPAC
 Technical Report). *Pure and Applied Chemistry*, 83(2), 397–410, doi:10.1351/PAC-REP10-06-02
- Bézos, A., Escrig, S., Langmuir, C. H., Michael, P. J., and Asimow, P. D. (2009) Origins of
 chemical diversity of back-arc basin basalts: A segment-scale study of the Eastern Lau

823 824 825	Spreading Center. J. Geophys. Res.: Solid Earth (1978–2012), 114 , B06212, doi:10.1029/2008JB005924
826 827	Binns, R. A. and Scott, S. D. (1993). Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. <i>Econ.</i>
828	<i>Geol.</i> , 88(8) , 2226–2236.
829	
830 831	Butler, I. B. and Nesbitt, R. W. (1999) Trace element distributions in the chalcopyrite wall of a black smoker chimney; insights from laser ablation inductively coupled plasma mass
832	spectrometry (LA–ICP–MS). <i>Earth and Planet. Sci. Lett.</i> , 167(3) , 335–345.
833	
834	Butterfield, D. A., and Massoth, G. J. (1994) Geochemistry of north Cleft segment vent fluids:
835	Temporal changes in chlorinity and their possible relation to recent volcanism. J.
836	Geophys. Res.: Solid Earth, 99(B3), 4951–4968.
837	
838	Craddock, P. R. (2009) Geochemical tracers of processes affecting the formation of seafloor
839	hydrothermal fluids and deposits in the Manus back-arc basin. Ph.D. Thesis, MIT/WHOI
840	Joint Program in Oceanography.
841	
842	Danyushevsky, L., Robinson, P., Gilbert, S., Norman, M., Large, R., McGoldrick, P., and
843	Shelley, M. (2011). Routine quantitative multi-element analysis of sulphide minerals by
844	laser ablation ICP-MS: Standard development and consideration of matrix effects.
845	Geochemistry: Exploration, Environment, Analysis, 11(1), 51–60.
846	
847	Ding, K. and Seyfried, W. E. (1992) Determination of Fe-Cl complexes in the low pressure
848	supercritical region (NaCl fluid): Iron solubility constraints on pH of subseafloor
849	hydrothermal fluids. Geochim. Cosmochim. Acta, 56(10), 3681–3692, doi: 10.1016/0016-
850	7037(92)90161-B.
851	
852	Ding, K., Seyfried, W. E., Zhong, Z., Tivey, M. K., Von Damm, K. L., Bradley, A. M. (2005)
853	The in situ pH of hydrothermal fluids at mid-ocean ridges. <i>Earth Planet Sci. Lett.</i> , 237,
854	167–174.
855	
856	Douville, E., Charlou, J. L., Oelkers, E. H., Bienvenu, P., Jove Colon, C. F., Donval, J. P.,
857	Fouquet, Y., Prieus, D., Appriou, P. (2002) The rainbow vent fluids (36°14'N, MAR):
858	the influence of ultramatic rocks and phase separation on trace metal content in Mid-
859	Atlantic Ridge hydrothermal fluids. <i>Chem. Geol.</i> , 184 , 37–48.
860	
861	Einaudi, M. T., Hedenquist, J. W., and Inan, E. E. (2003) Sulfidation state of fluids in active and
862	extinct hydrothermal systems: transitions from porphyry to epithermal environments. In

863	Special Publication-Society of Economic Geologists, 10 (eds. S.F. Simmons, I. Graham).
864	Society of Economic Geologists, 285–314.
865	
866	Elthon, D., Ross, D. K., and Meen, J. K. (1995). Compositional variations of basaltic glasses
867	from the Mid-Cayman Rise Spreading Center. J. Geophys. Res.: Solid Earth, 100(B7),
868	12497–12512.
869	
870	Escrig S Bézos A <i>Goldstein</i> S L Langmuir C H and Michael P I (2009) Mantle source
871	variations beneath the Eastern Lau Spreading Center and the nature of subduction
872	components in the Lau basin–Tonga arc system, <i>Geochem. Geophys. Geosyst.</i> , 10,
873	Q04014, doi:10.1029/2008GC002281.
874	
875	Evans, G. N., Tivey, M. K., Seewald, J. S., and Wheat, C. G. (2017). Influences of the Tonga
876	Subduction Zone on Seafloor Massive Sulfide Deposits along the Eastern Lau Spreading
877	Center and Valu Fa Ridge. Geochim. et Cosmochim. Acta., 215, 214–246.
878	
879	Ferrini, V. L., <i>Tivey</i> , M. K., Carbotte, S. M., <i>Martinez</i> , F., <i>and</i> Roman, C. (2008) Variable
880	morphologic expression of volcanic, tectonic, and hydrothermal processes at six
881	nyurothermai vent fields in the Lau back-arc basin, Geochem. Geophys. Geosyst., 9,
00Z 883	Q0/022, u0i. 10.1029/20080C002047.
003	Fouquet V von Stockalberg II Charlou II Erzinger I Herzig P M Mübe P and
885	Wiedicke M (1993) Metallogenesis in back-arc environments: the Lau Basin example
886	Econ. Geol., 88(8), 2154–2181.
887	
888	Frenzel, G., Muhe, R., and Stoffers, P. (1990). Petrology of the volcanic rocks from the Lau
889	Basin, southwest Pacific. Geol. Jahrb, 92, 395–479.
890	
891	Goh, S. W., Buckley, A. N., Skinner, W. M., Fan, L-J. (2006) An X-ray photoelectron and
892	absorption spectroscopic investigation of the electron structure of cubanite, CuFe ₂ S ₃ ,
893	<i>Phys. Chem. Minerals</i> , 37(6) , 389–405.
894	
895	Goldfarb, M. S., Converse, D. R. Holland, H. D. and Edmond, J. M. (1983) The genesis of hot
896	spring deposits on the East Pacific Rise, 21° N, Econ. Geol. Monogr., 5, 184–197.
897	
898	Greenwood, N. N., and Whitfield, H. J. (1968) Mössbauer effect studies on cubanite (CuFe ₂ S ₃)
899	and related iron sulphides, J. Chem. Soc.: Inorganic, Phys., Theoret., 0, 1697-1699. doi:
900	<u>10.1039/J19680001697</u> .
901	
902	Hannington, M. D., Jonasson, I. R., Herzig, P. M., and Petersen, S. (1995) Physical and chemical
903	processes of seafloor mineralization at mid-ocean ridges. In Seafloor hydrothermal
904	systems: physical, chemical, biological, and geological interactions (eds. S. E. Humphris,
905	R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson), American Geophysical Union,
906	Washington, D. C., pp. 115–157. <u>doi: 10.1029/GM091p0115</u> .

907	
908	Haymon, R. M. (1983) Growth history of hydrothermal black smoker chimneys. Nature, 301 ,
909	695–698.
910	
911	Huston, D. L., Sie, S. H., Suter, G. F., Cooke, D. R., and Both, R. A. (1995). Trace elements in
912	sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I,
913	Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium
914	levels in pyrite; comparison with delta 34 S values and implications for the source of
915	sulfur in volcanogenic hydrothermal systems. <i>Econ. Geol.</i> , 90(5) , 1167–1196.
916	
917	Jenner, G. A., Cawood, P. A., Rautenschlein, M., and White, W. M. (1987). Composition of
918	back-arc basin volcanics. Valu Fa Ridge, Lau Basin: evidence for a slab-derived
010	component in their mentle source. I. Velegnelery Caethering Pag. 32(1.3), 200, 222
919	component in their manne source. J. Voicanology Geothermal Res., 52 (1-5), 209–222.
920	
921	Jonn, S.G., Rouxel, O.J., Craddock, P.K., Engwall, A.M., Boyle, E.A. (2008). Zinc stable
922	isotopes in sealloor hydrothermal vent fluids and chinmeys. Earth. Planet. Sci. Left., $2(0(1, 2), 17, 29)$
923	209(1-2), 17-28.
924	Johnson H. D. Hutnak, M. Driek, D. D. Foy, C. C. Urauvo, J. Cowan, J. D. Nahalak, J. and
925	Fisher C (2000) Earthqueles induced changes in a hydrothermal system on the Juan de
920	Fisher, C. (2000). Earthquake-induced changes in a hydrothermal system on the Juan de
927	ruca mu-ocean nuge. <i>Nature</i> , 407(0001) , 174–177.
920	Johnson I W Oelkers E H and Helgeson H C (1992) SUPCRT92: A software package for
929	calculating the standard molal thermodynamic properties of minerals, gases, aqueous
021	species and reactions from 1 to 5000 bar and 0 to 1000 C. Computers Gaosci. 18(7)
937	species, and reactions from 1 to 5000 bar and 0 to 1000 C. Computers Geosci., $10(7)$, $800_{-0}/7$
932	$0 \mathcal{I} \mathcal{I} \mathcal{I}$
024	Kamenetsky V S Binns B A Gemmell I B Crawford A I Mernagh T P Maas B and
934	Steele D (2001) Parental basaltic melts and fluids in eastern Manus backarc basin:
936	Implications for hydrothermal mineralisation <i>Farth Planet Sci Lett</i> 184(3) 685–702
937	
938	Karsten I.I. Delaney I.R. Rhodes I.M. and Lijas R.A. (1990). Spatial and temporal
939	evolution of magmatic systems beneath the Endeavour Segment Juan de Fuca Ridge:
940	Tectonic and petrologic constraints. J. Geophys. Res.: Solid Earth, 95(B12), 19235–
941	19256.
942	
943	Kawasumi, S. and Chiba, H. (2017) Redox state of seafloor hydrothermal fluids and its effect on
944	sulfide mineralization. Chem. Geol., 451, 25–37.
945	
946	Keith, M. Haase, K. M., Schwarz-Schampera, U., Klemd, R., Petersen, S., and Bach, W. (2014)
947	Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from
948	submarine hydrothermal vents, <i>Geology</i> , 42(8) , 699–702, doi: 10.1130/G35655.1
949	<u> </u>
950	Keith M Hächel F Haase K H Schwarz-Schampera II Klemd R (2016) Trace element
051	systematics of parite from submarine hydrothermal vents. Ore Cool Day, 73 700 745
50I	systemates of pyrite from submarine nyuromerinar vents, Ore Geor. Rev., 12, 120–143.

952	
953	Kristall, B., Nielsen, D., Hannington, M. D., Kelley, D. S., Delaney, J. R. (2011) Chemical
954	microenvironments within sulfide structures from the Mothra Hydrothermal Field:
955	Evidence from high-resolution zoning of trace elements, <i>Chem. Geol.</i> , 290(1–2) , 12–30.
956	
957	Kojima S and Sugaki A (1985) Phase Relations in the Cu-Fe-Zn-S System between 500° and
959	300°C under Hydrothermal Conditions Econ Geal 80 158–171
050	500 C under Hydrothermar Conditions. <i>Leon.</i> Geol., 60 , 150–171.
959	Knowney C. Densking J. Charlesher C. Milheleler E. and Masley M. (1007)
960	Marnhotaetonice, volceniem and hydrothermal activity on the East Desific Disc between
961	21 12' S and 22 40' S. Marine Geophys. Res. 10(4) 287–317
902	21 12 5 and 22 40 5. Marine Geophys. Res., 19(4), 207–517.
964	Langmuir C. Humphris S. Fornari, D. Van Dover, C. Von Damm, K. L. Tivev, M. K.
965	Colodner, D., Charlou, J. –L. Desonie, D., Wilson, C., and Fouquet, Y. (1997).
966	Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37 N on the
967	Mid-Atlantic Ridge. Earth Planetary Sci. Lett., 148(1-2), 69–91.
968	
969	Langmuir, C. H., Bézos, A., Escrig, S., and Parman, S. W. (2006) Chemical systematics and
970	hydrous melting of the mantle in back-arc basins. In Back-Arc Spreading Systems:
971	Geological, Biological, Chemical, and Physical Interactions (eds. D. M. Christie, C. R.
972	Fisher, SM. Lee, and S. Givens) Geophysical Monograph Series, vol. 166, American
973	Geophysical Union, Washington, DC. pp. 87–146.
974	
975	Layne, G., Tivey, M. K., and Humphris, S. E. (2005) Trace metal concentrations in common
976	sulfide minerals using SIMS. Fifteenth Annual V. M. Goldschmidt Conference Abstracts,
977	A33.
978	
979	Lilley, M. D., Butterfield, D. A., Lupton, J. E. and Olson, E. J., (2003) Magmatic events can
980	produce rapid changes in hydrothermal vent chemistry. <i>Nature</i> . 422, 8/8–881.
981	Luck L and Bray D M (2002) Phase relations and the electrochemical determination of sulfur
982	fugacity for selected reactions in the Cu-Fe-S and Fe-S systems at 1 bar and temperatures
984	hetween 185 and 460 °C Chem Gool 192 227–248
985	between 105 and 400°C. Chem. Geol. 172. 227°240.
986	Martinez, F. and Taylor, B. (2002) Mantle wedge control on back-arc crustal accretion. <i>Nature</i> .
987	416 , 417-420.
988	
989	Maslennikov, V. V., Maslennikova, S. P., Large, R. R., and Danyushevsky, L. V. (2009) Study
990	of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-
991	hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively
992	coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol., 104(8), 1111–1141.
993	
994	McDermott, J. M., Ono, S., Tivey, M. K., Seewald, J. S., Shanks III, W. C., Solow, A. R. (2015)
995	Identification of sulfur sources and isotopic equilibria in submarine hot-springs using
996	multiple sulfur isotopes. Geochim. Cosmochim, Acta, 160(2015), 169-187.

997	
998 999	McDermott, J. M., Sylva, S. P., Ono, S., German, C. R., Seewald, J. S., (2018) Geochemistry of fluids from Earth's deepest ridge-crest hot-springs: Piccard hydrothermal field, Mid-
1000 1001	Cayman Rise. Geochim. Cosmochim. Acta, 228(1), 95–118.
1002 1003 1004	McIntire, W. L. (1963) Trace element partition coefficients—a review of theory and applications to geology. <i>Geochim. Cosmochim. Acta</i> , 27 , 1209–1264.
1005 1006 1007	Metz, S. and Trefry, J. H. (2000). Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. <i>Geochim. Cosmochim. Acta</i> , 64 (13), 2267–2279.
1008	Mottl M I Seewald I S Wheat C G Tivey M K Michael P I Proskurowski G
1009	McCollom M Reeves E Sharkey S You C -F Chan L -H and Pichler T (2011)
1010	Chemistry of hot springs along the Eastern Lau Spreading Center Geochim Cosmochim
1011	Acta, 75(4) , 1013–1038.
1012	O'Grady, K. M. (2001) The Geochemical Controls on Hydrothermal Vent Fluid
1013	Chemistry from Two Areas on the Ultrafast-Spreading Southern East Pacific Rise.
1015	Master's thesis, University of New Hampshire.
1016	
1017	Ono, S., Shanks, W.C., Rouxel, O.J., Rumble, D. (2007) S-33 constraints on the seawater sulfate
1018	contribution in modern seafloor hydrothermal vent sulfides. Geochim. Cosmochim. Acta,
1019	71(5) , 1170–1182.
1020	Desires C. L. Dettrich, D. A. D. Mansher, D. L. Handerson, C. M. D. sten der Lean, C. (2006)
1021 1022 1023	Copper oxidation state in chalcopyrite: Mixed Cu d ⁹ and d ¹⁰ characteristics. <i>Geochim.</i> <i>Cosmochim. Acta</i> , 70(18) , 4634–4642.
1024	
1025	Pokrovski, G. S., Roux, J., Ferlat, G., Jonchiere, R., Seitsonen, A. P., Vuilleumier, R., Hazemann,
1026	J-L. (2013) Silver in geological fluids from in situ X-ray absorption spectroscopy and first principles molecular dynamics. <i>Caseshim Cosmochim</i> , Acta, 106 , 501, 523
1027	Inst-principles molecular dynamics. Geochim. Cosmochim. Acia, 100, 501–525.
1029	Reeves, E. P., Seewald, J. S., Saccocia, P., Bach, W., Craddock, P. R., Shanks, W. C., Sylva. S.,
1030	Walsh, E., Pichler, T., and Rosner, M. (2011) Geochemistry of hydrothermal fluids from
1031	the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin,
1032	Papua New Guinea. Geochim. Cosmochim. Acta, 75(4), 1088–1123.
1033	
1034	Rouxel, O. J., Fouquet, Y., Ludden, J. H. (2004) Copper Isotope Systematics of the Lucky Strike,
1035	Rainbow, and Logatchev Sea-Floor Hydrothermal Fields on the Mid-Atlantic Ridge,
1036	<i>Econ. Geol.</i> , 99(3) , 585–600. doi: 10.2113/gsecongeo.99.3.585.
1037	
1038 1039	Rouxel, O., Shanks III, W.C., Bach, W., Edwards, K.J. (2008). Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N. <i>Chem. Geol.</i> , 252(3-4) :

1040 1041	214–227.
1042 1043 1044 1045	Ryan, C. G. (2001). Developments in dynamic analysis for quantitative PIXE true elemental imaging. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 181(1), 170–179.
1045 1046 1047 1048	Sack, R. O., and Ebel, D. S. (2006) Thermochemistry of sulfide mineral solutions. In <i>Reviews in mineralogy and geochemistry</i> , 61(1) (ed. D.J. Vaughan). Geochemical Society and Mineralogical Society of America. pp. 265–364.
1049 1050 1051 1052 1053	 Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., M. de Caravalho, L., Seifert, R. (2007) Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, (15°N on the Mid-Atlantic Ridge): Temporal and spatial investigation. <i>Chem. Geol.</i>, 242, 1–21.
1054 1055 1056 1057 1058	Schmidt, K., Garbe-Schönberg, D., Koschinsky, A., Strauss, H., Jost, C. L., Klevenz, V., Königer, P. (2011) Fluid elemental and stable isotope composition of the Niebelungen hydrothermal field, (8°18'S, Mid-Atlantic Ridge): Constraints on fluid-rock interaction in heterogeneous lithosphere. <i>Chem. Geol.</i> , 230(1-2), 1–18.
1059 1060 1061 1062 1063 1064	Seewald, J. S. (2017) Chemical composition of hydrothermal fluids collected on RV/Roger Revelle RR1507 in the Eastern Lau Spreading Center and Valu Fa Ridge, April-May 2015 (Functional microbial dynamics of vent deposits project) Biological and Chemical Oceanography Data Management Office (BCO-DMO) Dataset version 2017-01-13 http://lod.bco-dmo.org/id/dataset/674750 (accessed, May 2017).
1065 1066 1067 1068	Seewald, J. S., and Seyfried, W. E. (1990). The effect of temperature on metal mobility in subseafloor hydrothermal systems: constraints from basalt alteration experiments. <i>Earth</i> <i>Planetary Sci. Lett.</i> , 101(2–4) , 388–403.
1070 1071 1072 1073	Seewald, J. S., Doherty, K. W., Hammar, T. R., and Liberatore, S. P. (2002) A new gas-tight isobaric sampler for hydrothermal fluids. <i>Deep Sea Research Part I: Oceanographic</i> <i>Research Papers</i> , 49 (1), pp. 189–196.
1074 1075 1076 1077 1078	Seewald, J. S., Cruse, A., Saccocia, P. (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. <i>Earth Planteary Lett.</i> , 216(4) , 575–590. doi: 10.1016/S0012- 821X(03)00543-0.
1078 1079 1080 1081 1082	Seyfried, W. E. and Ding, K. (1993) The effect of redox on the relative solubilities of copper and iron in Cl-bearing aqueous fluids at elevated temperatures and pressures: An experimental study with application to subseafloor hydrothermal systems. <i>Geochim. Cosmochim. Acta</i> , 57 (9), 1905–1917.
1083 1084 1085	Seyfried, W. E., Seewald, J. S., Berndt, M. E., Ding, K., and Foustoukos, D. I. (2003). Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge:

1086 1087	Geochemical controls in the aftermath of June 1999 seismic events. J. Geophys. Res.: Solid Earth, 108 (B9).
1088 1089 1090 1091 1092	Shock, E. L., Sassani, D. C., Willis, M., and Sverjensky, D. A. (1997). Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. <i>Geochim. Cosmochim. Acta</i> , 61 (5), 907–950.
1093 1094 1095 1096	Sinton, J. M., Ford, L. L., Chappell, B., and McCullouch, M. T. (2003). Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea. J. Petrology, 44(1), 159–195.
1097 1098 1099 1100	Sverjensky, D. A., Shock, E. L., and Helgeson, H. C. (1997). Prediction of the thermodynamic properties of aqueous metal complexes to 1000 C and 5 kb. <i>Geochim. Cosmochim. Acta</i> , 61(7), 1359–1412.
1101 1102 1103 1104 1105 1106	Takai, K., Nunoura, T., Ishibashi, JI., Lupton, J., Suzuki, R., Hamasaki, H., Ueno, Y., Kawagucci, S., Gamo, T., Suzuki, Y., Hirayama, H., and Horikoshi, K. (2008) Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin. J. <i>Geophys. Res.</i> , 113 , <i>G02031</i> , <i>doi</i> :10.1029/2007JG000636.
1107 1108 1109 1110	Tivey, M. K. (1995) The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: Insights from modeling transport and reaction. <i>Geochim. Cosmochim. Acta.</i> , 59 (10), 1933–1949.
1111 1112 1113 1114 1115 1116	Tivey, M.K. (2004) Environmental conditions within active seafloor vent structures: sensitivity to vent fluid composition and fluid flow. In Wilcock, W., Cary, C., DeLong, E., Kelley, D., Baross, J. (Eds.) Subseafloor Biosphere at Mid-Ocean Ridges, Geophysical Monograph Series, No. 144. American Geophysical Union, Washington, DC, pp. 137– 152.
1117 1118 1119 1120	Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D., and Rona, P. A. (1995). Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. <i>J. Geophys. Res.</i> , 100(B7) , 12527–12555.
1121 1122 1123 1124	Tivey, M. K., Stakes, D. S., Cook, T. L., Hannington, M. D., and Petersen, S. (1999) A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: Results of a petrologic and geochemical study. J. Geophys. Res: Solid Earth (1978–2012), 104(B10), 22859–22883.
1125 1126 1127 1128	Trefry, J. H., Butterfield, D. B., Metz, S., Massoth, G. J., Trocine, R. P., and Feely R. A. (1994) Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge. J. Geophys. Res.99, 4925–4935.
1129 1130 1131	Tunaboylu, K., Schwarzenbach, G., 1970. Die Löslichkeit von Indiumsulfid. <i>Chimia</i> (Switzerland) 24 , 424–427.

1132	
1133 1134	Vallier, T. L., Jenner, G. A., Frey, F. A., Gill, J. B., Davis, A. S., Volpe, A. M., Hawkins, J. W., Morris, J.D., Cawood, P.A., Morton, J. J., Scholl, D.W., Bautenschlein, M. White
1134	Williams W M Stevenson A I White L D (1991) Subalkaline andesite from Valu Fa
1136	Ridge, a back-arc spreading center in southern Lau Basin: petrogenesis, comparative
1137	chemistry, and tectonic implications. <i>Chem. Geol.</i> , 91(3) , 227–256.
1138	
1139	Von Damm, K. L., Edmond, J. M., Grant, B., Measures, C. L. Walden, B., and Weiss, R. F.
1140	(1985). Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise.
1141	Geochim. Cosmochim. Acta, 49(11) , 2197–2220.
1142	
1143	Wohlgemuth-Ueberwasser, C. C., Viljoen, F., Petersen, S., and Vorster, C. (2015). Distribution
1144	and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ
1145	LA-ICP-MS study. Geochim. Cosmochim. Acta, 159, 16–41.
1146	
1147	Wood, S. A. and Samson, I. M. (2006) The aqueous geochemistry of gallium, germanium,
1148	indium, and scandium. <i>Ore Geol. Rev.</i> , 28 (1), 57–102.
1149	
1150	Wolery, T. J. (1992) EO3/6: A software package for geochemical modeling of aqueous systems:
1151	package overview and installation guide (version 7.0). Livermore, CA: Lawrence
1152	Livermore National Laboratory.
1153	
1154	
1155	Figure 1. (A) Schematic representation of a black smoker chimney showing massive sulfide chimney
1156	lining in contact with hydrothermal vent fluids (J. Doucette, WHOI Graphic Services, after Haymon,
1157	1983). (B) Photomicrograph of sample J2-216-16-R1 (Fenway, F3) showing scale of SIMS spots.
1158	Photomicrograph was taken following SIMS measurements and removal of gold coating. The fluid
1159	conduit adjascent to the chimney lining has been filled with epoxy.
1160	
1161	Figure 2. Mass vs. secondary ion intensity for the relevant mass intervals containing 59 Co ⁺ . 60 Ni ⁺ . 69 Ga ⁺ .
1162	⁶³ Cu ¹⁶ O ⁺ , ¹⁰⁹ Ag ⁺ , and ¹¹⁵ In ⁺ . Peaks appear as measured in chalcopyrite from the innermost lining of black
1163	smoker chimney sample Alv3299-6-1 from the 17°34'S vent field on the southern East Pacific Rise. Mass
1164	resolving power is \sim 10.000. Actual masses of target ions and those of potential interferences are labeled
1165	as calculated from tables in Berglund and Wieser (2011).

1166

1167	Figure 3. SIMS calibration curves obtained by plotting trace element concentrations of picked
1168	chalcopyrite grains measured by inductively coupled plasma mass spectrometry (ICP-MS) vs. secondary
1169	ion ratios measured by secondary ion mass spectrometry (SIMS)of the same samples. Samples used in
1170	forming SIMS calibration curves marked in black. Additional measured samples not used in forming SIMS
1171	calibration curves marked in white. Also shown are linear regression lines used in calculations (solid) and
1172	95% confidence intervals (stippled).
1173	
1174	Figure 4. SIMS measurements of Co and Ni on a log vs. log scale. Selected samples are labeled with
1175	molar Cu:Fe ratios obtained by electron microprobe analyses. Uncertainties in SIMS count ratios reflect
1176	standard errors (1 σ) of multiple SIMS spots on the same sample. ELSC = Eastern Lau Spreading Center;
1177	VFR = Valu Fa Ridge; EMB = Eastern Manus Basin; EPR = East Pacific Rise; JdF = Juan de Fuca Ridge; MCR
1178	= Mid-Cayman Rise.
1179	
1180	Figure 5. Cu:Fe molar ratio in black smoker chimney linings measured by electron microprobe (EMPA) vs.
1181	concentrations of Co and Ni in black in the same samples measured by SIMS. Also shown are regression
1182	lines calculated with (solid) and without (stippled) inclusion of MCR sample J2-613-16-R1. Right-hand
1183	plots are blowups of left-hand plots. EPR = East Pacific Rise; JdF = Juan de Fuca Ridge; MCR = Mid-
1184	Cayman Rise. Uncertainties in SIMS measurements reflect standard errors (1 σ) of multiple SIMS spots on
1185	the same sample.
1186	
1187	Figure 6. Vent fluid temperatures, pH, and metal concentrations of seafloor hydrothermal vent fluids
1188	obtained from scientific literature and results of this paper. Vent fluids that are samples with black

1189 smoker chimney linings analyzed by SIMS in this paper are identified with red dots.

1190 References for: Lau Basin: Mottl et al. (2011); Seewald (2017); Evans et al., (2017); Manus Basin: 1191 Craddock (2009); Reeves et al. (2011); East Pacific Rise: Von Damm et al. (1985); Juan de Fuca Ridge: 1192 Trefry et al. (1994); Seyfried et al. (2003); Mid-Atlantic Ridge: Metz and Trefry (2000); Douville et al. 1193 (2002); Schmidt et al. (2007); Schmidt et al. (2011); Mid-Cayman Rise (MCR): McDermott et al. (2018). 1194 1195 Figure 7. Trace metal concentrations of seafloor hydrothermal vent fluids obtained from scientific 1196 literature and results of this paper. Vent fluids that are samples with black smoker chimney linings 1197 analyzed by SIMS in this paper are identified with red dots. References for: Lau Basin: Evans (2017); 1198 Manus Basin: Craddock (2009); East Pacific Rise: Von Damm et al. (1985); Juan de Fuca Ridge: Trefry et al.

1199 (1994); Seyfried et al. (2003); Mid-Atlantic Ridge: Metz and Trefry (2000); Douville et al. (2002); Schmidt

1200 et al. (2007); Schmidt et al. (2011); Mid-Cayman Rise (MCR): McDermott et al. (2018).

1201

1202 **Figure 8.** Ratios of free Ag⁺:free Cu⁺ in hydrothermal fluids calculated by EQ3/6 thermodynamic

1203 modeling vs. Ag concentrations in in paired black smoker chimney linings.. ELSC = Eastern Lau Spreading

1204 Center, VFR = Valu Fa Ridge; EMB = Eastern Manus Basin; JdF = Juan de Fuca Ridge; MCR = Mid-Cayman

1205 Rise. Also shown is the best-fit linear regression line (solid) and 95% confidence intervals (stippled).

1206

Figure 9. Hydrothermal fluid pH at 25°C and at *in situ* temperatures (modeled using EQ3/6) vs. Ga, Ag,
and In concentrations in in paired black smoker chimney linings. ELSC = Eastern Lau Spreading Center,
VFR = Valu Fa Ridge; EMB = Eastern Manus Basin; JdF = Juan de Fuca Ridge; MCR = Mid-Cayman Rise.
References for hydrothermal fluid pH are: Eastern Lau Spreading Center and Valu Fa Ridge (Seewald,

1211 2017); Manus Basin: Craddock (2009), Reeves et al. (2011); Sully99 vent fluid from the Main Endeavour

1212 Field: Seyfried et al. (2003); BB5 vent fluid from the Beebe / Piccard vent field: McDermott et al. (2018).

1213 Uncertainties in SIMS count ratios reflect standard errors (1σ) of multiple SIMS spots on the same1214 sample.

1215

Figure 10. Thermodynamic stability diagrams from Wood and Samson (2006) showing pH vs. the log concentration of aqueous Ga complexes contributing to the solubility of GaOOH at 300°C at vapor saturated pressures using the thermodynamic data of Benézéth et al. (1997) and pH vs. the log concentration of aqueous In complexes contributing to the solubility of In₂S₃ at 20°C and 1M NaClO₄, total S = 0.01M using thermodynamic data from Tunaboylu and Schwarzenbach (1970). Red lines highlight the activities of free ions, Ga³⁺ and In³⁺, as a function of pH.

1222

1223 Figure 11. Free ion activity ratios {Co²⁺ }:{ Fe²⁺} and {Ni²⁺ }:{ Fe²⁺} in hydrothermal fluids as calculated by 1224 EQ3/6 vs. Co and Ni concentrations in in paired black smoker chimney linings.. Also shown are total 1225 Co:Fe and Ni:Fe concentration ratios vs. Co and Ni concentrations in in paired black smoker chimney 1226 linings. X-axes cross at SIMS detection limits. ELSC = Eastern Lau Spreading Center, VFR = Valu Fa Ridge; 1227 EMB = Eastern Manus Basin; JdF = Juan de Fuca Ridge; MCR = Mid-Cayman Rise. Fluid data sources are: 1228 Eastern Lau Spreading Center (Seewald, 2017; this paper), Manus Basin (Craddock, 2009), Main 1229 Endeavour Field (Seyfried et al., 2003), Mid-Cayman Rise (McDermott et al., 2018). 1230 1231 Supplementary Figure S1. Hydrothermal fluid pH (at 25°C) vs. Ag and Cu concentrations based on 1232 scientific literature and results of this paper. Fluids with chimney pairs analyzed in this paper are 1233 identified with red dots. ELSC = Eastern Lau Spreading Center, VFR = Valu Fa Ridge; EMB = Eastern

1234 Manus Basin; JdF = Juan de Fuca Ridge; MCR = Mid-Cayman Rise. References for: Lau Basin: Mottl et al.

- 1235 (2011); Seewald (2017); Evans et al. (2017); Manus Basin: Craddock (2009); Reeves et al. (2011); East
- 1236 Pacific Rise: Von Damm et al. (1985); Juan de Fuca Ridge: Trefry et al. (1994); Seyfried et al. (2003); Mid-

Atlantic Ridge: Metz and Trefry (2000); Douville et al. (2002); Schmidt et al. (2007); Schmidt et al. (2011);
Mid-Cayman Rise (MCR): McDermott et al. (2018).

1239

Supplementary Figure S2. Free ion activity ratios {Ga³⁺ }:{ Fe³⁺} and {In³⁺ }:{ Fe³⁺} in hydrothermal fluids
from the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) as calculated by EQ3/6 vs. Ga and
In concentrations in in paired black smoker chimney linings. Also shown are total Ge:Fe and In:Fe
concentration ratios vs. Ga and In concentrations in in paired black smoker chimney linings.

1244

1245 **Supplementary Figure S3.** Seafloor hydrothermal fluid temperatures, pH (at 25°C), and chlorinity vs.

1246 major and trace metal concentrations obtained from scientific literature and results of this paper. Fluids

1247 with chimney pairs analyzed in this paper by SIMS are indicated with red dots. BAB = Back-Arc Basins;

1248 EPR = East Pacific Rise; JdF = Juan de Fuca Ridge; MAR,B = basalt-hosted Mid-Atlantic Ridge (Snakepit,

1249 TAG, Logatchev); MAR,U = ultramafic-hosted Mid-Atlantic Ridge (Rainbow); MCR = Mid-Cayman Rise.

1250 References for: Lau Basin: Mottl et al. (2011); Seewald (2017); Evans et al. (2017); Manus Basin:

1251 Craddock (2009); Reeves et al. (2011); East Pacific Rise: Von Damm et al. (1985); Juan de Fuca Ridge:

1252 Trefry et al. (1994); Seyfried et al. (2003); Mid-Atlantic Ridge: Metz and Trefry (2000); Douville et al.

1253 (2002); Schmidt et al. (2007); Schmidt et al. (2011); Mid-Cayman Rise (MCR): McDermott et al. (2018).

1254 **Supplementary Figure S4.** Seafloor hydrothermal fluid temperatures, pH (at 25°C), and chlorinity vs.

1255 trace metal concentrations obtained from scientific literature and results of this paper. Fluids with

1256 chimney pairs analyzed in this paper by SIMS are indicated with red dots. BAB = Back-Arc Basins; EPR =

1257 East Pacific Rise; JdF = Juan de Fuca Ridge; MAR,B = basalt-hosted Mid-Atlantic Ridge (Snakepit, TAG,

1258 Logatchev); MAR,U = ultramafic-hosted Mid-Atlantic Ridge (Rainbow); MCR = Mid-Cayman Rise.

1259 References for: Lau Basin: Mottl et al. (2011); Seewald (2017); Evans et al. (2017); Manus Basin:

1260 Craddock (2009); Reeves et al. (2011); East Pacific Rise: Von Damm et al. (1985); Juan de Fuca Ridge:

- 1261 Trefry et al. (1994); Seyfried et al. (2003); Mid-Atlantic Ridge: Metz and Trefry (2000); Douville et al.
- 1262 (2002); Schmidt et al. (2007); Schmidt et al. (2011); Mid-Cayman Rise (MCR): McDermott et al. (2018).
- 1263
- 1264

Figure 1. (A) Schematic representation of a black smoker chimney showing massive sulfide chimney lining in contact with hydrothermal vent fluids (J. Doucette, WHOI Graphic Services, after Haymon, 1983). (B) Photomicrograph of sample J2-216-16-R1 (Fenway, F3) showing scale of SIMS spots. Photomicrograph was taken following SIMS measurements and removal of gold coating. The fluid conduit adjascent to the chimney lining has been filled with epoxy.

Figure 2. Mass vs. secondary ion intensity for the relevant mass intervals containing ⁵⁹Co⁺, ⁶⁰Ni⁺, ⁶⁹Ga⁺, ⁶³Cu¹⁶O⁺, ¹⁰⁹Ag⁺, and ¹¹⁵In⁺. Peaks appear as measured in chalcopyrite from the innermost lining of black smoker chimney sample Alv3299-6-1 from the 17°34'S vent field on the southern East Pacific Rise. Mass resolving power is ~10,000. Actual masses of target ions and those of potential interferences are labeled as calculated from tables in Berglund and Wieser (2011).

Figure 3. SIMS calibration curves obtained by plotting trace element concentrations of picked chalcopyrite grains measured by inductively coupled plasma mass spectrometry (ICP-MS) vs. secondary ion ratios measured by secondary ion mass spectrometry (SIMS) of the same samples. Samples used in forming SIMS calibration curves marked in black. Additional measured samples not used in forming SIMS calibration curves marked in white. Also shown are linear regression lines used in calculations (solid) and 95% confidence intervals (stippled).

SIMS Callibration Curve for Ag

Figure 4. SIMS measurements of Co and Ni on a log vs. log scale. Selected samples are labeled with molar Cu:Fe ratios obtained by electron microprobe analyses. Uncertainties in SIMS count ratios reflect standard errors (1σ) of multiple SIMS spots on the same sample. ELSC = Eastern Lau Spreading Center; VFR = Valu Fa Ridge; EMB = Eastern Manus Basin; EPR = East Pacific Rise; JdF = Juan de Fuca Ridge; MCR = Mid-Cayman Rise.

Figure 5. Cu:Fe molar ratio in black smoker chimney linings measured by electron microprobe (EMPA) vs. concentrations of Co and Ni in black in the same samples measured by SIMS. Also shown are regression lines calculated with (solid) and without (stippled) inclusion of MCR sample J2-613-16-R1. Right-hand plots are blowups of left-hand plots. EPR = East Pacific Rise; JdF = Juan de Fuca Ridge; MCR = Mid-Cayman Rise. Uncertainties in SIMS measurements reflect standard errors (1σ) of multiple SIMS spots on the same sample.

Figure 6.Vent fluid temperatures, pH, and metal concentrations of seafloor hydrothermal vent fluids obtained from scientific literature and results of this paper. Vent fluids that are samples with black smoker chimney linings analyzed by SIMS in this paper are identified with red dots. References for: Lau Basin: Mottl et al. (2011); Seewald (2017); Evans et al., (2017); Manus Basin: Craddock (2009); Reeves et al. (2011); East Pacific Rise: Von Damm et al. (1985); Juan de Fuca Ridge: Trefry et al. (1994); Seyfried et al. (2003); Mid-Atlantic Ridge: Metz and Trefry (2000) ; Douville et al. (2002); Schmidt et al. (2007); Schmidt et al. (2011); Mid-Cayman Rise (MCR): McDermott et al. (2018).

Figure 7. Trace metal concentrations of seafloor hydrothermal vent fluids obtained from scientific literature and results of this paper. Vent fluids that are samples with black smoker chimney linings analyzed by SIMS in this paper are identified with red dots. References for: Lau Basin: Evans (2017); Manus Basin: Craddock (2009); East Pacific Rise: Von Damm et al. (1985); Juan de Fuca Ridge: Trefry et al. (1994); Seyfried et al. (2003); Mid-Atlantic Ridge: Metz and Trefry (2000); Douville et al. (2002); Schmidt et al. (2011); Mid-Cayman Rise (MCR): McDermott et al. (2018).

Figure 8. Ratios of free Ag⁺:free Cu⁺ in hydrothermal fluids calculated by EQ3/6 thermodynamic modeling vs. Ag concentrations in in paired black smoker chimney linings.. ELSC = Eastern Lau Spreading Center, VFR = Valu Fa Ridge; EMB = Eastern Manus Basin; JdF = Juan de Fuca Ridge; MCR = Mid-Cayman Rise. Also shown is the best-fit linear regression line (solid) and 95% confidence intervals (stippled).

Figure 9. Hydrothermal fluid pH at 25°C and at *in situ* temperatures (modeled using EQ3/6) vs. Ga, Ag, and In concentrations in in paired black smoker chimney linings. ELSC = Eastern Lau Spreading Center, VFR = Valu Fa Ridge; EMB = Eastern Manus Basin; JdF = Juan de Fuca Ridge; MCR = Mid-Cayman Rise. References for hydrothermal fluid pH are: Eastern Lau Spreading Center and Valu Fa Ridge (Seewald, 2017); Manus Basin: Craddock (2009), Reeves et al. (2011); Sully99 vent fluid from the Main Endeavour Field: Seyfried et al.(2003); BB5 vent fluid from the Beebe / Piccard vent field: McDermott et al. (2018). Uncertainties in SIMS count ratios reflect standard errors (1 σ) of multiple SIMS spots on the same sample.

Figure 10. Thermodynamic stability diagrams from Wood and Samson (2006) showing pH vs. the log concentration of aqueous Ga complexes contributing to the solubility of GaOOH at 300°C at vapor saturated pressures using the thermodynamic data of Benézéth et al. (1997) and pH vs. the log concentration of aqueous In complexes contributing to the solubility of In_2S_3 at 20°C and 1M NaClO₄, total S = 0.01M using thermodynamic data from Tunaboylu and Schwarzenbach (1970). Red lines highlight the activities of free ions, Ga³⁺ and In³⁺, as a function of pH.

Figure 11. Free ion activity ratios {Co²⁺ }:{ Fe²⁺} and {Ni²⁺ }:{ Fe²⁺} in hydrothermal fluids as calculated by EQ3/6 vs. Co and Ni concentrations in in paired black smoker chimney linings.. Also shown are total Co:Fe and Ni:Fe concentration ratios vs. Co and Ni concentrations in in paired black smoker chimney linings. X-axes cross at SIMS detection limits. ELSC = Eastern Lau Spreading Center, VFR = Valu Fa Ridge; EMB = Eastern Manus Basin; JdF = Juan de Fuca Ridge; MCR = Mid-Cayman Rise. Fluid data sources are: Eastern Lau Spreading Center (Seewald, 2017; this paper), Manus Basin (Craddock,2009), Main Endeavour Field (Seyfried et al.,2003), Mid-Cayman Rise (McDermott et al., 2018).

Table 1.

Vent Fluid and Black Smoker Chimney Sample Information. Samples in bold were used to generate callibration curves for secondary ion mass spectrometry (SIMS). References for lithology are: (a) Krasnov et al. (1997); (b) Karsten et al. (1990); (c) Langmuir et al. (1997); (d) Elthon et al. (1995); (e) Sinton et al. (2003); (f) Binns and Scott (1993); Kamenetsky et al. (2001); Sinton et al. (2003); (g) Jenner et al. (1987); Frenzel et al. (1990); Vallier et al. (1991); Fouquet et al. (1993); Martinez and Taylor (2002); Langmuir et al. (2006); Bézos et al. (2009); Escrig et al. (2009). References for fluid chemistry are: (h) O'Grady (2001); (i) Seyfried et al. (2003); (j) McDermott et al. (2018); (k) Reeves et al. (2011); (l) Mottl et al. (2011); (m) Seewald (2017); (n) This Paper. Data from this paper are underlined. E-MORB = enriched mid-ocean ridge basalt; cp = chalcopyrite; cb = cubanite; cp/wz = intergrown chalcopyrite and wurtzite; cp/py = intergrown chalcopyrite and pyrite; mm = mmol/kg vent fluid; µm = µmol/kg vent fluid; nm = nmol/kg vent fluid.

Region, Lithology		Chimney	Lining	Vent		Temp.	рН	Cl	H_2S	Fe	Cu	Со	Ni	Ga	Ag	In
Vent	Year	Sample	Mineral	Fluid		(°C)	(25°C)	mm	mm	μm	μm	nm	nm	nm	nm	nm
Field																
Southern	East Pacif	ic Rise, basalt ^a														
17°34'S	1998	Alv3299-6-1	ср	Hobbes												
17°37'S	1998	Alv3288-5-1a	ср	Simon		337	3.4	751	3.5	5300	51					
17°37'S	1998	Alv3296-2-2a	ср	Maggie												
17°37'S	1998	Alv3296-3	ср	Wally												
17°37'S	1998	Alv3296-5-1a	ср	Homer												
Juan de Fu	uca Ridge	, basalt ^b														
MEF	1987	Alv1931	ср	none												
MEF	1999	Alv3474-3-1	ср	Sully99	h	379	3.6	39	20	400	12	100	2000		4	
MEF	1999	Alv3480-4	ср	none												
Mid-Atlan	tic Ridge,	E-MORB ^c														
Lucky Strike	1994	DV1-5B	ср	none												
Mid-Caym	ian Rise, l	basalt ^d														
Beebe / I	2013	J2-613-16-R1	cb	BB5	i	395	3	351	0.01	6500	172	1000				
Manus Sp	reading C	Center, basalt ^e														
Vienna V	2006	J2-207-1-R1	cp/wz	VW1	j	282	4.4	691	1.4	159	4	45			38	
Eastern M	anus Bas	in (PACMANUS), fe	elsic ^f													
Fenway	2006	J2-210-7-R2	ср	none												
Fenway	2006	J2-216-16-R1	ср	F3	j	358	2.7	562	18.8	12950	138	517			290	
Satanic N	2006	J2-214-3-R1	ср	SM3	j	288	2.5	503	10.2	1298	140	10			75	
Roman R	2006	J2-208-1-R1	ср	RMR1	j	314	2.3	632	7.5	6731	165	234			720	
Roger's F	2006	J2-213-6-R1	ср	RGR1	j	320	2.7	648	3.6	4610	213	29			223	
Eastern M	anus Bas	in (Susu Knolls), fe	lsic ^f													
Suzette	2006	J2-217-2-R1	ср	SZ1	j	303	3.8	626	1.8	720	53	230			35	
Suzette	2006	J2-217-10-R1	ср	SZ2	j	274	3.6	684	1.8	880	27	101			60	
Suzette	2006	J2-219-2-R1	ср	none												
North Su	2006	12-223-1-R1	ср	NS3	j	300	3.4	673	3.4	2390	108	1003			52	
North Su	2006	12-227-10-R1	ср	none												
Fastern La	u Spread	ing Center, felsic ^g	•													
Tahi Moa	2009	12-450-3-R1	cp/wz	TMo5	k,m	310	3.7	555	3.3	278	6	115	361	2	26	
	2005	J2 450 5 R1	να/α2	A10	k,m	317	3.9	543	3.9	168	<u>u</u> 10	80	108	<u>د</u> 10	<u>20</u> 14	
	2005	J2 449 6 R1	cp/wz	A11	k,m	306	4.0	552	2.7	139	<u>10</u> 9	73	178	<u></u> 6	<u>+</u> 6	
	2005	J2 445 5 R1	cp/wz	A16	l,m	300	4.0	546	3.7	<u>135</u> 67	<u>-</u> 1	98	200	<u> </u>	<u>0</u>	40
Valu Ea Rid	dae felsi	,g								<u>07</u>	프	<u></u>	200	<u>02</u>	<u>u</u>	<u>+0</u>
	2009	ן <u>ט_</u> ממכ_מ_סכ	cp/nv	TM11	k,m	315	3.8	653	2.8	19/	20	06	603	F	10	
	2015	JZ-44Z-4-RZ	cn/wz	TM15	l,m	269	39	598	2.0	104	20	50	<u>075</u>	<u>0</u>	19	
Maripar	2009	JZ-013-4-NZ	(n	ΜΔ۹	k,m	338	2.3	541	89	1/1/7	200	201	402	110	66	
Maripor	2015	JZ-437-3-KZ	47 CD	MA15	l,m	354	3.0	557	3.1	<u>1414/</u> 12/6/	<u>300</u> 229	<u>201</u> 261	<u>402</u> 215	<u>110</u> 175	<u>00</u> 56	۵л
		JZ-01/-#-I\Z								12404	230	201	212	<u> 1/ J</u>	30	<u> </u>

mm = mmol/kg; µm = µmol/kg; nm = nmol/kg; E-MORB = enriched mid-ocean ridge basalt; cp = chalcopyrite; cb = cubanite; cp/wz = intergrown chalcopyrite and wurtzite; cp/py = intergrown chalcopyrite and pyrite. References for lithology are: (a) Krasnov et al. (1997); (b) Karsten et al. (1990); (c) Langmuir et al. (1997); (d) Elthon et al. (1995); (e) Sinton et al. (2003); (f) Binns and Scott (1993); Kamenetsky et al. (2001); Sinton et al. (2003); (g) Jenner et al. (1987); Frenzel et al. (1990); Vallier et al. (1991); Fouquet et al. (1993); Martinez and Taylor (2002); Langmuir et al. (2006); Bézos et al. (2009); Escrig et al. (2009). References for fluid chemistry are: (h) O'Grady (2001); (i) Seyfried et al. (2003); (j) McDermott et al. (2018); (k) Reeves et al. (2011); (l) Mottl et al. (2011); (m) Seewald (2017); (n) This Paper. Data from this paper are underlined. Samples in bold were used to generate callibration curves for secondary ion mass spectrometry (SIMS).

Table 2.

Machine settings, typical secondary ion intensities, and associated errors for secondary ion mass spectrometry (SIMS) analyses of Co, Ni, Ga, Ag, and In in chalcopyrite. cps = counts per second.

	•
Source	duoplasmatron O ₂ -
Primary Beam Current	10 nA
Secondary Accelerating Voltage	10 kV
Energy Offset	none
Field Aperture	22 x 22 μm
Raster Area	20 x 20 μm
Spot Diameter	40 µm
Mass Resolving Power	~10,000
Number of Cycles	10
Pre-sputter time	300 s
Integration Time, Trace elements and background	10 s
Integration Time (63 Cu 16 O ⁺ , 54 Fe 16 O+, 64 Zn 16 O+)	5 s
Secondary Ion Intensity on ⁶³ Cu ¹⁶ O ⁺ (1000 cps)	5 to 10
Relative Standard Deviation of Ion Intensity on ⁶³ Cu ¹⁶ O ⁺	10%
Counting Errors on ⁶³ Cu ¹⁶ O ⁺ (%)	0.50%
Secondary Ion Intensity on background mass 54.7 (cps)	< 0.1
Detection Limit (background + 3 × standard deviation)	0.25 cps (5×10 ⁻⁵ cps / ⁶³ Cu ¹⁶ O ⁺ cps)
Determination Limit (background + 10 × standard deviation)	0.6 cps (1.2×10 ⁻⁴ cps / ⁶³ Cu ¹⁶ O ⁺ cps)

Table 3.

Inputs (vent fluid temperature, pH (at 25°C), and major element concentrations) and outputs (in situ pH, fO2, and fS2) of EQ3/6 thermodynamic modeling for vent fluid pairs of black smoker chimney linings analyzed by SIMS. Data for vent fluids from the Eastern Lau Spreading Center and Valu Fa Ridge are from Seewald (2017), Evans et al. (2017), and this paper. Data for vent fluids in the Manus Basin are from Craddock (2009) and Reeves et al. (2011), data for fluid Sully99 from the Main Endeavour Field are from Seyfried et al. (2003), and data for fluid BB5 from the Beebe / Piccard vent fluid are from McDermott (2015). μ M = μ mol / L vent fluid; mm = mmol / kg vent fluid; μ m = μ mol / kg vent fluid.

Vent	Vent Temp. pH		Cl	Na	Са	К	Mn	Fe	H ₂ S	H ₂	pН	log fO ₂	log fS ₂			
Field	Fluid	(°C)	(at 25°C)	mm	mm	mm	mm	μm	μm	mm	μM	in situ (calculated)				
Eastern Lau Spreading C	Center															
Tahi Moana-1	TMo5	310	3.7	555	405	64.4	19.2	400	280	3.3	114	4.6	-31.7	-10.0		
ABE	A10	317	3.9	543	437	40.3	24.6	440	170	3.9	63	4.6	-31.6	-9.5		
ABE	A11	306	4.0	552	446	40.2	24.9	380	140	2.7	114	5.2	-32.1	-10.3		
ABE	A16	300	4.0	552	449	38.4	25.6	260	67	3.0	114	5.2	-32.7	-10.4		
Valu Fa Ridge																
Tu'i Malila	TM11	315	3.8	652	510	48.7	43.0	380	180	2.8	418	4.5	-32.4	-11.1		
Mariner	MA9	338	2.4	470	313	43.4	28.3	5200	12500	8.9	414	3.2	-30.2	-9.3		
Mariner	MA15	354	2.7	521	370	41.7	30.1	4400	12500	10.0	78	3.8	-27.4	-7.3		
Manus Spreading Cente	er															
Vienna Woods	VW1	282	4.4	691	509	80.1	21.2	350	150	1.4	43	5.1	-33.7	-10.9		
Eastern Manus Basin (P	ACMANUS)															
Roger's Ruins	RGR1	320	2.7	648	489	27.1	81.1	3000	6900	3.6	20	4.0	-30.5	-9.4		
Roman Ruins	RMR1	314	2.3	632	482	19.8	81.7	4000	5600	7.5	76	2.8	-29.9	-8.3		
Satanic Mills	SM3	288	2.7	503	398	13.7	68.0	2300	1200	10.2	8	3.0	-31.7	-7.5		
Fenway	F3	358	2.7	562	407	22.3	76.1	3800	11800	18.8	407	3.9	-28.5	-8.1		
Eastern Manus Basin (S	uSu Knolls)															
North Su	NS3	300	3.4	673	541	30.6	65.0	430	2300	3.4	82	3.9	-32.5	-10.0		
Suzette	SZ1	303	3.8	626	508	33.8	48.0	270	750	1.8	12	4.1	-35.7	-10.6		
Suzette	SZ2	274	3.6	684	533	49.4	49.2	370	780	1.8	7	4.0	-33.0	-9.4		
Juan de Fuca Ridge																
Main Endeavour Field	Sully99	379	3.6	39	32	1.9	2.0	90	400	20.0	960	4.3	-28.0	-8.7		
Mid-Cayman Rise																
Beebe/Piccard	BB5	395	3.0	352	313	6.1	11.5	560	6500	12.3	19200	5.0	-28.7	-10.7		

Table 4.

Results of SIMS analyses. n = number of spots on each sample; Gray text indicates value below quantitative determination limit; NM = not measured; bdl = below detection limit; none = no vent fluid pair.

Region				59Co/63Cu16O		60Ni/63Cu16O	69Ga/63Cu16O		109Ag/63Cu16O	115In/63Cu16O		
Vent Field	, Chimney Sample,	Vent Fluid	n	Average ± 1σ	n	Average ± 1σ	n	Average ± 1σ	n	Average ± 1σ	n	Average ± 1σ
Detection Lim	it = 5E-05											
Quantitative [Determination Limi	it = 1.2E-04										
Southern East	Pacific Rise											
17°34'S	Alv3299-6-1	Hobbes	31	3.3E+00 ± 4.1E-01	31	3.0E-01 ± 2.0E-02	31	3.2E-02 ± 5.0E-03	31	2.3E-02 ± 3.2E-03	31	8.1E-01 ± 2.1E-01
17°37'S	Alv3288-5-1a	Simon	7	1.1E+00 ± 1.3E-01	7	3.1E-02 ± 1.3E-03	7	2.4E-02 ± 9.4E-03	7	5.4E-03 ± 6.4E-04	7	3.1E-01 ± 9.5E-02
17°37'S	Alv3296-2-2a	Maggie	14	1.9E+00 ± 2.9E-01	14	1.1E-01 ± 1.6E-02	14	1.4E-02 ± 3.1E-03	14	4.5E-03 ± 1.0E-03	14	1.4E-01 ± 4.9E-02
17°37'S	Alv3296-3	Wally	12	7.4E-01 ± 6.8E-02	12	8.4E-02 ± 3.3E-03	12	7.4E-02 ± 3.1E-02	12	6.6E-02 ± 1.3E-02	12	1.5E+00 ± 4.9E-01
17°37'S	Alv3296-5-1a	Homer	8	2.0E+00 ± 6.7E-02	8	1.2E-01 ± 4.7E-03	8	1.2E-02 ± 1.2E-03	8	4.4E-03 ± 2.3E-04	8	1.5E-01 ± 7.8E-03
Juan de Fuca l	Ridge											
MEF	Alv1931	none	12	6.2E-05 ± 1.4E-05	12	1.9E-04 ± 3.4E-05	12	5.0E-02 ± 1.0E-02	12	5.9E-03 ± 3.2E-04	12	1.4E+00 ± 8.7E-02
MEF	Alv3474-3-1	Sully99	27	8.2E-01 ± 1.2E-01	8	2.3E-02 ± 1.2E-02	8	1.3E-02 ± 7.9E-03	27	3.1E-03 ± 5.6E-04	27	3.2E-01 ± 9.1E-02
MEF	Alv3480-4	none	6	8.0E-01 ± 8.9E-02		NM		NM	6	2.7E-03 ± 4.6E-04	6	3.5E-01 ± 3.4E-02
Mid-Atlantic F	Ridge											
Lucky Strike	DV1-5B	none	5	6.1E-01 ± 7.4E-02		NM		NM	5	4.8E-02 ± 2.1E-02	5	1.7E+00 ± 2.4E-01
Mid-Cayman I	Rise											
Beebe/Piccard	d J2-613-16-R1	BB5	19	1.7E+01 ± 5.8E+00	3	1.3E+00 ± 6.6E-02	3	4.1E-02 ± 1.9E-03	19	3.6E-03 ± 2.2E-03	19	2.2E+00 ± 8.6E-01
Manus Spread	ling Center											
Vienna Wood	s J2-207-1-R1	VW1	88	1.2E-02 ± 6.1E-03	21	5.6E-05 ± 2.0E-05	21	2.3E-02 ± 1.5E-02	88	9.6E-02 ± 1.6E-02	88	1.3E-02 ± 3.7E-02
Eastern Manu	s Basin (PACMANU	JS)										
Fenway	J2-210-7-R2	none	7	7.1E-05 ± 4.2E-05		NM		NM	7	4.3E-03 ± 1.4E-03	7	2.6E+00 ± 9.3E-01
Fenway	J2-216-16-R1	F3	13	3.4E-02 ± 1.3E-02	3	7.1E-04 ± 2.2E-04	3	7.7E-01 ± 8.0E-02	13	8.1E-03 ± 6.3E-03	8	1.4E+00 ± 5.2E-01
Satanic Mills	J2-214-3-R1	SM3	27	bdl	8	1.7E-04 ± 6.0E-05	8	1.1E+00 ± 3.3E-01	27	1.5E-03 ± 7.4E-03	27	2.8E+00 ± 2.4E+00
Roman Ruins	J2-208-1-R1	RMR1	24	7.3E-04 ± 9.1E-04	6	1.2E-04 ± 2.3E-05	6	2.6E+00 ± 9.9E-01	24	3.3E-02 ± 1.6E-02	11	2.5E+01 ± 9.0E+00
Roger's Ruins	J2-213-6-R1	RGR1	13	bdl	6	bdl	6	2.4E-01 ± 1.6E-01	13	6.6E-03 ± 7.6E-04	13	4.9E+00 ± 1.1E+00
Eastern Manu	s Basin (SuSu Knol	lls)										
Suzette	J2-217-2-R1	SZ1	13	1.6E-01 ± 2.3E-02	3	5.6E-03 ± 2.3E-04	3	5.1E-02 ± 1.1E-02	13	6.4E-03 ± 1.1E-03	8	7.7E-01 ± 1.1E-01
Suzette	J2-217-10-R1	SZ2	20	2.2E-02 ± 1.0E-02	3	1.1E-03 ± 1.5E-04	3	3.1E-01 ± 5.3E-02	20	1.3E-02 ± 5.0E-03	9	3.6E-01 ± 1.7E-01
Suzette	J2-219-2-R1	none	5	2.1E-04 ± 1.2E-04		NM		NM	5	9.2E-03 ± 3.8E-03	5	1.0E+00 ± 5.3E-01
North Su	J2-223-1-R1	NS3	21	3.3E-01 ± 1.0E-01	7	1.8E-02 ± 3.9E-03	7	3.6E-01 ± 1.2E-01	21	7.7E-03 ± 2.6E-03	17	9.8E-01 ± 4.5E-01
North Su	J2-227-10-R1	none	10	8.8E-03 ± 1.5E-03		NM		NM	10	5.4E-03 ± 8.6E-04	10	1.0E+00 ± 4.5E-01
Eastern Lau Sp	preading Center											
Tahi Moana-1	J2-450-3-R1	TMo5	18	6.4E-05 ± 4.0E-05	3	1.2E-04 ± 9.2E-06	3	6.9E-02 ± 2.6E-02	18	6.6E-02 ± 1.6E-02	18	5.3E+00 ± 1.5E+00
ABE	J2-449-5-R1	A10	20	2.6E-04 ± 4.7E-04	8	bdl	8	1.0E-01 ± 3.1E-02	20	2.3E-02 ± 4.1E-03	20	1.0E-01 ± 2.5E-02
ABE	J2-449-6-R1	A11	22	1.2E-02 ± 1.1E-02	6	bdl	6	5.8E-02 ± 1.6E-02	22	1.2E-02 ± 5.3E-03	22	1.4E+00 ± 1.0E+00
ABE	J2-815-5-R1	A16	9	8.8E-04 ± 1.1E-03	3	bdl	3	1.9E-01 ± 1.5E-02	9	1.4E-02 ± 1.9E-03	9	1.2E+00 ± 5.7E-01
Valu Fa Ridge												
Tu'i Malila	J2-442-4-R2	TM11	17	5.2E-03 ± 4.7E-03	3	bdl	3	1.0E-02 ± 2.9E-03	17	1.4E-02 ± 2.1E-03	17	5.6E-01 ± 5.0E-01
Tu'i Malila	J2-819-4-R2	TM15	4	1.8E-04 ± 8.2E-05		NM		NM	4	5.4E-02 ± 6.4E-03	4	3.8E-02 ± 8.1E-03
Mariner	J2-437-3-R2	MA9	12	1.1E-04 ± 2.4E-04	6	9.9E-05 ± 1.5E-04	6	3.5E-01 ± 1.0E-01	12	2.9E-03 ± 2.0E-03	12	4.1E+00 ± 1.7E+00
Mariner	J2-817-4-R2	MA15	6	8.9E-04 ± 3.9E-04		NM		NM	6	2.6E-03 ± 4.3E-04	6	1.0E+00 ± 1.2E-01

Table 5.

Region	Chimney	Vent	Со	Ni		Ga			Ag	In
Vent Field	Sample	Fluid	μg/g	µg/g		µg/g		ŀ	ıg/g	µg/g
	Detection	Limit =	2 ng/g	17 ng/g		0.9 ng/	g	2	0.5 ng/g	
	Determinatio	on Limit =	5 ng/g	40 ng/g		2 ng/g	5	5	µg/g	1.2 ng/g
Southern East P	acific Rise									
17°34'S	Alv3299-6-1	Hobbes	147 ± 18	99 ± 7		bdl		890	± 120	8.8 ± 2.3
17°37'S	Alv3288-5-1a	Simon	47 ± 6	10 ± 0.4		bdl		211	± 25	3.4 ± 1.0
17°37'S	Alv3296-2-2a	Maggie	81 ± 13	37 ± 5		bdl		180	± 40	1.5 ± 0.5
17°37'S	Alv3296-3	Wally	32 ± 3	28 ± 1	1.4	±	0.6	2600	± 500	16 ± 5
17°37'S	Alv3296-5-1a	Homer	86 ± 3	39 ± 2		bdl		174	± 9	1.57 ± 0.0
Juan de Fuca Rie	dge									
MEF	Alv1931	none	2.7 ng/g ± 0.6 ng/g	66 ng/g ± 12 ng/g	0.9	±	0.2	232	± 12	15.6 ± 0.9
MEF	Alv3474-3-1	Sully99	36 ± 5	7.6 ± 4.2		bdl		121	± 22	3.4 ± 1.0
MEF	Alv3480-4	none	35 ± 4	NM		NM		106	± 18	3.7 ± 0.4
Mid-Atlantic Ric	lge									
Lucky Strike	DV1-5B	none	27 ± 3	NM		NM		1900	± 800	18 ± 3
Mid-Cayman Ris	se									
Beebe/Piccard	J2-613-16-R1	BB5	760 ± 250	454 ± 22		bdl		140	± 90	23 ± 9
Manus Spreadir	ng Center									
Vienna Woods	J2-207-1-R1	VW1	0.53 ± 0.27	19 ng/g ± 7 ng/g		bdl		3800	± 700	bdl
Eastern Manus	Basin (PACMANU	S)								
Fenway	J2-210-7-R2	none	3.1 ng/g ± 3.1 ng/g	NM		NM		170	± 60	28 ± 10
Fenway	J2-216-16-R1	F3	1.5 ± 0.6	0.24 ± 0.07		NM		320	± 250	15 ± 6
Satanic Mills	J2-214-3-R1	SM3	bdl	56 ng/g ± 20 ng/g	20	±	6	60	± 60	31 ± 26
Roman Ruins	J2-208-1-R1	RMR1	32 ng/g ± 40 ng/g	42 ng/g ± 8 ng/g	48	±	18	1300	± 600	270 ± 100
Roger's Ruins	J2-213-6-R1	RGR1	bdl	bdl	4.4	±	2.9	260	± 30	53 ± 12
Eastern Manus	Basin (SuSu Knoll	s)								
Suzette	J2-217-2-R1	SZ1	6.9 ± 1.0	1.9 ± 0.1		bdl		250	± 40	8.3 ± 1.2
Suzette	J2-217-10-R1	SZ2	1.0 ± 0.5	0.36 ± 0.05	5.8	±	1.0	530	± 200	3.9 ± 1.8
Suzette	J2-219-2-R1	none	9 ng/g ± 5 ng/g	NM		NM		360	± 150	11 ± 6
North Su	J2-223-1-R1	NS3	15 ± 4	6.2 ± 1.3	6.5	±	2.2	300	± 100	11 ± 5
North Su	J2-227-10-R1	none	0.38 ± 0.07	NM		NM		210	± 30	11 ± 5
Eastern Lau Spr	eading Center									
Tahi Moana-1	J2-450-3-R1	TMo5	2.8 ng/g ± 1.7 ng/g	40 ng/g ± 3 ng/g	1.3	±	0.5	2600	± 600	57 ± 17
ABE	J2-449-5-R1	A10	12 ng/g ± 20 ng/g	bdl	1.8	±	0.6	920	± 160	1.1 ± 0.3
ABE	J2-449-6-R1	A11	0.5 ± 0.5	bdl	1.1	±	0.3	470	± 210	16 ± 11
ABE	J2-815-5-R1	A16	39 ng/g ± 47 ng/g	bdl	3.5	±	0.3	570	± 70	13 ± 6
Valu Fa Ridge										
Tu'i Malila	J2-442-4-R2	TM11	0.2 ± 0.2	bdl		bdl		540	± 80	6 ± 5
Tu'i Malila	J2-819-4-R2	TM15	8 ng/g ± 4 ng/g	NM		NM		2110	± 250	bdl
Mariner	J2-437-3-R2	MA9	5 ng/g ± 11 ng/g	33 ng/g ± 52 ng/g	6.4	±	1.9	120	± 80	44 ± 19
Mariner	J2-817-4-R2	MA15	39 ng/g ± 17 ng/g	NM		NM		100	± 20	11.2 ± 1.3

Table 6.
Concentrations of major elements and recovered mass in picks of chalcopyrite black smoker chimney linings obtained by inductively

Chimney	Vent	Tarnish	Mass	otal Recover	Cu	Fe	Zn	S	Са	Ва	Si
Sample	Field	Condition	mg	wt%	wt%	wt%	wt%	wt%	wt%	µg/g	wt%
Alv3296-3 pick A1		minor	11.88 ± 0.05	86 ± 6	32 ± 3	40 ± 5	0.17 ± 0.05	28 ± 3	1.5 ± 0.6	bdl	0.2 ± 0.1
Alv3296-3 pick A2	17°27'5	minor	8.81 ± 0.02	96 ± 5	28 ± 2	35 ± 4	0.13 ± 0.04	37 ± 3	0.2 ± 0.6	bdl	0.2 ± 0.1
Alv3296-3 pick B1	1/ 5/ 5	minor	14.63 ± 0.03	89 ± 5	30 ± 2	36 ± 5	0.13 ± 0.05	34 ± 3	0.2 ± 0.6	bdl	0.2 ± 0.1
Alv3296-3 pick B2		minor	13.04 ± 0.03	95 ± 6	35 ± 3	35 ± 5	0.12 ± 0.04	30 ± 3	0.2 ± 0.6	bdl	0.2 ± 0.1
Alv3299-6-1 pick A		none	20.01 ± 0.03	90 ± 5	31 ± 2	38 ± 4	0.44 ± 0.05	31 ± 3	0.2 ± 0.6	bdl	0.1 ± 0.1
Alv3299-6-1 pick B1	17°27'C	none	7.75 ± 0.08	95 ± 6	30 ± 2	37 ± 5	0.37 ± 0.22	33 ± 3	0.1 ± 0.6	bdl	0.2 ± 0.1
Alv3299-6-1 pick B2	17 54 5	none	10.07 ± 0.03	93 ± 5	27 ± 2	35 ± 5	0.07 ± 0.04	38 ± 3	0.1 ± 0.6	bdl	0.1 ± 0.1
Alv3299-6-1 pick C		none	4.60 ± 0.04	99 ± 6	30 ± 2	37 ± 5	0.7 ± 0.3	32 ± 3	0.1 ± 0.7	bdl	0.1 ± 0.2
Alv1931 pick A1		none	3.68 ± 0.05	106 ± 7	31 ± 2	36 ± 5	0.3 ± 0.3	33 ± 3	0.2 ± 0.7	bdl	0.1 ± 0.2
Alv1931 pick A2	MEF	none	5.10 ± 0.10	95 ± 6	29 ± 2	34 ± 5	0.09 ± 0.03	37 ± 3	0.2 ± 0.6	bdl	0.2 ± 0.1
Alv1931 pick A3		none	16.02 ± 0.03	63 ± 3	31 ± 2	36 ± 3	0.07 ± 0.03	34 ± 2	0.1 ± 0.3	13 ± 39	0.1 ± 0.1
Alv3474-3-1 pick A1		none	10.5 ± 0.4	99 ± 5	28 ± 2	42 ± 4	bdl	30 ± 3	0.1 ± 0.6	bdl	0.2 ± 0.1
Alv3474-3-1 pick A2	MEF	none	15.25 ± 0.04	91 ± 5	30 ± 2	36 ± 5	bdl	35 ± 3	0.1 ± 0.6	bdl	0.2 ± 0.1
Alv3474-3-1 pick A3		none	11.17 ± 0.04	108 ± 5	25 ± 2	48 ± 4	bdl	27 ± 2	0.1 ± 0.6	bdl	0.2 ± 0.1
J2-213-6-R1 pick A	Roger's Ruins	minor	18.54 ± 0.06	90 ± 5	30 ± 2	36 ± 5	bdl	33 ± 3	0.2 ± 0.6	bdl	0.2 ± 0.1
J2-214-3-R1 pick A		tarnish	6.76 ± 0.04	90 ± 5	30 ± 2	36 ± 5	bdl	34 ± 3	0.1 ± 0.6	bdl	0.2 ± 0.1
J2-214-3-R1 pick C	Satanic Mills	tarnish	4.78 ± 0.10	97 ± 5	31 ± 2	35 ± 4	1.0 ± 0.3	34 ± 3	0.1 ± 0.6	24 ± 91	0.1 ± 0.1
J2-437-3-R2 pick A	Mariner	minor	2.0 ± 0.20	90 ± 5	29 ± 2	40 ± 5	0.04 ± 0.01	31 ± 3	0.1 ± 0.6	172 ± 89	0.2 ± 0.1

Table 7.

Concentrations of trace elements in	picks of chalcopy	rite black smoker chimnev	/ linings obtained b	v inductivelv	coupled plasma
				,	

Chimney	Vent	Со	Ni	Ga	Ag	In
Sample	Field	μg/g	μg/g	µg/g	µg/g	μg/g
Alv3296-3 pick A1		41 ± 4	50 ± 23	1.43 ± 0.03	2700 ± 170	20.7 ± 2.3
Alv3296-3 pick A2	17°27'C	35 ± 3	40 ± 21	1.24 ± 0.02	2500 ± 160	16.3 ± 1.9
Alv3296-3 pick B1	1/ 5/ 5	38 ± 3	40 ± 22	1.38 ± 0.02	2900 ± 180	17.2 ± 2.0
Alv3296-3 pick B2		30 ± 3	40 ± 21	1.07 ± 0.04	2300 ± 140	15.9 ± 1.9
Alv3299-6-1 pick A		150 ± 13	110 ± 26	0.67 ± 0.08	490 ± 30	6.7 ± 1.3
Alv3299-6-1 pick B1	170245	140 ± 12	110 ± 25	0.56 ± 0.08	880 ± 60	6.4 ± 1.2
Alv3299-6-1 pick B2	17 54 5	130 ± 11	120 ± 24	0.53 ± 0.07	850 ± 60	9.1 ± 1.4
Alv3299-6-1 pick C		150 ± 13	110 ± 26	0.56 ± 0.08	660 ± 40	6.8 ± 1.3
Alv1931 pick A1		bdl	40 ± 22	1.07 ± 0.05	270 ± 20	10.5 ± 1.5
Alv1931 pick A2	MEF	0.73 ± 0.24	bdl	0.93 ± 0.05	270 ± 14	20.0 ± 1.5
Alv1931 pick A3		0.80 ± 0.23	bdl	1.19 ± 0.01	290 ± 20	17.5 ± 1.8
Alv3474-3-1 pick A1		46 ± 4	bdl	0.34 ± 0.08	130 ± 11	6.2 ± 1.1
Alv3474-3-1 pick A2	MEF	48 ± 4	bdl	0.49 ± 0.08	150 ± 12	6.6 ± 1.2
Alv3474-3-1 pick A3		42 ± 4	bdl	0.37 ± 0.07	130 ± 10	5.9 ± 1.1
J2-213-6-R1 pick A	Roger's Ruins	0.7 ± 0.3	30 ± 21	3.3 ± 0.10	330 ± 23	37 ± 4
J2-214-3-R1 pick A		0.5 ± 0.3	bdl	40.4 ± 2.5	140 ± 11	77 ± 6
J2-214-3-R1 pick C	Satanic Mills	0.32 ± 0.28	bdl	23.7 ± 1.4	100 ± 9	45 ± 4
J2-437-3-R2 pick A	Mariner	0.54 ± 0.10	bdl	6.40 ± 0.09	137 ± 4	36.4 ± 1.2

Table	8.												Table 8	(continu	ed).										
Endm	ember	Metal Con	ocentratio	ons of Hyd	Irothermal Vent	Fluids from the E	Eastern Lau Spreadi	ng Center and Val	u Fa Ridge				Endme	mber Me	tal Con	centratior	ns of Hydr	rothermal Vent	Fluids from the Ea	istern Lau Spreadi	ing Center and Val	u Fa Ridge.			
Fluid	n =	min. Mg	max. T	min. pH	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Fluid	n = mir	n. Mg	max. T	min. pH	Мо	Ag	Cd	In	Sn	Sb	Au	Pb
		mm	°C	(25°C)	nm	μm	μm	nm	nm	μm	μm	nm		r	nm	°C	(25°C)	nm	nm	nm	nm	nm	nm	nm	nm
TMo1	2	2.4	306	3.3	1100 ± NM	580 ± 2	370 ± 30	146 ± 6	700 ± 140	8 ± NM	220 ± 27	15 ± 4	TMo1	2 2	2.4	306	3.3	100 ± 40	40 ± 12	210 ± 20	NM ± NM	6 ± NM	40 ± 15	0 ± NM	530 ± NM
TMo2	2	1.0	298	3.9	1180 ± 50	293 ± 1	248 ± 3	160 ± 28	200 ± 140	8 ± 1	120 ± 50	10 ± 8	TMo2	2 2	1.0	298	3.9	90 ± 19	45 ± 4	120 ± 60	$NM \pm NM$	6 ± NM	40 ± 10	0 ± NM	300 ± 200
TMo5	2	1.4	310	3.7	630 ± 24	396 ± 5	278 ± 7	110 ± 8	400 ± 300	6 ± 0	83 ± 0	2 ± 0	TMo5	2 2	1.4	310	3.7	43 ± 6	26 ± 1	96 ± 1	NM ± NM	1 ± NM	28 ± 6	0 ± NM	58 ± 0.9
A10	1	2.1	317	4.4	4400 ± NM	440 ± NM	170 ± NM	80 ± NM	110 ± NM	10 ± NM	100 ± NM	10 ± NM	A10	1 2	2.1	317	4.4	41 ± NM	14 ± NM	31 ± NM	NM ± NM	3 ± NM	51 ± NM	0 ± NM	370 ± NM
A11	2	2.1	312	3.9	740 ± NM	400 ± 90	140 ± 30	73 ± 1	180 ± 50	9 ± 3	80 ± 0	6 ± 2	A11	2 2	2.1	312	3.9	68 ± 4	6 ± 3	39 ± 7	NM ± NM	2 ± 0	19 ± 5	0 ± 0.03	200 ± 100
A13	2	2.3	283	4.3	1400 ± NM	450 ± 28	200 ± NM	115 ± 6	570 ± NM	5 ± NM	110 ± NM	110 ± NM	A13	2 2	2.3	283	4.3	1500 ± 170	50 ± 21	160 ± NM	50 ± 12	50 ± 40	59 ± NM	1600 ± 400	480 ± NM
A14	2	1.9	300	4.0	1500 ± NM	400 ± 24	340 ± NM	180 ± 18	400 ± NM	75 ± NM	430 ± NM	83 ± NM	A14	2 2	1.9	300	4.0	1400 ± NM	40 ± 40	600 ± NM	57 ± 3	90 ± 13	170 ± NM	820 ± NM	550 ± NM
A15	2	1.9	290	4.4	1400 ± 260	240 ± 27	120 ± 4	130 ± 30	500 ± 90	9 ± 0	80 ± 20	73 ± 6	A15	2 2	1.9	290	4.4	400 ± 400	51 ± NM	110 ± 21	30 ± 15	50 ± 13	100 ± NM	240 ± NM	900 ± 270
A16	2	1.7	263	4.5	700 ± 240	258 ± 3	67 ± 3	100 ± 40	200 ± 60	4 ± 1	37 ± 1	62 ± 3	A16	2 2	1.7	263	4.5	900 ± 90	bdl ± NM	54 ± 4	40 ± 4	90 ± 50	44 ± 6	700 ± 400	600 ± 140
TM11	2	1.1	315	3.8	3000 ± 1700	376 ± 1	180 ± 8	100 ± 15	700 ± 200	20 ± NM	110 ± 16	6 ± 4	TM11	2 2	1.1	315	3.8	200 ± 110	20 ± 8	76 ± 7	NM ± NM	50 ± 40	36 ± 7	0 ± NM	900 ± 400
TM12	2	3.0	284	4.2	7900 ± 400	350 ± 4	280 ± 22	117 ± 1	210 ± 22	25 ± 1	200 ± 110	50 ± 40	TM12	2 3	3.0	284	4.2	115 ± 4	33 ± 2	300 ± 220	NM ± NM	NM ± NM	40 ± 13	1 ± NM	2000 ± 900
TM13	2	3.6	262	3.9	309 ± 7	296 ± 1	102 ± 3	167 ± 6	110 ± 50	9 ± 0	85 ± 4	66 ± 7	TM13	2 3	3.6	262	3.9	1100 ± 200	14 ± 3	160 ± 24	45 ± NM	40 ± 4	49 ± 1	2100 ± 210	400 ± 300
TM14	2	1.5	290	3.9	360 ± 40	300 ± 80	150 ± 30	200 ± 50	77 ± 5	7 ± 0.03	91 ± 1	80 ± 22	TM14	2 2	1.5	290	3.9	1200 ± 250	16 ± 4	160 ± 11	50 ± 15	68 ± 3	60 ± 16	3000 ± 2985	1000 ± 210
TM15	1	22.0	269	5.0	1500 ± NM	370 ± NM	cont. ± NM	cont ± NM	890 ± NM	cont ± NM	cont ± NM	cont ± NM	TM15	1 2	22.0	269	5.0	cont ± NM	cont ± NM	cont ± NM	cont ± NM	cont ± NM	cont ± NM	cont ± NM	cont ± NM
TM16	2	5.5	251	3.9	370 ± 50	410 ± 19	500 ± 140	180 ± 8	76 ± 3	12 ± 6	960 ± NM	80 ± 11	TM16	2 5	5.5	251	3.9	2200 ± 140	120 ± NM	1600 ± 700	46 ± 2	60 ± 16	110 ± 50	2500 ± 600	2000 ± 1400
TM17	2	3.1	258	3.9	500 ± 190	280 ± 8	400 ± 120	140 ± 50	200 ± 80	17 ± 6	700 ± 110	90 ± 15	TM17	2 3	3.1	258	3.9	1260 ± 50	100 ± 30	1200 ± 120	44 ± 4	41 ± 5	120 ± 50	2700 ± 300	3300 ± 140
TM18	2	10.4	296	4.6	670 ± NM	310 ± 18	200 ± 130	440 ± NM	140 ± NM	15 ± 3	400 ± 160	91 ± NM	TM18	2 1	.0.4	296	4.6	1400 ± NM	2 ± 1	1400 ± 600	56 ± NM	56 ± NM	80 ± 50	5000 ± 1000	1300 ± 230
TM19	1	3.0	232	4.2	580 ± NM	260 ± NM	200 ± NM	240 ± NM	150 ± NM	7 ± NM	130 ± NM	79 ± NM	TM19	1 3	3.0	232	4.2	1200 ± NM	520 ± NM	130 ± NM	50 ± NM	48 ± NM	460 ± NM	8700 ± NM	11500 ± NM
TM20	1	33.4	138	5.3	600 ± NM	290 ± NM	290 ± NM	cont ± NM	99 ± NM	cont ± NM	380 ± NM	130 ± NM	TM20	1 3	3.4	138	5.3	cont ± NM	20 ± NM	800 ± NM	cont ± NM	cont ± NM	130 ± NM	7600 ± NM	2200 ± NM
MA8	2	3.8	359	2.4	NM ± NM	3820 ± 28	11000 ± 900	500 ± 160	120 ± 50	1100 ± 800	390 ± 13	NM ± NM	MA8	2 3	3.8	359	2.4	300 ± 80	50 ± 18	287 ± 0	NM ± NM	NM ± NM	1790 ± 14	1 ± NM	1100 ± 300
MA9	2	3.2	338	2.3	2300 ± NM	4900 ± 500	14000 ± 3000	200 ± 26	400 ± 15	300 ± 16	400 ± 80	120 ± NM	MA9	2 3	3.2	338	2.3	230 ± NM	66 ± NM	450 ± NM	NM ± NM	NM ± NM	1900 ± 900	1 ± NM	1200 ± NM
MA10	1	48.1	109	5.2	NM ± NM	22 ± NM	cont. ± NM	cont ± NM	cont ± NM	cont ± NM	cont ± NM	NM ± NM	MA10	1 4	8.1	109	5.2	cont ± NM	cont ± NM	cont ± NM	NM ± NM	NM ± NM	280 ± NM	cont ± NM	cont ± NM
MA11	1	3.7	328	2.2	3100 ± NM	4400 ± NM	11900 ± NM	290 ± NM	210 ± NM	340 ± NM	650 ± NM	220 ± NM	MA11	1 3	3.7	328	2.2	220 ± NM	59 ± NM	310 ± NM	NM ± NM	NM ± NM	1800 ± NM	1 ± NM	2500 ± NM
MA12	2	2.9	350	2.3	2900 ± NM	4500 ± NM	12300 ± NM	310 ± NM	620 ± NM	300 ± NM	650 ± NM	170 ± NM	MA12	2 2	2.9	350	2.3	160 ± NM	96 ± NM	490 ± NM	NM ± NM	NM ± NM	98 ± NM	2 ± NM	5400 ± NM
MA13	2	18.1	140	2.6	600 ± 260	6090 ± 50	2340 ± 50	200 ± 20	900 ± 500	17 ± 11	1500 ± NM	90 ± 13	MA13	2 1	.8.1	140	2.6	1500 ± 300	51 ± NM	180 ± NM	61 ± 7	63 ± NM	100 ± 40	1800 ± 500	cont ± NM
MA14	2	2.6	319	2.3	900 ± 230	5600 ± 80	6730 ± 70	220 ± 12	500 ± 270	109 ± 1	1800 ± 100	280 ± 20	MA14	2 2	2.6	319	2.3	700 ± 400	40 ± 28	1560 ± 40	160 ± 18	88 ± 28	140 ± 16	3000 ± 900	2000 ± 1000
MA15	2	1.4	354	2.7	1600 ± 300	4400 ± 110	12500 ± 500	260 ± 60	320 ± 21	240 ± 13	390 ± 27	180 ± 15	MA15	2 2	1.4	354	2.7	1470 ± 70	60 ± 15	350 ± 15	90 ± 8	78 ± 2	110 ± 22	2000 ± 900	1400 ± 150
MA16	2	2.1	364	2.7	2600 ± 400	4610 ± 18	14000 ± 300	250 ± 17	1100 ± 600	210 ± 7	500 ± 120	140 ± 11	MA16	2 2	2.1	364	2.7	900 ± 270	50 ± 29	400 ± 150	84 ± 3	100 ± 40	170 ± NM	2400 ± 200	2200 ± 600
MA17	2	8.0	362	2.8	1300 ± 600	3700 ± 120	13000 ± 2500	500 ± 130	560 ± 21	500 ± NM	700 ± 110	200 ± 9	MA17	2 8	8.0	362	2.8	1300 ± 400	100 ± 14	400 ± 100	150 ± 28	90 ± 40	130 ± 70	28000 ± 2000	540 ± NM
MA18	2	12.8	300	2.7	1200 ± NM	4500 ± 110	11190 ± 27	260 ± NM	640 ± NM	160 ± 70	300 ± 300	130 ± 70	MA18	2 1	.2.8	300	2.7	1200 ± NM	100 ± NM	230 ± NM	110 ± 50	60 ± NM	140 ± NM	1500 ± NM	700 ± 300
MA19	2	9.4	308	2.9	1600 ± 160	4500 ± 90	10980 ± 40	320 ± 50	840 ± NM	600 ± 160	534 ± 4	200 ± 22	MA19	2 9	9.4	308	2.9	1400 ± NM	90 ± 11	480 ± 28	240 ± 50	110 ± 3	360 ± 10	2200 ± NM	1200 ± NM
MA20	2	2.7	344	2.6	1200 ± 20	5080 ± 60	11800 ± 300	200 ± 10	440 ± 50	170 ± 40	400 ± 110	150 ± 16	MA20	2 2	2.7	344	2.6	1200 ± 15	80 ± 40	400 ± 80	90 ± 14	55 ± 4	130 ± 30	2100 ± 600	1500 ± 500
MA21	2	2.8	345	2.7	1100 ± 300	4360 ± 3	12200 ± 40	250 ± 11	340 ± 11	260 ± 50	400 ± 80	150 ± 40	MA21	2 2	2.8	345	2.7	1300 ± 260	50 ± 15	400 ± 90	100 ± 25	93 ± 23	160 ± 40	1100 ± 600	900 ± 150
Endme	omher i	omnositic	ons of hy	drotherm;	al vent fluids has	ed on extranolat	ion to $Mg = 0$ (Von	Dammetal 198	5. Trefry et al 10	994 · Metz and Tre	fry 2000) Uncert	tainties reflect t	he												

Endmember compositions of hydrothermal vent fluids based on extrapolation to Mg = 0 (Von Damm et al., 1985; Trefry et al., 1994; Metz and Trefry, 2000). Uncertainties reflect the TMo = Taho Moana-1; A = ABE; TM = Tu'i Malila; MA = Mariner

n = number of vent fluid sample replicates; mm = mmol/kg; μm = μmol/kg; nm = nmol/kg

NM = not measured; cont = contaminated