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Underwater imagery is increasingly used as an effective and repeatable method to monitor benthic ecosystems. Nevertheless, extracting
ecologically relevant information from a large amount of raw images remains a time-consuming and somewhat laborious challenge. Thus, un-
derwater imagery processing needs to strike a compromise between time-efficient image annotation and accuracy in quantifying benthic
community composition. Designing and implementing robust image sampling and image annotation protocols are therefore critical to ratio-
nally address these trade-offs between ecological accuracy and processing time. The aim of this study was to develop and to optimize a reli-
able image scoring strategy based on the point count method using imagery data acquired on tide-swept macroepibenthic communities.
Using a stepwise approach, we define an underwater imagery processing protocol that is effective in terms of (i) time allocated to overall
image, (ii) reaching a satisfactory accuracy to estimate the occurrence of dominant benthic taxa, and (iii) adopting a sufficient taxonomic
resolution to describe changes in community composition. We believe that our method is well adapted to investigate the composition of
epibenthic communities on artificial reefs and can be useful in surveying colonization of other human structures (wind turbine foundations,
pipelines, etc.) in coastal areas. Our strategy meets the increasing demand for inexpensive and time-effective tools for monitoring changes in
benthic communities in a context of increasing coastal artificialization pressures.
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Introduction
Coastal benthic ecosystems are increasingly impacted by a cock-

tail of anthropogenic pressures, including sea bottom fishing

(trawling/dredging in particular), harbour development, tourism,

industry, energy production, and urban coastal development

(Halpern et al., 2008). As a direct consequence, both quality and

extent of vulnerable coastal habitats have declined worldwide

(Jackson et al., 2001; Lotze and Milewski, 2004; Lotze et al., 2006;

Le Pape et al., 2007). In this context, there is an increasing

demand for regular cost-effective monitoring of ecosystems eco-

logical status. Underwater imagery has been increasingly used as

an effective and repeatable method to monitor benthic ecosys-

tems, for several reasons. First, the collection of large amounts of

high-resolution information on benthic biodiversity is rapid; sec-

ond, the method is non-invasive, which is a key for long-term

monitoring of selected sites (no or limited perturbation of

ecological communities); and third, cameras operated by scuba

divers or underwater vehicles provide access to remote sites (for

instance due to depth or seafloor topography) that are difficult to

sample with classic methods. Consequently, underwater imagery

is widely used to describe a diverse range of coastal benthic habi-

tats, such as tropical coral reefs (Brown et al., 2004; Lam et al.,
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2006; Dumas et al., 2009; Molloy et al., 2013; Jokiel et al., 2015),

algal assemblages (Preskitt et al., 2004; Vroom and Timmers,

2009; Deter et al., 2012; Berov et al., 2016), rocky substrates

(Macedo et al., 2006; Van Rein et al., 2011), artificial reefs (Page

et al., 2006; Walker et al., 2007; Jerabek et al., 2016; Jimenez et al.,

2017), highly hydrodynamic sites (Foveau et al., 2017; O’Carroll

et al., 2017), and mesophotic or deep-sea ecosystems (Sen et al.,

2016; Domke et al., 2017; Marzloff et al., 2018).

While underwater imagery produces large amounts of raw

data of seafloor communities, the extraction of ecologically rele-

vant information through taxonomic identification to species

level is often challenging, sometimes impossible without collected

specimens, expert knowledge, or extensive taxonomy literature

(Althaus et al., 2015). So, benthic ecologists have developed clas-

sification methods adapted to assess benthic biodiversity solely

from imagery. Such classifications are often region specific and

inconsistent as they may use different terminologies to label a

given category of organism (Schlacher et al., 2010; Harrison and

Smith, 2012; Oh et al., 2015). In response to these inconsistencies

across worldwide image-based benthic surveys, Althaus et al.

(2015) developed a standardized classification for identifying ben-

thic categories from underwater imagery called Collaborative and

Automated Tools for Analysis of Marine Imagery (CATAMI),

which aims to facilitate image annotation, data management, and

data sharing.

However, even with the appropriate classification, the extrac-

tion of relevant information (taxon occurrence, count of individ-

uals or colonies, size or cover estimation, etc.) from the entire

raw images relies on laborious and time-consuming analysis

(Pech et al., 2004; Preskitt et al., 2004; Nakajima et al., 2010). For

instance, concerning benthic sessile communities on hard sub-

strates, the challenge lies in quantifying the occurrence or per-

centage cover of each taxon on each image to describe the

community composition. Image scoring can rely either on label-

ling each conspicuous organisms on the picture (to estimate pres-

ence or abundance) or on exhaustively delineating their shape (to

estimate percentage cover). However, this method is highly time-

consuming so it cannot be applied to a large set of images or to

diverse encrusting communities. The “point count” approach

provides a reliable time-effective alternative to this comprehen-

sive image analysis (Pielou, 1974). It consists in distributing a

certain number of points on an image and then visually labelling

the benthic category (taxa or substratum type) lying under each

point. Then, the community composition can be assessed by

calculating the percentage cover of each category as the ratio

between the number of points attributed to a target category and

the total number of points, on a given sampled surface. This

method was facilitated by the development of dedicated software,

such as CPCe (Coral Point Count estimation; Kohler and Gill,

2006), PhotoQuad (Trygonis and Sini, 2012), or more recently

BIIGLE (Langenkämper et al., 2017). However, the accuracy of

the percentage covers estimated with this method increases with

the density of points scored and depends also on the method

used to project points on the image. So, the optimal point density

strikes a compromise between the desired accuracy level and the

time needed for image processing. It also depends on the seafloor

area sampled per image, as well as the size, relative occurrence,

and distribution patterns of the targeted taxa (Pante and Dustan,

2012; Perkins et al., 2016).

Strategies to process underwater imagery are heterogeneous

across published studies and rarely justified. However, a number

of methodological choices determines the information extracted

from image scoring (e.g. quadrat size, number of images scored,

number of subsampling points per image). In most cases, these

choices are based on empirical rules that depend on a number of

study-specific factors (e.g. size of taxa, scope of the study, bud-

get). For instance, the first choice to make, which is the definition

of the quadrat size, is empirically determined to appropriately

scale-match with targeted taxa: intuitively, studies on coral reef

will use wider quadrat than those on biofouling. Nevertheless, a

limited number of methodological works clearly rationalize image

subsampling strategies (Dumas et al., 2009; Deter et al., 2012;

Pante and Dustan, 2012; Berov et al., 2016; Perkins et al., 2016).

Nevertheless, all of these mentioned studies focus on benthic

organisms of sizes superior to 10 cm (i.e. megafauna/flora). Thus,

to our knowledge, very few information (Sartoretto et al., 2017)

are readily available concerning optimal method when targeting

low sized and/or encrusting macroepibenthic communities.

The aim of this study was to develop and optimize a protocol

of underwater image analysis suitable for describing macroepi-

benthic communities colonizing natural and artificial hard

substrates. Using a stepwise approach, we defined a reliable

image scoring strategy using imagery data acquired on subtidal

tide-swept encrusting benthic communities by optimizing (i)

density of points, (ii) way of point projection, (iii) total sampling

area, and (iv) taxonomic resolution (by testing the CATAMI

classification).

Methods
Study site
The study site is a 15-km-long submarine power cable (8 MVA,

10 kVDC) set-up in 2012 to connect the tidal test site of

Paimpol–Bréhat (Brittany, France; Figure 1) developed by

Electricité de France Energies Nouvelles. Because of the seafloor

characteristics (dominance of pebbles and rocks), 11 km of cable

is unburied but fully protected with nested iron half-shells

(50-cm long, 15-cm diameter). The cable is also stabilized by 120

concrete mattresses (6-m long, 3-m wide) installed in 2013

(Figure 2), which prevent its displacement due to high hydrody-

namic site conditions (current speed up to 5 knots during spring

tides). Due to several setbacks in the commissioning progress of

the project, no electric current has transited through the cable so

far and associated protection structures have actually acted as a

simple artificial reef.

Image acquisitions
An underwater imagery benthic survey undertaken by divers was

performed at three sites along the cable route: A, B, and C

(Figure 1). The three sites present similar depths (between 18 and

20 m). At each site, high-definition photographs of benthic

communities were taken by divers both on natural bottom and

artificial habitats that protect the cable (iron half-shells for sites

A, B, and C and concrete mattresses for sites B and C) with the

following strategy:

(i) each side of each 50-cm-long iron half-shell on a 10-m tran-

sect using overlapping still imagery;

(ii) 16 regularly spaced concrete units (whether 47 cm � 38 cm

or 47 cm � 20 cm) of the mattress; and

(iii) quadrat of 25 cm � 25 cm randomly placed on the natural

habitat 10 m apart from the cable route.
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Photographs were taken at a resolution of 37 million pixels per

image using a Nikon D810 inside an Ikelite underwater housing,

with a 20-mm lens and 2 Keldan LED lights (105 W, 9000

lumens). All images were calibrated with a scale bar.

The image-processing protocol optimization occurred at three

different levels as illustrated in Figure 3: we first defined (i) the

optimal point count method at the image level, then (ii) the sam-

pling effort, i.e. the number of images, required at the site level,

and finally (iii) the relevant taxonomic resolution.

Point count strategy at the image level
Briefly, we followed a three-step approach (detailed in the follow-

ing sections) to define the optimal image scoring strategy, in

terms of number of points and point projection method, by:

(i) describing exhaustively the benthic biodiversity on nine

“reference” images (three for each type of habitat);

(ii) using these nine “reference” images, assessing how the point

sampling designs (point density combined with projection

method) impact the estimation of benthic biodiversity;

(iii) based on the obtained relationships, identifying the optimal

density of point and projection method.

Exhaustive analysis of “reference” images
We selected three images representative of the complexity of the

benthic community (in terms of diversity and spatial

heterogeneity) for each habitat (half-shell, mattress, and natural

bottom). On these nine “reference” pictures, an area equivalent

to 625 cm2 was cropped for analysis. Using ArcGIS, all benthic

categories (being either taxa or substrates) visible in this area

were manually cut out and annotated after visual identification

(at the lowest possible taxonomic level for biological categories).

The comprehensive scoring of each reference image took between

14 and 21 h. This first step resulted in nine raster files that pro-

vided a comprehensive description of benthic biodiversity and for

which each pixel was assigned to a benthic category (Figure 4b).

Point count simulations
Then, we tested how a range of point count image-scoring strate-

gies effectively reflects the true benthic community composition.

These point sampling strategies were generated by combining 100

different point densities (from 5 to 500 points per 625 cm2 image

area, by the increments of 5 points) and two different projection

methods (random and stratified random; Figure 4c). For each of

the nine “reference” images, 1000 random simulations were

performed for each combination, giving a total of 200000 simula-

tions. For each simulation, we computed the percentage cover of

each benthic category. All the simulations were performed with

RStudio (v 1.0.0143) using the SpCosa package to implement

stratified-random sampling (Walvoort et al., 2010).

Selection of the optimal method
Our aim was to achieve an optimal scoring method that would

enable us to estimate the occurrence of benthic categories with a

percentage cover superior or equal to 5% and an accuracy corre-

sponding to a coefficient of variation (C.V.) of the estimated oc-

currence �0.25. This threshold was chosen because it has been

shown that the point count method is generally not suitable to

accurately characterize benthic categories with a percentage cover

inferior to 5% (Dumas et al., 2009; Deter et al., 2012; Perkins

et al., 2016).

To assess the accuracy of alternative point sampling strategies,

we computed the C.V. of the estimation of percentage cover com-

puted for each category across 1000 random simulations:

C:V : i; n;mð Þ ¼ r i; n;mð Þ
�X i; n;mð Þ ; (1)

where i is the ith benthic category, n is the number of points

scored (5� n� 500 by interval of 5), m is the the projection

method (random or stratified random), X
–

(i, n, m) is the mean

percentage cover of category i across 1000 simulations under a

given method; r (i, n, m) is the standard deviation of the percent-

age cover of category i across 1000 simulations under a given

method. The C.V. constitutes a good proxy of accuracy in per-

centage estimates across repeated measures (the higher the C.V.,

the lower the accuracy).

We used a nonlinear model (function nls of the R package

stats) using Rstudio (RStudio Team, 2015; v 1.0.0143) to charac-

terize the number of points required to reach a C.V. of 0.25 for

taxa that exhibit a range of percentage cover (represented in bold

white line in Figure 5). The black dotted line highlights the

specific case of benthic categories associated with a 5% cover. For

each habitat (natural bottom, iron half-shell, concrete mattress)

and projection method, we identified the minimum number of

points required to achieve a C.V. of �0.25 for benthic categories

Figure 1. Map of the study area of the north coast of Brittany in
western France (top-left and top-centre panels), which shows the
location of the Paimpol–Bréhat tidal turbine test site where A, B, and C
indicate the three study sites surveyed along the cable route (bottom).

Image-based protocol to monitor macroepibenthic communities 837
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with a 5% cover (which corresponds to our accuracy threshold).

Based on these C.V. estimates, we identified an optimal strategy

across all habitats, in terms of minimum number of points and

projection method.

Sampling effort at the site level
Once the optimal point count strategy is adopted to efficiently

capture benthic community composition within an image (which

could be considered as a replicate), the second step was to deter-

mine the most relevant sampling area, i.e. the total area observed

at the site level for a given habitat (defined as number of images

� quadrat size).

To assess this optimum sampling area, we first applied the op-

timal point count method (defined in the previous part) to all the

analysable images from a large dataset (110 images) obtained at a

single site and date. These image analyses were performed using

the free software PhotoQuad (Trygonis and Sini, 2012). A benthic

category was assigned to each projected point, and the percentage

cover was estimated for each encountered category. The biologi-

cal categories were determined at the lowest possible taxonomic

level (i.e. species when possible). For natural bottom and concrete

mattresses, 55 and 21 photos of 625 cm2 were analysed, respec-

tively, and 34 photos of 400 cm2 were analysed for iron half-

shells. For the rest of the procedure, only the biological categories

were considered to focus on the composition of the benthic

communities.

Then, we used Monte-Carlo simulations to construct curves of

taxonomic similarity–area for each type of habitats, a straightfor-

ward approach to determine adequate sampling size (Weinberg,

1978; Kronberg, 1987; Schmera and Eros, 2006). For a given sam-

pling area (n images), two independent sets of n images were ran-

domly chosen from the total data set. Bray–Curtis similarity

indices were calculated to compare the diversity sampled in each

of these two sets. This process was repeated 1000 times for each

level of sampling area. We then produced habitat-specific (i.e.

natural bottom, mattress, iron half-shell) similarity–sampling

area curves using the package CommEcol (Schneck and Melo,

2010) in RStudio (v 1.0.0143) by plotting mean estimates of

Bray–Curtis similarity for each level of sampling effort. The non-

linear relationship between similarity and the sampling area was

modelled using the function nls of the R package stats. We de-

fined the optimum sampling area as the number of survey images

associated with the asymptotic point of the similarity–sampling

area curve, i.e. when increasing sample number only marginally

increases between-sample similarity (by <0.1%).

Taxonomic resolution
The CATAMI classification developed for underwater image

analysis, combines a coarse-level taxonomy and the integration of

organism morphology for the identification of benthic taxa

(Althaus et al., 2015). We tested this classification frame by exam-

ining how it affects diversity patterns obtained with the finest

taxonomic frame that we could provide.

Figure 2. Overall view of one of the survey sites including cast-iron half-shells, a concrete mattress (freshly installed). and natural habitat
(top left). Close-up views of one of the mattresses concrete units (top right), one cast-iron half-shell (bottom left), and one of the quadrats
placed on the natural habitat (bottom right) (courtesy: Olivier Dugornay).
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We used the same data set (110 images Site B, September

2015) that served to determine the optimum sampling area at the

site level. All the taxa identified at the lowest taxonomic level

(LTL) were also labelled using the CATAMI classification at its

highest resolution. Thus, we produced two alternative commu-

nity datasets, corresponding to these two different taxonomic res-

olutions: the LTL and the CATAMI resolution. As an example,

the ascidian species Styela clava, which is easily recognizable from

imagery, can be identified by experts as (i) “Styela clava” using

the LTL classification while it will be scored as (ii) “Solitary

stalked Ascidian” (which encompasses a number of species) using

the CATAMI classification. Resemblance matrices were computed

for both taxonomic resolutions by calculating Bray–Curtis simi-

larities between samples. The two similarity matrices were visually

compared by computing two non-metric multi-dimensional

scaling (nMDS) ordinations with Rstudio (v 1.0.0143). Potential

correlation between the LTL and the CATAMI matrices was

examined using Spearman’s rank correlation coefficient, and the

significance of the relationship was determined with the Monte-

Carlo permutation routine RELATE of the PRIMER programme

(Clarke and Warwick, 2001).

Results
Point count optimization at the image level
Figure 5 presents the aggregated results across all the point densi-

ties simulated (from 5 to 500 points per image) to determine the

scoring effort required per image to reach a satisfactory accuracy

for each habitat type (i.e. natural bottom, mattress, half-shell)

and each type of point projection (random or stratified random).

Across all simulations, the C.V. of the estimated percentage cover

of taxa decreases rapidly as the number of points and/or the

occurrence of the benthic categories increase. This reflects that

percentage cover estimates are more accurate for a high density of

point and/or for more abundant benthic categories (common

taxon). For instance, across all investigated habitat and projection

methods, �50 point scores per image are sufficient to achieve a

C.V. of �0.25 for abundant taxa with percentage cover >20%.

For a given point score strategy (point density and projection

method), the accuracy of percentage cover estimate varies accord-

ing to the habitat considered, in particular for taxa with percent-

age cover <10%. To reach a C.V. value of 0.25 for categories with

percentage cover �5%, 322, 345, and 342 randomly projected

points per image are needed, for half-shell, mattress, and natural

bottom, respectively (Table 1). When using stratified-random

projection, the number of points needed dropped to 199, 248,

and 211 per image. Beyond that, improving the accuracy of per-

centage cover estimates of 5% cover categories is costly in terms

of scoring effort since �50 and 300% extra points are required to

attain C.V. 0.2 and 0.1, respectively, compared to the number of

Figure 4. Illustration of image processing. (a) An example of 25 cm �25 cm quadrat image of the natural bottom (site B, September 2017—
courtesy: Olivier Dugornay). (b) Result of the exhaustive picture taxonomic analysis performed with ArcGIS, each colour corresponding to a
different benthic category (i.e. substratum type or taxon). (c) Example of point count simulation with 200 points (i.e. 0.32 points per cm2),
using the random (left) or stratified-random (right) projection methods.

Selection of the optimal point count method
(desired level of cover estimate’s accuracy)

1. Define point count strategy at the image level

2. Define sampling 

effort at the site level

3. Define relevant 

taxonomic resolution

Simulations of alternative point count strategies 
(point densities X projection methods)

Exhaustive analysis of 9 ‘reference’ images
(3 per habitat)

Analysis of 110 available images with the 
optimal point count method

Figure 3. Flowchart describing the stepwise approach used to
optimize the method of underwater imagery processing for
accurately monitoring changes in epibenthic biodiversity on coastal
artificial structures.
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points required to obtain a C.V. of 0.25 (Table 1). Consequently,

the optimal method that fulfils our criteria (i.e. the C.V. of 0.25

for rare categories of 5% cover) requires 248 points per picture of

625 cm2 (rounded to 250 points, i.e. 0.4 points per cm2) using a

stratified-random projection.

Sampling area at the site level
For the three investigated habitats, relationships between the tax-

onomic similarity between samples and the sampling effort

(number of image scored) result in similar typical accumulation

curves (Figure 6). The asymptote was reached slightly faster for

half-shell than for mattress and natural bottom. According to our

criteria (scoring an additional image represents a benefit as long

as the similarity index is improved by >1%), the required sam-

pling areas are 0.36 m2 (corresponding to 9.05 pictures) for the

half-shell, 0.55 m2 (8.85 pictures) for the mattress and 0.52 m2

(8.35 pictures) for the natural bottom (Table 2).

Fitting taxonomic resolution
The analysis of pictures taken at Site B in September 2015 using

the LTL underlines 44 distinct biological categories across com-

munities of natural bottom, mattress, and iron half-shell, mainly

dominated by red algae (encrusting and foliose) and ascidians

(solitary and colonial). nMDS analysis shows a clear taxonomic

difference between the community settled on natural bottom and

those developing on artificial (mattress and half-shell) habitats

(Figure 7a). When using the CATAMI classification, the number

of biological categories drops from 44 to 27 (a decrease of 39%).

Despite this coarser taxonomic resolution, the corresponding

nMDS (Figure 7b) shows a very similar pattern to the one

obtained with the LTL classification. However, the visual compar-

ison needs to be treated carefully considering the moderate stress

values of the different nMDS representations. Spearman’s correla-

tion coefficient between the two patterns of taxonomic similarity

is high (q¼ 0.986), and the permutation routine confirms this

correlation as statistically significant (P< 0.05).

Discussion
Studies of benthic biodiversity based on underwater imagery are

faced with a similar challenge: the need to strike a compromise

between time-efficient imagery processing and extraction of eco-

logically relevant information (Van Rein et al., 2009; Molloy

et al., 2013). Our stepwise optimization protocol provides an ef-

fective means to rationalize image-processing trade-offs in terms

of (i) time allocated to images annotation, (ii) accuracy reached

in percentage cover estimates of taxa, and (iii) taxonomic resolu-

tion. This method can easily be adapted to survey natural reefs or

man-made structures in coastal areas by accounting for study-

Figure 5. Change in C.V. of percentage cover estimates as a function of number of points scored per image (x-axis) and actual percentage
cover of benthic categories (y-axis). The six panels correspond to the two different projection methods (i.e. random and stratified random)
and the three different habitats (i.e. natural, mattress and half-shell). C.V., represented by the colour scale, indicates the proportion of
variation around mean cover estimates (the smaller the C.V., the more accurate the estimate). The white thick line delineates the C.V. values
of 0.25. The black dotted lines represent the intersection between benthic categories with a percentage cover of 5% and the number of
points to obtain a C.V. value of 0.25. We defined the optimal number of points in each scenario as the intersect between these two lines.
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specific features related to targeted communities. Our approach

can be suitable for low subtidal and circalittoral hard bottom

areas where benthic communities have no or low stratified physi-

cal structure without dense macroalgae development. In this

sense, it may be particularly useful to monitor benthic coloniza-

tion of offshore artificial structures (wind turbine foundations,

pipelines, etc.).

An optimized imagery processing protocol to study
macroepibenthic communities
The focus of the present study on the detection of fine-scale spa-

tiotemporal changes in macroepibenthic communities colonizing

artificial structures led us to define our optimum method

following a stepwise approach. Indeed, given that most of the tar-

geted organisms have small mean size (�10 mm), we first

designed the way that images should be described to accurately

estimate the cover of taxa at the finest spatial scale (i.e. image)

and then we assessed the sampling effort required at the site scale

to encompass the larger spatial heterogeneity of local benthic di-

versity. This stepwise approach can serve as a general guideline

for other image-based benthic studies, even though other

approaches can be considered. For instance, Perkins et al. (2016)

simultaneously optimized the number of pictures per site and the

density of points per image along transects, albeit in silico using a

computer-generated data set. They showed that increasing the

number of images more effectively increased precision than in-

creasing the number of points. While it seems a key to apply on

field images of benthic communities a similar optimization

procedure that considers both parameters at the same time, it

remains difficult to achieve in practice. Indeed, this would require

to exhaustively describe a large set of images, which is time-con-

suming (�15 h per image in the present study). In our case, we

privileged a high point density per image rather than the number

of images per site because macroepibenthic sessile communities

are typically characterized by a high number of rare taxa with a

low patchiness (i.e. homogeneous repartition) and the dominance

of small and encrusting individuals. Furthermore, studies on ben-

thic colonization of artificial habitats, such as ours, generally ex-

amine differences in community composition between natural

and artificial habitats, or between different artificial habitats, at

local scale. Thus, they require detection of quantitative

differences in taxonomic composition at fine scales (e.g. across

locally heterogeneous substrates). To detect subtle changes in the

occurrence of particular species within relatively homogeneous

epibenthic communities, a high scoring effort is required at the

image level by increasing point density, rather than at the site

level.

Note that the level of accuracy required to tackle an ecological

question impacts the design of the imagery processing protocol.

In our case study, we optimized image scoring so as to reach a de-

sired accuracy arbitrarily set as a cover estimate’s C.V. of <0.25

for benthic categories with a percentage cover �5%. This thresh-

old ought to be adjusted depending on the scope of the study.

When the objective is only to detect large variations in benthic

community composition (for instance over a large spatial scale),

such a high accuracy in percentage cover estimates might only be

required for most common benthic categories (e.g. with percent-

age covers �10 or 20%) and a lower point density than in the

present study might then be optimal. Thus, we judge essential to

explicitly define a priori (i.e. before designing and implementing

the image scoring protocol) the degree of accuracy required to

tackle the ecological question(s) at stake. When image scoring

accuracy is not explicitly set at the onset of the study, it is critical

Table 1. Number of points required to reach a C.V. of 0.1, 0.2, and 0.25 for 5% cover benthic categories, the two different projection methods
and the three different habitats.

Percentage cover C.V.

Natural Mattress Iron half-shell

Stratified random Random Stratified random Random Stratified random Random

5 0.1 727 1 733 873 1 526 783 1 502
0.2 290 529 351 517 288 490

0.25 211 342 248 345 199 322

Table 2. Number of pictures and corresponding sampling area
required to reach the asymptotic point of the similarity–area curve
for each habitat.

Habitat Number of pictures Area (m2)

Natural 9.35 0.52
Mattress 8.85 0.55
Iron half-shell 9.05 0.36

Figure 6. Evolution of the mean Bray–Curtis similarity between two
equal subsamples (see “Methods” section) in function of the
sampling area (m2) for three different habitats.
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to assess the quality and robustness of the biological information

extracted from underwater imagery to avoid flawed ecological

interpretations.

Accounting for spatial distribution of benthic taxa
Taxa are rarely uniformly distributed in nature (i.e. homogeneous

distribution) and rather exhibit different degrees of clustering

(i.e. heterogeneous distribution of the individuals). This can im-

pact the effectiveness of spatially structured sampling methods

(Cochran, 1946; Dutilleul, 1993; Legendre et al., 2002; McGarvey

et al., 2016), such as the way count points are projected on the

images. The literature shows that stratified-random sampling de-

sign performs better than random sampling design to estimate

relative abundance of clustered taxa (i.e. higher accuracy in cover

estimates in our case; Cochran, 1946; McGarvey et al., 2016).

When a community tends towards a homogeneous spatial distri-

bution pattern, the different methods tend to perform equally.

Consequently, whatever the spatial pattern of the community,

stratified-random designs are always at least as accurate as the

random sampling designs (Cochran, 1946). This point explains

why in our study cases, the sampling effort (i.e. number of

points) required with random projection was always higher than

with the stratified-random projection to reach a similar precision.

Nevertheless, although random designs give wider confidence in-

terval of the percentage cover, these are unbiased, in the sense

that they will not be impacted by spatial pattern of the taxa

(McGarvey et al., 2016). Thus, the absence of regularity in spatial

distribution patterns of organisms has incited some authors to

generalize the use of the random design at the expense of strati-

fied random (Dethier et al., 1993; McGarvey et al., 2016).

In our study, we identified that spatial clustering of the sur-

veyed taxa influenced the accuracy of our estimates at two differ-

ent spatial scales, namely within images and across images at the

site level. At the image scale, the stratified-random projection sig-

nificantly reduces image-processing time as the number of points

required to accurately estimate percentage cover is up to 38%

smaller than with the random projection. Nevertheless, the opti-

mal point density showed between-habitat differences that are

more pronounced with the stratified-random projection than

with the random projection. Since we determined the optimal

number of points in a consistent way across habitats (i.e. to reach

a satisfactory accuracy for “�5% cover” categories), the fact that

a given accuracy is reached with a higher point density on mat-

tresses with respect to natural or half-shell habitats can only be

explained by a difference in spatial patterns of these categories.

Indeed, our exhaustive picture analyses (dedicated to image

sampling strategy) showed that benthic categories with a cover

between 5 and 10% occurred in more numerous and smaller

patches on mattress habitat (17.9 6 7.0 patches of 0.58 6 0.30

cm2; results not shown) than on the two other habitats (9/0 6 2.0

patches of 1.6 6 1/0 cm2 for natural habitat and 9.4 6 7 patches

of 1.4 6 0.7 cm2 for the iron half-shell; results not shown). This

suggests a more homogeneous spatial repartition of categories

(i.e. a lower level of clustering) on the mattress habitat, which is

consistent with the homogeneous nature and flatness of each sin-

gle concrete unit. Consistent with the statements exposed above

(Cochran, 1946; McGarvey et al., 2016), accurate estimating of

percentage cover of “�5% cover” taxa on mattress habitat

requires the highest number of points with stratified-random

projection.

At the site scale, we found that the minimum sampling areas

required to accurately describe benthic communities are habitat

specific, which reflects different levels of heterogeneity in com-

munity structure across images in each habitat. Specifically, a

larger sampling area is required to reach accurate estimating of

community composition on mattress and natural habitats relative

to half-shell habitat. Since our optimization approach is based on

the taxonomic similarity between images within a site, a larger

optimum sampling area means that the photographs are more

different from each other, or in other words, that the spatial dis-

tribution of communities is more heterogeneous (i.e. more clus-

tered repartition at the scale of sites). Such observations are in

agreement with recent simulations showing that a larger sampling

area was required to achieve an equivalent level of precision for

clustered distributions relative to homogeneously distributed

communities (Perkins et al., 2016).

To summarize, accurate estimating of macroepibenthic com-

munity composition requires a higher point density and a larger

sampling area on mattresses relative to natural and half-shelf

habitats. These are the consequences of a more homogenous

(a) (b)

Figure 7. nMDS of Bray–Curtis similarities of benthic community composition from underwater images of site B in September 2015. Benthic
organisms were described (a) at the lowest possible taxonomic level or, (b) using the coarser CATAMI classification. Each point represents a
single picture.
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spatial distribution of taxa within images, while the community

appears more variable across images at the site scale (which is

consistent with the fact that the exposition of concrete units to

the current is variable).

Relevant taxonomic sufficiency
Identification of benthic taxa from underwater imagery is difficult

and often cannot be performed at a high level of taxonomic reso-

lution, even by specialists. Consequently, using a suitable taxo-

nomic classification is critical to annotate benthic taxa from

underwater imagery. In our case, we showed consistent differen-

ces in community composition between the artificial (half-shell

and mattress) and natural habitats regardless of the taxonomic

resolution used. While the CATAMI classification used at its

most precise level is coarser than the LTL, with 39% less taxa

(27 and 44 taxa, respectively), it provides sufficient taxonomic

resolution to detect community-level changes. For instance, a

clear difference in taxonomic composition was highlighted be-

tween artificial and natural habitats’ epibenthic communities

(with both classifications) and a decrease in taxonomic resolution

does not significantly impact the output of our community analy-

sis. Similarly, James et al. (2017) showed that CATAMI per-

formed as well as well-resolved classifications when assessing

latitudinal gradient in benthic community structure.

Nevertheless, these researchers did not demonstrate the robust-

ness of CATAMI to characterize fine-scale changes in community

structure. In the present study, we consolidate these conclusions

by showing that the CATAMI image annotation scheme is also ef-

fective in characterizing local-scale changes in community com-

position across different hard habitats.

Our results corroborated by several studies on taxonomic

sufficiency showing that identification at high taxonomic level

(i.e. family level) allows reliable spatiotemporal analysis of ben-

thic communities (Warwick, 1988; Urkiaga-Alberdi et al., 1999;

De Biasi et al., 2003; Doerries and Van Dover, 2003). Warwick

(1993) explains these results by the fact that the family level often

brings together organisms showing similar major functional

traits, which are supposed to react similarly to environmental

fluctuations. In this study, we consider a resolution even coarser

than family taxonomic rank, but a similar hypothesis can be

applied to the different morphotype groups we used in the

CATAMI classification. In our case, it should be noted that the

differences in taxonomic resolution between the two classifica-

tions are sometimes marginal. Indeed, for 45% of the taxa, the

lowest possible taxonomic level identified from imagery corre-

sponds actually to the morphotype level used with the CATAMI

typology at its more precise level. In this sense, CATAMI classifi-

cation is well adapted for image-based descriptions of macroepi-

benthic communities.

In addition to providing consistent results relative to a study-

specific taxonomic classification, the standardized classification

CATAMI can make image analysis not only faster but also more

reliable. Indeed, identification at a lower taxonomic resolution

decreases misidentification risks and allows non-specialists to an-

alyse large sets of images. These advantages make CATAMI a

well-suited classification scheme in our case, and we recommend

its broader application for underwater imagery annotation to

facilitate the comparisons of ecological patterns across studies.

Conclusions
While our optimal image-processing protocol remains specific to

our case study, we believe that our stepwise strategy provides

transposable guidelines to rationally tackle the challenges inherent

to underwater image annotation. Specifically, we described how

to balance out the different imagery annotation choices (i.e. point

score density, sampling effort per site, and taxonomic resolution)

to reach a set level of accuracy in percentage cover estimates in a

time-effective manner.
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