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We investigate families of finite core vortex quartets in mutual equilibrium in a two-layer quasi-
geostrophic flow. The finite core solutions stem from known solutions for discrete (singular) vortex
quartets. Two vortices lie in the top layer and two vortices lie in the bottom layer. Two vortices have
a positive potential vorticity anomaly, while the two others have negative potential vorticity anomaly.
The vortex configurations are therefore related to the baroclinic dipoles known in the literature as
hetons. Two main branches of solutions exist depending on the arrangement of the vortices: the trans-
lating zigzag-shaped hetonic quartets and the rotating zigzag-shaped hetonic quartets. By addressing
their linear stability, we show that while the rotating quartets can be unstable over a large range of the
parameter space, most translating quartets are stable. This has implications on the longevity of such
vortex equilibria in the oceans. Published by AIP Publishing. https://doi.org/10.1063/1.5027181

I. INTRODUCTION

The notion of heton was introduced by Hogg and
Stommel1 to emphasise the ability of a discrete baroclinic vor-
tex pair to transfer heat. The word “heton” is indeed derived
from the word “heat.” When both the geostrophic and hydro-
static approximations are valid, any vortex of the top (respec-
tively, bottom) layer, which has negative (respectively, pos-
itive) intensity, induces a downward local distortion of the
interface between the layers. Such a configuration is referred
to as a “hot heton.” When the sign of the vorticity of each vor-
tex changes, the sign of the curvature of the interface changes
as well, and the situation is referred to as a “cold heton.”

Hetons exist and have been observed in the ocean: they
are the association of a surface (or subsurface) vortex and of
a deeper vortex of opposite polarity. The first mention of an
observed heton dates from the early 1980s from Gulf Stream
ring observations.2 Cold core rings detaching south of the
Gulf Stream can pair with subsurface anticyclones contain-
ing Sargasso Sea water. More recently, hetons were observed
in the Northeastern Atlantic Ocean, near the Iberian Peninsula.
Indeed, when the outflow of Mediterranean water, which fol-
lows the Iberian Peninsula, becomes unstable, eddies detach
from it as baroclinic dipoles (hetons). In this case, the anticy-
clone lies slightly deeper than the cyclone, in the heton. Such
hetons can collide: then, two cyclones or two anticyclones can
interact;3 for instance, the two anticyclones can merge, while
the cyclones remain in their periphery or are ejected away.4
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Such an interaction can create a new heton which can be asym-
metric (for instance, the anticyclone is larger and stronger than
the cyclone).

The equations of motion of a system of discrete vortices
in a two-layer rotating fluid were first obtained by Gryanik5

and then successfully used in numerous studies.1,6–15

The notion of “hetonic quartet” was introduced in the
literature16 for four discrete vortices lying in the same ver-
tical plane, in a two-layer flow. Such a hetonic quartet moves
at a constant translation velocity in a direction perpendicu-
lar to the plane containing the vortices. A structure consisting
of four vortices (two hetons) belongs to the class of hetonic
quartets only if the distances between the vortices satisfy a
special condition, an analog of the dispersion relation in the
wave theory. These quartets are referred to as zigzag-shaped
translating hetonic quartets.15 Another form of coplanar con-
figurations of four vortices in equilibrium in a two-layer fluid
consists of vortex quartets in solid-state rotation at a constant
angular velocity and is referred to as zigzag-shaped rotating
hetonic quartets.15

In this paper, we extend these results to finite core zigzag-
shaped hetonic quartets. We first determine numerically equi-
librium states (or V-states) for both rotating and translating
vortex quartets. We next address their linear stability. For the
sake of completeness, we also address the linear stability of the
equivalent discrete quartets. Studying configurations of vor-
tices in mutual equilibrium is essential as they are the only
configurations which can persist, if stable, for long times. We
show that in the range of parameters investigated, most of the
translating quartets are stable, except when the two vortices,
lying in different layers, nearer the centre of the structure are
almost aligned vertically. The instability is associated with
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the displacement of the vortices and is captured in the linear
stability analysis of both finite core vortices and discrete vor-
tices. On the other hand, the rotating quartets are found unsta-
ble over a wider range of parameters. Again, the instability is
related to the displacement of the vortices and is captured in
the linear stability analysis of both finite core discrete quartets.
Interestingly, in contrast to the translating quartets, the rotat-
ing quartets are linearly stable if the central vortices are nearly
aligned. We finally investigate the nonlinear time evolution of
the quartets on a few selected examples.

II. PROBLEM SETUP
A. Mathematical and numerical models

The oceans and the atmosphere are relatively shallow
layers of stratified fluid where the typical horizontal scales
are much larger than the typical height of the fluid. These
environments can be conveniently represented by (shallow)
horizontal layers of fluid of uniform density each in hydro-
static balance. A flow in such a multi-layer system is governed
by the Saint-Venant or shallow water equations.17 A two-
layer system can be seen as the simplest model to take into
account the background stable density stratification at leading
order. Large scale oceanic flows are also strongly influenced by
the background planetary rotation. For simplicity, we assume
a uniform background rotation quantified by the Coriolis
frequency f.

We consider here a system of two layers of fluid of equal
height at rest h1 = h2 = h = H/2, where H is the total fluid
height. In all our expressions, the subscript 1 refers to a quan-
tity defined in the top fluid layer, while the subscript 2 refers
to a quantity defined in the bottom layer. We set H = 1 with-
out loss of generality. The horizontal coordinates (x, y) are
normalised by a characteristic length scale L. In practice, L is
set to the mean horizontal radius of the finite core vortices;
hence, the finite core vortices have a non-dimensional radius
R = 1. We assume that the difference between the density ρ1

of layer 1 and the density ρ2 of layer 2, ρ2 � ρ1 = ∆ρ � ρ1,
ρ2. We assume that the relative vertical vorticity is small com-
pared to the Coriolis frequency and that the height perturbation
at the interface between the two layers is small compared to
the mean height of the layers. Under these assumptions, the
dynamics of the flow is well captured by the shallow-water
quasi-geostrophic model. The flow can be fully described in
terms of potential vorticity (PV).17 The quasi-geostrophic PV
anomaly qj in layer j is defined by

qj = ∆ψj +
L

L2
D

(ψ3−j − ψj), j = 1, 2, (1)

where ψj is the streamfunction of layer j and LD =
√

g′h/f
is the Rossby deformation radius. Here, g′ = g∆ρ/ρ1 is the
reduced gravity, with g being the gravitational acceleration.
Equation (1) shows that PV in layer j depends on the flow
in the other layer 3 � j. The flows in layers 1 and 2 are thus
coupled. The velocity field uj = (uj, vj) in layer j derives from
the streamfunction ψj as

uj = −
∂ψj

∂y
, vj =

∂ψj

∂x
. (2)

We consider an adiabatic and inviscid flow. In this case,
PV is materially conserved,

Dqj

Dt
= 0. (3)

The problem is conveniently decoupled by defining the
barotropic streamfunction ψb associated with the baroclinic
PV qb and the baroclinic streamfunction ψb associated with
the barotropic PV qc,

ψb =
ψ1 + ψ2

2
, ψc =

ψ1 − ψ2

2
, (4)

with
qb = ∆ψb, qc = ∆ψc − γ

2ψc, (5)

where γ =
√

2L/LD. These equations can be formally inverted
using the appropriate Green’s functions, namely,

Gb(x−x′) =
1

2π
ln |x−x′ |, Gc(x−x′) = −

1
2π

K0(γ |x−x′ |),

(6)
where the subscript b refers to the barotropic mode and the
subscript c refers to the baroclinic one, and K0 is the zeroth
order modified Bessel function of the second kind. The flow
in the layer j is simply recovered by projecting the barotropic
and baroclinic modes back into the layers, ψ1 = ψb + ψc and
ψ2 = ψb � ψc. By construction, Green’s functions provide the
solution for point vortices. Differentiating Green’s functions
provides the kernels to evaluate the velocity field, while the
second order derivatives provide the velocity gradients which
are used for the linear stability of the point vortex quartets.
For finite core vortices containing uniform PV defined by their
bounding contours, inverting (6) results in evaluating surface
integrals. These surface integrals are transformed into contour
integrals using Green’s theorem.18 Numerical simulations of
the nonlinear time evolution of the finite core quartets are per-
formed using contour surgery,19 which is an extension of the
method contour dynamics20,21 controlling the complexity of
the calculation by performing topological “surgery” on the
vortex bounding contours.

We determine numerically equilibrium solutions for finite
core hetonic quartets. The numerical methods are iterative and
make the vortex bounding contours converge to streamlines,
in the relevant rotating/translating reference frame. We have
used two different methods to evaluate and determine the equi-
librium states. The first one uses a partial linearisation of the
streamfunction and has been successfully applied in many pre-
vious studies.18,22–27 For the translating hetonic quartets, the
convergence of the method proved slow in practice. To rem-
edy this problem, a new numerical tool was developed, in
which the streamfunction is fully linearised. The method is
an extension of an existing method for two dimensional and
single-layer shallow water flows28–31 to the two-layer prob-
lem. Results stemming from the two methods were compared,
when available, and the results are identical to the accuracy of
the calculations. The linear stability analysis of the finite-core
configuration is done by analyzing azimuthal modes of defor-
mation of the vortices’ bounding contours.18 The numerical
method also allows analyzing the global displacement of the
contours and hence the mode which physically represents a
shift in the vortices relative positions.
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B. Position of the discrete vortices at equilibrium

Figure 1 provides a schematic representation of the four
vortex configurations in a two-layer fluid for both (a) the
rotating zigzag-shaped hetonic and (b) the translating zigzag-
shaped hetonic quartets, for the finite-core (not discrete) vor-
tices. We use the same notation for the distances separating
both discrete and finite-core vortices. We can see that if we
mentally draw a line connecting the centres of the vortices
then we obtain a zigzag, hence the name given to the quar-
tets. In both cases, the horizontal distance between the inner
vortices is denoted d, while the distance between the outer
vortices is b. For convenience, we define the non-dimensional
distances D = γd and B = γb. The dispersion equations
F(D, B) = 0 for the discrete stationary solutions and the expres-
sions for the corresponding translational V and angular ω
velocities are15

(D − B)2

2DB(D + B)
= 2K1(B + D) + K1(2D) + K1(2B) (7)

and

V =
κ

2π

[D2 + 4DB − B2

2D(B2 − D2)
+ K1(D + B)−K1(B−D) + K1(2D)

]

(8)
for the translating zigzag-shaped hetonic quartet and

B2 + D2

2DB
= (B + D)K1(B + D) + (B − D)K1(B − D)

+ DK1(2B) + BK1(2D) (9)

and

ω =
κγ2

4πD

[ B2 + 3D2

2D(B2 − D2)
−K1(B + D)−K1(2D)−K1(B−D)

]

(10)

for the rotating zigzag-shaped hetonic quartet. It should be
noted that the dispersion relations collapse to single curves for

FIG. 1. General geometry of the hetonic quartets. The panels show a verti-
cal cross section of coplanar finite core vortices: (a) rotating zigzag-shaped
hetonic quartets (cold and hot hetons), (b) translating zigzag-shaped hetonic
quartets (two cold hetons). Cyclones are in blue and anticyclones are in red.
κ > 0 is the surface integrated PV.

variables B and D. This is, strictly speaking, no longer true for
finite core vortices as an additional length scale, namely, the
vortex mean horizontal radius R, is introduced in the problem.
This means that the same value of D for two different values
of γ leads to two different values of d/R and hence different
values for the relative distance between the vortices.

The remaining of the paper focuses on the finite core
equivalent to the discrete equilibria described by Eqs. (7)–
(10). A similar approach was used to determine families of
finite core tripolar vortices in a previous study.18

III. V-STATES AND THEIR LINEAR STABILITY

We seek families of zigzag-shaped hetonic quartets
spanned by the distance between their inner vortices d and
for four different values of γ = 0.3, 0.5, 0.7, 1.0. The vor-
tices have uniform PV. We could not determine numerically
full branches of solutions for γ ≥ 1.2 due to numerical con-
vergence limitations. Without loss of generality, the vortices
have a mean horizontal radius of R = 1 and hence an area of
A = πR2 = π. Their PV is set to q =±2π, and therefore their sur-
face integrated PV is ±κ = ±qA = ±2π2. Figure 2 summarises
the global characteristics (d, b, ω) for the finite core rotating
zigzag-shaped hetonic quartets, and Fig. 3 presents the charac-
teristics (d, b, V ) for the finite core translating zigzag-shaped
hetonic quartets. In comparison, the results for the discrete
zigzag-shaped hetonic quartets with κ = 2π2 are shown in the
same figures. We recover two asymptotes for b = f (d) in both
cases. We see that b → ∞ as d → 0 and b → d as d → ∞.
In other words, the limiting cases are (i) a single vortex span-
ning both layers at the centre of the domain (d → 0) with two
opposite-signed vortices ejected to infinity (b→∞), (ii) a cold
heton and a hot heton (b ∼ d) infinitely distant (d → ∞) for
the rotating quartets and (i) a central heton (d → 0) with two
satellites of different signs at infinity (b→∞), (ii) again, two
cold hetons or two hot hetons (d ∼ b) infinitely distant (d→∞)
for the translating quartets. The results b = f (d) between
the finite core and the discrete solutions are in good agree-
ment. This is expected for global quantities such as the vortex
centroid locations.

The discrepancy between the results obtained for finite
core vortex equilibria and discrete vortex equilibria is due to
the facts that (a) the vortex charge κ is less localised in the finite

FIG. 2. Left: b = f (d) for γ = 0.3 (black), 0.5 (red), 0.7 (blue), 1 (green).
Solid lines correspond to finite core vortices; dotted lines correspond to point
vortices. The dashed line indicates the asymptote b = d. Right: Angular velocity
Ω = g(d), same conventions.
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FIG. 3. Left: b = f (d) for γ = 0.3 (black), 0.5 (red), 0.7 (blue), 1 (green).
Solid lines correspond to finite core vortices; dashed lines correspond to point
vortices. The dot-dashed line indicates the asymptote b = d. Right: Translation
velocity V = l(d), same conventions.

core problem as the vortices spread over some horizontal dis-
tance (their radius R) and (b) in particular finite core vortices
in different layers may horizontally overlap, while the discrete
vortices for the same value of (d, b) would still be clearly sep-
arated. This is in particular true for the inner vortices when
d is small. Recall that Eqs. (7) and (9) imply that the char-
acteristics of the discrete equilibria collapse to single curves.
However, as mentioned earlier, different values of γ for iden-
tical values of D, B imply different values for d/R, b/R as R = 1
for all γ. This is made evident by looking at the exact arrange-
ment and shape of the finite core equilibria at the turning point
(d∗, b∗) of the graph b = f (d), which corresponds to a single
point of the graph B vs D for the discrete vortices. The shape
of the vortices is shown in Fig. 4 for the finite core rotating
zigzag-shaped hetonic quartets and in Fig. 5 for the finite core
translating zigzag-shaped hetonic quartets. It is made clear that

FIG. 4. Rotating hetonic quartets: shape of the finite-core vortices at the turn-
ing point in the curve b = f (d) for γ = 0.3 (first panel), 0.5 (second panel), 0.7
(third panel), and 1.0 (fourth panel) in a window [�8, 8] × [�2, 2].

FIG. 5. Translating hetonic quartets: shape of the finite-core vortices at the
turning point in the curve b = f (d) for γ = 0.3 (first panel), 0.5 (second panel),
0.7 (third panel), and 1.0 (fourth panel) in a window [�12, 12] × [�2, 2].

the relative distances d/R, b/R are very different and hence that
the characteristics of the equilibria cannot be expected to be
the same. They cannot be exactly deduced from each other by
a simple scaling by γ. When the vortices are well separated
horizontally, their boundary is nearly circular as a result of the
weak interactions. This is also the case when two vortices lying
in different layers align near the centre (d → 0) or at infinity
(d ∼ b→∞). This is due to the fact that isolated axisymmet-
ric aligned hetons or aligned antihetons are in equilibrium. An
antiheton is a pair of like-signed vortices lying in different lay-
ers. Only when the four vortices are close together, the shape
of the vortices departs significantly from a circular cross sec-
tion in response to both the horizontal shear and vertical shear
the vortices induce on each other.

Figure 2 also shows the angular velocity ω of the rotating
zigzag-shaped hetonic quartets. As expected, ω→ 0 as d→ 0
and as d →∞. This is due to a combination of the compensa-
tion effect between the opposite sign vortices as the fact that
b→∞ (in both cases). The results for the finite core rotating
zigzag-shaped hetonic quartets and the discrete zigzag-shaped
hetonic quartets are in qualitative agreement despite showing
a significant difference in magnitude for ω, in particular, for
d < 2. The difference in angular velocity ω can be attributed
to the partial overlapping of the inner vortices in the finite
core case. Results for the translation velocity V of the trans-
lating zigzag-shaped hetonic quartets are presented in Fig. 3.
Again, there is an overall qualitative agreement for the results
obtained for the finite core vortices and the discrete vortices.
The translation velocity vanishes as d → ∞ and d → 0 and
reaches a maximum for a finite value of d which depends on γ.
Recall that Eq. (8) guarantees that the curves of V collapse
however to a single curve in variables (D, B) for the discrete
vortices. We again see a discrepancy in the magnitude of the
velocity. The velocity of the discrete equilibria is higher than
the velocity of the finite core equilibria; this is attributed to the
fact that all the PV is concentrated on singular charges in the
discrete approach rather than spread over finite areas.
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We next turn our attention to the linear stability of the
zigzag-shaped hetonic quartets. The linear stability of the
finite core quartets is examined by analyzing the eigenmodes
(azimuthal normal modes) of deformation of the vortex bound-
ing contours, as done in a previous study.18 The contour defor-
mation azimuthal normal modes are proportional to eσt , where
σ = σr + iσi is a complex number. The growth rates of a mode
are therefore σr , while σi is its frequency. One of the modes
analyzed corresponds to a global displacement of the indi-
vidual vortices.26 We also analyze the linear stability of the
discrete equilibria. To this purpose, we explicitly linearise the
equations of motion of the discrete vortices about the equilib-
rium, with respect to infinitesimal perturbations on the vortex
coordinates (xi, yi)i=1, 4. Again, the perturbations are taken as
normal modes proportional to eσt . The terms of the linearised
equations can be formally expressed by taking second order
partial derivatives of Green’s functions (6). The linearised sys-
tem leads to a 8 × 8 algebraic eigenvalue problem which is
solved numerically.

Linear stability results for the rotating zigzag-shaped het-
onic quartets are presented in Fig. 6. Rotating zigzag-shaped
hetonic quartets are (neutrally) stable for small values of d as
the largest growth rate is σr = 0. An unstable mode appears
for d ≥ dc, where dc is a threshold depending on γ for both
the discrete and finite-core vortices. We denote dvc the sta-
bility threshold obtained for the discrete vortices and df

c the
stability threshold obtained for the finite-core quartets. The
thresholds dvc correspond in fact to a unique non-dimensional
value Dv

c = γdvc , while the growth rate of the modes scales
as γ2. The latter scaling comes from the scaling of the veloc-
ity gradients. The mode of instability is observed for both the
discrete vortices and the finite core quartets, and the values
of the thresholds dvc and df

v obtained for the two models are
in remarkable agreement. We therefore deduce that the insta-
bility is physically related to a relative displacement of the
vortices. The stability threshold df

c for the finite core zigzag-
shaped hetonic quartets also scales as γ�1, at least at leading
order. Recall however that the vortices for the same value
of D = γd but different values of γ have different shapes;

FIG. 6. Growth rateσ of the most unstable mode for rotating hetonic quartets
versus the distance d for γ = 0.3 (black), 0.5 (red), 0.7 (blue), 1 (green).
Solid lines correspond to finite core vortices; dotted lines correspond to point
vortices.

see Fig. 4. As a consequence, one expects differences in the
details of the instability for the finite-core zigzag-shaped het-
onic quartets between cases with different γ. The growth rate
of the instability reaches a maximum for a finite value of d
and slowly decreases back to zero as d increases. The limit
case of a central single vortex occupying both layers (d → 0)
with two satellites ejected at infinity (b → ∞) is neutrally
stable as one expects due to the lack of interaction. The dis-
crepancy between the values of σr is attributed to horizontal
spreading and/or to overlapping of the finite-core vortices, as
mentioned above. Finally, we note that a similar instability has
been observed for three-dimensional quartets in a continuous
stratification.32

The linear stability of the translating zigzag-shaped het-
onic quartets is drastically different. The results are presented
in Fig. 7. Using the same notations, the translating zigzag-
shaped hetonic quartets are all neutrally stable for d > dvc
(discrete quartets) or d > d f

c (finite core quartets), where
dvc is a lower stability threshold for the discrete translating
zigzag-shaped hetonic quartets and d f

c is a lower stability
threshold for the finite core translating zigzag-shaped hetonic
quartets. These thresholds, again, correspond to a unique non-
dimensional value for the discrete translating zigzag-shaped
hetonic quartets Dv

c = γdvc . On the other hand, all translating
zigzag-shaped hetonic quartets are unstable for d < dc. The
growth rate of the instability tends however to 0 as d → 0.
This is true for both the finite core and the discrete translat-
ing zigzag-shaped hetonic quartets, and the stability results are
qualitatively similar for both models. Again, this means that
the instability is related to a displacement of the vortices. The
main difference between the two cases is that the range of the
distance d where the quartets are found unstable is narrower
for the discrete vortices for the finite core vortices. The stabil-
ity threshold dvc for the discrete vortices, for a given γ, is also
smaller than df

c the stability threshold for finite core vortices.
For the finite core translating zigzag-shaped hetonic quartets,
the instability occurs typically in a region where d/R < 1. The
overlapping of the inner vortices is thus likely to strongly affect
the instability. Results for the discrete vortices indicate that the

FIG. 7. Growth rate σ of the most unstable mode for translating hetonic
quartets versus the distance d for 0.5 (red), 0.7 (blue), 1 (green). Solid lines
correspond to finite core vortices; dashed lines correspond to point vortices.
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instability only occurs when some PV is found very close to
the centre of the domain (d < dvc � 1). For finite core vortices,
some of the PV extends near the centre of the domain even for
d > dvc , and this may trigger the instability.

IV. NONLINEAR EVOLUTIONS

We next present the nonlinear evolution of the zigzag-
shaped hetonic quartets on four selected examples. In the first
one, we consider the evolution of a finite core rotating zigzag-
shaped hetonic quartet for γ = 1, d = 0.492 > df

c , b = 2.02,
and ω = 0.419. The results are presented in Fig. 8. The vor-
tices are shown in a reference frame steadily rotating at the
equilibrium angular velocity ω; hence any motion observed
in this frame corresponds to a departure from the equilibrium.
No explicit perturbation is superimposed to the initial condi-
tions. Small perturbations arise naturally from the numerical
noise. The finite core rotating zigzag-shaped hetonic quartet
remains in near equilibrium for a long period of time, up to
t ∼ 25 ' 1.67 T rot , where T rot = 2π/ω ' 15 is the rotation
period of the quartet. Then the four initially co-planar vortices
start to drift apart and become misaligned. The vortices start to
deform as a result of their relative displacement. It should be
noted however that the vortices do not undergo strong defor-
mations and that they remain compact patches of PV. They are
not destroyed nor broken down into smaller vortices and fila-
ments by the shear and strain they induce on each other. This
is another indication that the instability primarily affects the
location of the vortex centroids rather than their shape. Pure
deformation modes often result in the breaking or merger of
the vortices.25,33

FIG. 8. Top view of the vortex bounding contours for the unstable rotating
hetonic quartet with γ = 1, q = ±2π, A = π, d = 0.492, b = 2.02, ω = 0.419 at
t = 0, 26, 28, and 30. Solid contours represent vortices in the top layer, while
dashed contours represent vortices in the bottom layer. The views are shown
in the reference frame rotating at the equilibrium angular velocity ω.

FIG. 9. Top view of the vortex bounding contours for the stable finite core
rotating zigzag-shaped hetonic quartet with γ = 1, q = ±2π, A = π, d = 0.234,
b = 2.41, ω = 0.332. Top view of the vortices at t = 0, 2, 4, 6, and 8. Solid
contours represent vortices in the top layer, while dashed contours represent
vortices in the bottom layer. The views are shown in the fixed (non-rotating)
frame to illustrate the steady rotation. The vortices remain in mutual equi-
librium until the end of the simulation at t = 100. The vortex centroids are
indicated by small filled disks, and they are joined by a line to show the
solid-state rotation.

The steady rotation of a stable finite core rotating zigzag-
shaped hetonic quartet is illustrated in Fig. 9. In this example,
γ = 1, d = 0.234 < df

c , b = 2.41, and ω = 0.332. The vor-
tices are shown in a fixed (non-rotating) frame to show the
steady rotation of the quartet. The simulation was run till
t = 100 ' 5.3 T rot , where T rot ' 18.9 is the rotation period of
the quartet. The quartet was still steadily rotating at that time.

We next turn to finite core translating zigzag-shaped
hetonic quartets. In the first example, γ = 1, df

c = 0.416 < df
c ,

b = 0.5.93, V = 0.163, and the quartet is unstable. Results
are presented in Fig. 10 in a reference frame translating at V.
Comparing the typical order of magnitude of the growth rates
obtained for the rotating zigzag-shaped hetonic quartets and
the translating zigzag-shaped hetonic quartets, we see that the
instability affecting the latter is weaker than the instability

FIG. 10. Top view of the vortex bounding contours for the unstable finite
core translating zigzag-shaped hetonic quartet with γ = 1, q = ±2π, A = π,
d = 0.416, b = 5.93, V = 0.163 at t = 0, 400, 425, and 430. Solid contours
represent vortices in the top layer, while dashed contours represent vortices
in the bottom layer. The views are shown in the reference frame translating at
the equilibrium velocity.
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FIG. 11. Stable translating hetonic quartet for γ = 1, q = ±2π, A = π,
d = 0.619, b = 4.35, V = 0.242. Top view of the vortices at t = 0, 10, 20,
and 40. Solid contours represent vortices in the top layer, while dashed con-
tours represent vortices in the bottom layer. The views are shown in the fixed
(non-rotating) frame to illustrate to steady rotation. The vortices remain in
mutual equilibrium until the end of the simulation at t = 500. The vortex cen-
troids are indicated by small filled disks, and they are joined by a line to show
the uniform translation.

affecting the former, with maximum growth rates almost an
order of magnitude smaller. The instability typically grows at
a slower pace for the translating zigzag-shaped hetonic quar-
tets. Indeed, in the present example, the vortices in the quartet
are only slightly deflected from their equilibrium position by
t = 400 ' 12.4 T trans, where T trans = R/V is a translation time
scale set to the time taken by the quartet to move forward by
a vortex radius. The vortex configuration becomes asymmet-
ric with the central heton moving to the right getting loser to
the right-hand outermost vortex satellite. Again, we observe a
small variation in the shape of the vortices due to their relative
displacement (hence vortices are subjected to time dependent
strain and shear). The interaction is nonetheless not destruc-
tive, and the four vortices conserve their initial volume. Such
an exchange of vortex partner is similar to the heton evolutions
observed in the ocean.

We finally illustrate the steady translation of a stable finite
core translating zigzag-shaped hetonic quartets for γ = 1,
d = 0.619 > df

c , b = 4.35, and V = 0.242. Here T trans '

4.13. The simulation was run up to t = 500 ' 120 T trans, where
no sign of deviation was observed. Results are presented in
Fig. 11 in a fixed (non-translating) reference frame, where the
uniform translation of the quartet is made evident.

V. CONCLUSION

We have numerically determined two new families of
equilibrium states (V-states) for finite core rotating and trans-
lating zigzag-shaped hetonic quartets. These states stem from
the existence of equilibrium solutions for configurations of
four co-planar discrete vortices. The families are characterised
by the value of γ, which is the inverse Burger number, and
are spanned by the distance d separating the two innermost
vortices of the quartets. We have found that rotating zigzag-
shaped hetonic quartets are unstable for d > dc, where dc is
a γ-dependent threshold. For discrete rotating, the value of
dvc corresponds to a unique non-dimensional of Dv

c = γdc
v .

This is also true at leading order for the finite core rotating
zigzag-shaped hetonic quartets. The growth rate of the insta-
bility reaches a maximum for a finite value of d and vanishes as
d→∞. The situation is reversed for translating zigzag-shaped
hetonic quartets. Indeed such quartets are neutrally stable for
d > dc, and only quartets with d < dc are found unstable. The
instability is typically weaker than for the translating rotat-
ing zigzag-shaped hetonic quartets as the growth rate of the
instability for the translating quartets is typically an order of
magnitude smaller than the growth rate of the instability for the
rotating quartets. The mode of instability is recovered (at least
qualitatively) when modeling the quartets by discrete vortices.
This confirms that the instability is related to a displacement
of the vortex centroids.

We conclude that while rotating zigzag-shaped hetonic
quartets are unstable for a large range of the parameter d, most
of the translating zigzag-shaped hetonic quartets are neutrally
stable as the instability only occurs for a small range 0 <
d < dd

c < 1, from our results. It should also be noted that the
growth rates of the instability grow as γ grows which is when
the baroclinic effects increase (a two-dimensional barotropic
equivalent flow is recovered for γ → 0).

The new family of stationary states obtained in this paper
supplements the class of known stationary solutions in a two-
layer rotating fluid.18,34–39 Finally we note that rotating quar-
tets exist in the ocean as an intermediate stage in the interaction
of two hetons.3,4 This was observed in the Gulf of Cadiz in the
eastern part of the Atlantic Ocean.
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