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This paper addresses the dynamical coupling of the ocean's surface and the ocean's interior. In particular, 
we investigate the dynamics of an oceanic surface jet and its interaction with vortices at depth. The jet is 
induced by buoyancy (density) anomalies at the surface. We first focus on the jet alone. The linear stability 
indicates there are two modes of instability: the sinuous and the varicose modes. When a vortex in present 
below the jet, it interacts with it. The velocity field induced by the vortex perturbs the jet and triggers its 
destabilisation. The jet also influences the vortex by pushing it under a region of co-operative shear. 
Strong jets may also partially shear out the vortex. We also investigate the interaction between a surface 
jet and a vortex dipole in the interior. Again, strong jets may partially shear out the vortex structure. The 
jet also modifies the trajectory of the dipole. Dipoles travelling towards the jet at shallow incidence angles 
may be reflected by the jet. Vortices travelling at moderate incidence angles normally cross below the jet. 
This is related to the displacement of the two vortices of the dipole by the shear induced by the jet. Intense 
jets may also destabilise early and form streets of billows. These billows can pair with the vortices and 
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Interaction between a surface jet and internal vortices

I. INTRODUCTION

Mesoscale vortices play an important part in the transport of momentum, heat and other

tracers such as salinity in the oceans. Current estimates? indicate that such vortices may

contribute 50% or more to the overall transport. Modern satellite imagery and measurements

provide a good picture of the vortices populating the ocean surface. But vortices exist also

at depth. Although many vortices at depth induce a signal at the surface, we do not know

the full three-dimensional structure of oceanic vortices in general. Available information has

come from limited measurement campaigns at sea? , or ARGO float profiles? . However,

these are too sparse to provide any comprehensive description of such vortices. Under these

circumstances, numerical modelling may provide helpful insights on how vortices at depth

behave and interact with dynamical surface structures such as buoyancy anomalies.

Vortices coexist, and therefore interact, with other vortices or with other dynamical

structures such as jets. These jets may develop at depth and are related to distributions of

potential vorticity. Alternatively, they can be generated at the surface by either potential

vorticity or by anomalies in the density (or buoyancy) field. In the present paper we address

the latter situation.

Previous works have focused on a single deep vortex interacting with elliptical patches of

surface buoyancy? or with a surface buoyancy filament? . Sokolovskiy et al.? studied the

interaction between a surface jet and subsurface vortices in a three-layer model. In their

study, the jet was generated by the central part of a large gyre. The purpose of this research

was to propose a theoretical framework for the study of the interaction of Mediterranean

Eddies (Meddies) with the Azores jet and front. Vandermeisch et al.? also studied in a two

and a half layer model the interaction of a deep vortex with a baroclinically unstable jet, the

possible crossing of the vortex under and through the jet, and the resulting destabilisation

of the jet, as an application to Meddies crossing the Azores Current.

Here we study a similar interaction but in a different context. Instead of generating the

jet by a large gyre, we consider a finite-width distribution of surface buoyancy anomaly.

This distribution of buoyancy induces a jet at the surface. The influence of the surface jet

penetrates downwards but is strongest near the surface. We first describe the characteristics

of the jet alone. In particular, we investigate its linear stability and examine its nonlinear

evolution when perturbed by an unstable mode. We next investigate the jet when it interacts
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with vortices at depth. We first consider a single vortex. A single vortex does not move by

itself, although it is entrained by the jet when it is in its vicinity. The vortex tends to align

with the part of the jet with which it is in co-operative shear. Intense jets are also able to

partially shear out the vortex, with adverse shear being more destructive. We next consider

a pair of opposite-signed vortices, a vortex dipole, interacting with the jet. A dipole has a

self-induced velocity, and has therefore a motion relative to the jet even when it is distant

from it. Several scenarios are possible. The dipole can cross below the jet or be reflected by

it. Intense jets can separate the dipole, and even partially destroy its component vortices.

The paper is organised as follows. The mathematical model is introduced in section II.

The linear stability and the nonlinear dynamics of the jet alone is discussed in section III. The

interaction between the surface buoyancy jet and a monopolar vortex is presented in section

IV while section V addresses the interaction between the jet and a dipole. Conclusions and

ideas for future research are offered in section VI.

II. THE QUASI-GEOSTROPHIC MODEL

The quasi-geostrophic model is the simplest dynamical model which takes into account

the dominant effects of the background planetary rotation and the stable density stratifica-

tion in the ocean. This model is derived from a Rossby number Ro = U/(fL) expansion of

the Boussinesq equations, for order one Burger number Bu = (Ro/Fr)2. Here, U is a char-

acteristic horizontal velocity scale, L is a horizontal length scale, f is the Coriolis frequency,

and Fr = U/(NH) is the Froude number, where H is a vertical length scale, and N is the

buoyancy (or Brunt-Väisälä) frequency. For the sake of simplicity, we assume that both f

and N are constant. We replace the physical depth z∗ by a stretched vertical coordinate

z = z∗N/f (N/f � 1 in practice), leaving the horizontal coordinates x and y unchanged.

In the coordinates (x, y, z), the three-dimensional quasi-geostrophic inversion operator, for

continuous stratification, is a simply the Laplacian ∆. The linearity of this operator allows

one to decompose the total streamfunction of the flow ψ into the sum of two terms. The first

term ψi is the streamfunction induced by the potential vorticity distribution in the interior

of the ocean, while the second part ψs is induced by the surface buoyancy distribution at

z = 0. The inversion equations to be solved are

ψ = ψi + ψs, (1)
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∆ψi = q, ∆ψs = 0, (2)

∂ψs
∂z

∣∣∣∣
z=−H

= 0,
∂ψs
∂z

∣∣∣∣
z=0

=
b

N
, (3)

∂ψi
∂z

∣∣∣∣
z=−H

= 0,
∂ψi
∂z

∣∣∣∣
z=0

= 0, (4)

where a flat, impermeable ocean bottom at z = −H is assumed. The incompressible hori-

zontal velocity u(x, y, z, t) is found from the total streamfunction ψ using

u = ∇⊥ψ =

(
−∂ψ
∂y
,
∂ψ

∂x

)
. (5)

Additionally, in the absence of friction and diabatic effects, both the potential vorticity

(hereinafter referred to as PV) q and the buoyancy b are materially conserved:

Dq

Dt
= 0, and

Db

Dt
= 0. (6)

In the last equation, the buoyancy b is only advected at the surface. Finally, we take the

horizontal directions x and y to be periodic, with period 2π without loss of generality. The

scales of vortex structures placed within the domain are taken to be sufficiently small to

limit the effects of periodicity.

III. THE JET

A. Geometry

We first investigate the dynamics of the jet alone. In this case, it is simpler to consider

a semi-infinite ocean, H → ∞. This assumption has little impact on the dynamics at

the surface z = 0 itself. The problem is then formally governed by the Surface Quasi-

Geostrophic (SQG) equations? . Retaining the horizontal periodicity, we consider a surface

buoyancy distribution (at z = 0) of the form

b̄(y) =

2bm
y

a

√
1− y2

a2
|y| ≤ a,

0 |y| > a

(7)
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in the fundamental periodic domain −π ≤ x ≤ π, −π ≤ y ≤ π.

The buoyancy profile b̄ and the resulting longitudinal (along-jet) velocity profile ū are

shown in Figure ??. The figure also shows the velocity induced at a depth of z = −a to

illustrate the effect of the jet in the ocean interior. We see that the jet at depth is wider

and smoother than at the surface. This can be explained by the depth-dependence of the

horizontal Fourier decomposition of the streamfunction. Recall that ψs is harmonic. Then,

the horizontal Fourier coefficients of ψs at depth z are ψ̂sk(z) = ψ̂sk(z = 0)e|k|z, where k =

(k, l) is the horizontal wavevector. Recall that z < 0 is the ocean interior. High wavenumber

Fourier modes thus decay more rapidly with depth than low wavenumber ones. Note also

that since the profile is x−independent, the y−component of velocity v̄ = ∂ψs/∂x = 0.

Hence, the basic flow at the surface can be seen as uni-directional.

FIG. 1. The surface quasi-geostrophy buoyancy jet considered in this study: Left: non-dimensional

buoyancy anomaly profile b̄(y)/bm (blue) and associated non-dimensional longitudinal velocity

profile ū(y)/bm (red) versus the scaled transversal coordinate y/a at the surface z = 0. Right:

ū(y)/bm at a depth of z = −a.
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B. Linear stability

We next examine the linear stability of the jet. The stability of jets has been studied

extensively, particularly within two-dimensional incompressible flows? ? . It is well known

that two distinct branches of instabilities exist for such flows: the sinuous and the varicose

modes, which are distinguished by the symmetry of their eigenmodes. The stability of

a surface buoyancy jet has not been addressed within the context of the Surface Quasi-

Geostrophic (SQG) model to our knowledge. We expect however, due to similarities in the

problems, the jet will likely exhibit both sinuous and varicose modes.

Following the analysis performed in Reinaud, Dritschel and Carton (2016)? , we examine

stability by considering the deformation of iso-lines of the buoyancy anomaly y = ȳ +

η(x, ȳ, t). The perturbed buoyancy field at the surface is

b(y) = b̄(ȳ) = b̄(y − η) = b̄(y)− η db̄
dy

+O(η2). (8)

The linearised kinematic condition for the displacement states

∂η

∂t
= v′, (9)

where the transverse perturbation velocity v′ can be recovered from the linear buoyancy

perturbation b′ = −η db̄/dy by inversion (i.e. by solving the associated Poisson problem).

For a perturbation with longitudinal wavenumber k,

η(x, y, t) = <{η̃(y)ei(kx−σt)} (10)

with σ = σr + iσi ∈ C, we obtain the following eigen-problem after inversion:

(kū(y)− σt)η̃(y) =
2kbm
πa2

∫ a

−a
η̃(y′)

1− 2y′2√
1− (y′/a)2

K0(k(y − y′))dy′. (11)

This does not appear to have an analytical solution, and hence, we solve it numerically.

To do this, the integral is discretised after the substitution y = −a cos θ, θ ∈ [0, π] , over

n = 2048 equally spaced intervals in θ. This leads to a 20482 algebraic eigenvalue problem for

each value of ka. We determine the eigenvalues (complex frequencies) σ for 0 ≤ ka ≤ 3.3 in

increments of ∆(ka) = 0.002. Figure ?? shows the two largest growth rates for the unstable

modes σi normalised by the characteristic jet shear bm/a, versus the normalised wavenumber

ka. We find two continuous, smooth curves σi(k) which cross over at (kca, σcia/bm) =

6



Interaction between a surface jet and internal vortices

FIG. 2. Non-dimensional growth rates of the two modes of instability σia/bm existing on a surface

quasi-geostrophic jet as a function of normalised wavenumber ka. The sinuous mode is in black

while the varicose mode is in red.

(0.546, 0.081). Each curve corresponds to a different mode of instability. For k < kc (long

waves), the dominant mode of instability is varicose. For k > kc this switches to sinuous

which remains dominant until both modes stabilise around ka = 3.25 (the short-wave cut-

off). The peak instability for the sinuous mode occurs at ka = 1.772 with σia/bm ' 0.260

while the peak instability for the varicose mode occurs at ka = 1.586 with σia/bm ' 0.158.

The spatial structure of the two modes of instability is illustrated in Figure ??. We plot

a selection of the deformed iso-buoyancy lines y(x, ȳ) = ȳ + Re{η̃(ȳ)eikx} for the two most

unstable modes for ka = 0.25 < kca and ka = 1.762 > kca. The sinuous mode, which is

the second fastest growing mode for k < kc, and the fastest growing mode for k > kc is

symmetric (η̃(−ȳ) = η̃(ȳ)), while the varicose mode is antisymmetric (η̃(−ȳ) = −η̃(ȳ)).

We next illustrate the nonlinear evolution of the jet initially perturbed by a small am-

plitude eigenmode using CLAM (the Combined Lagrangian Advection Method)? adapted

to SQG, on a 10242 inversion grid. Figure ?? shows the time evolution of the jet perturbed

by the most unstable mode for ka = 1.762 (sinuous) close to the peak instability. To limit

the influence of the periodic images in the y−direction, we ensure that the computational

domain contains two longitudinal periods. The jet destabilises and the buoyancy field reor-
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FIG. 3. Deformation of iso-buoyancy contours (eigenmodes) associated with the linear instabilities

of a surface quasi-geostrophic jet. (a) Most unstable mode for ka = 1.762, (b) second most unstable

mode for ka = 1.762, (c) most unstable mode for ka = 0.25, and (d) second most unstable mode

for ka = 0.25.

ganises itself in a pattern reminiscent of a von Kármán street. This is the typical pattern

of evolution for the sinuous mode. The thin buoyancy filaments which join adjacent billows

destabilise and break up into many small-scale structures. The destabilisation of stretch-

ing buoyancy filaments is related to the increase in internal shear as the filament thins;

eventually this shear is great enough to cause instability? ? .

Figure ?? illustrates the second unstable mode for non-dimensional wavenumber ka =

1.582, close to the peak instability for this mode. As above, we ensure that the computational

domain contains two longitudinal periods. Although the sinuous mode is still the fastest

growing mode in theory, perturbing the varicose mode alone allows one to observe the
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FIG. 4. Time evolution of the buoyancy anomaly for a surface quasi-geostrophic jet perturbed by

the most unstable mode (sinuous) with ka = 1.762. Times shown (left to right): t = 20, 40, and

97.5.

FIG. 5. Time evolution of the buoyancy anomaly for a surface quasi-geostrophic jet perturbed by

the most unstable mode (varicose) with ka = 1.584. Times shown (left to right): t = 25, 50 and

97.5.

manner in which this mode destabilises. We see the formation of a sequence of billows, now

symmetric with respect to the axis of the jet, in accordance with the initial perturbation.

We finally compare the nonlinear growth of the instability to the prediction obtained

from the linear stability analysis during the early, linear stage of the flow time evolution.

To that purpose, we first compute the perturbation kinetic energy defined as

Kp(t) =
1

2

∫∫
Domain

(
u(x, y, t)− ū(y))2 + v(x, y, t)2

)
dA. (12)

The kinetic energy Kp ∝ e2σit, as it is proportional to perturbation fields squared, hence

ln(
√
Kp) ∝ σit. Figure ?? shows ln(

√
Kp(t)) is plotted against the non dimensional time
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t(b/a) such the non dimensional slope σa/b can be read directly from the graphs. The slope

of the nonlinear growth of the perturbation is in good agreement with the linear stability

results.

FIG. 6. Time evolution of ln(
√
Kp), where Kp is the perturbation kinetic energy. The dashed line

indicates the growth rate obtained from the linear stability analysis for (a) the sinuous mode at

ka = 1.762, and (b) the varicose mode at ka = 1.584.

IV. INTERACTION BETWEEN THE JET AND A MONOPOLAR

VORTEX

FIG. 7. Geometry of a surface jet interacting with a single interior vortex.

We next investigate the interaction between a surface jet and a single vortex at depth.

For this purpose we use the CASL (Contour Advective Lagrangian) algorithm? , adapted
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to the three-dimensional quasi-geostrophic model, and including a buoyancy distribution at

the surface? . The geometry is illustrated in Figure ??. The depth of the domain is set to

H = 2π so that the ocean model spans −2π < z < 0. The overall size of the domain is

then (2π)3. Recall that the vertical direction is rescaled by the ratio N/f � 1; hence, in

the original physical dimensions, horizontal scales are much larger than vertical scales. The

vortex at depth is taken to be a sphere of uniform PV q0, and of diameter d = a, the same

as the half-width of the jet. In all simulations, we set a = 0.5. This means that d/H ' 0.08.

For a 5km-deep ocean, this corresponds to a structure with a vertical span of 400m, a scale

comparable with actual observations? . This geometry also allows one to confine the jet in

the horizontal and to limit the influence of periodic images.

In this section, the jet is initially parallel to the y−axis. The vortex is located at a depth

h from the surface and can be offset in the x-direction from the jet axis by a distance %. An

important non-dimensional parameter characterising the interaction is

Λ =
bm
aq0

=
Tq
Ts
, (13)

which is the ratio of a scale of the shear induced by the jet, bm/a, to the PV of the vortex,

q0. The parameter Λ can also be seen as the ratio of a typical time scale associated with

the vortex, Tq, to a time scale associated with the jet, Ts. A large value of Λ corresponds

to a strong jet interacting with a relatively weak vortex. We set q0 = 2π without loss of

generality and we adapt bm to obtain the targeted value of Λ.

Note that the PV in the vortex is positive, so the vortex rotates in the counter-clockwise

direction in all cases. The direction of the jet is set by the sign of bm. For bm > 0, the

jet flows in the positive y direction (at its centre), and vice versa. However, since the jet

contains both signs of buoyancy anomaly, half of the jet is always in co-operative shear

with the vortex (rotating in the same direction), while the other half is in adverse shear.

As a consequence, the sign of bm is irrelevant. The two situations bm > 0 and bm < 0 are

symmetric. We restrict attention therefore to bm > 0 in this study.

We first set the relative depth of the vortex to h/a = 1. The quasi-geostrophic equations

are solved on a basic 2563 inversion grid, while the surface z = 0 and the three adjacent

layers use a finer 10242 grid to better resolve the fine-scale structures characteristic of SQG

flows. Notably, 1024 layers are used to represent the interior PV (where present). Most of

these layers have no PV variations and thus require no computational work to evolve the
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FIG. 8. Surface jet and an internal vortex with h/a = 1, Λ = 1, % = 0. Top panels: top view of

the flow at times t = 1, 2, 3, and 4.4. Jet (blue where b < 0, red where b > 0), vortex (black).

Bottom: trajectory of the vortex centre.

PV distribution. The layers however enable a more accurate representation of the vertical

variation of PV and a more accurate inversion to find the velocity field. Interior PV and

surface buoyancy contours are followed in a Lagrangian manner (as connected points on

curves), and regularised by ‘surgery’? at a small scale set to a 16th of the inversion grid size

(corresponding to a resolution of 40963 or finer). This setup is standard in CASL, and can

be referred to as a 2563-CASL simulation, all the other settings being implied? .

Figure ?? illustrates the typical interaction between a vortex and a jet when the vortex

is initially located on the jet axis. Here, the vortex is initially placed at (x, y, z) = (0,−π +

d/2,−a), and the intensity ratio is set to Λ = 1. The left part of the jet (blue in the figure)

is in co-operative shear with the vortex while the red part is in adverse shear. The vortex

locally induces a rotating flow which perturbs the jet in a way which is consistent with a

sinuous mode. The instability starts above the vortex and develops both in time and in

space as the growing perturbation is advected by and within the jet. It should be noted that

since the velocity induced by the jet decreases with depth, the vortex is not advected at the

same velocity as the perturbation at the surface. Also, the vortex does not remain aligned
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with the jet axis. The vortex is displaced towards the part of the jet in co-operative shear.

This is confirmed by tracking the vortex centre xc =
∫∫∫

V
xdV/

∫∫∫
V

dV in time, where V

is the volume of the uniform PV vortex. The internal vortex tends to align with the nearest

counter-clockwise billow forming at the surface. This is similar to the vortex alignment

observed for like-signed vortices.? The vortex also feels the more destructive influence of

the adverse shear induced by the right-hand side of the jet. A part of the vortex is sheared

out and is stretched into a filament as the flow evolves.

FIG. 9. Top view of a surface jet and an internal vortex with h/a = 1, at t = 4.4 (same as bottom

right frame in Figure ??) for Λ = 0.02, 0.1, 0.2, and 0.5 (left to right).

The influence of the relative strength of the jet and of the vortex, as measured by the

parameter Λ, is examined next. Results are shown in Figure ?? for the same case as above

but for Λ = 0.02, 0.1, 0.2 and 0.5 at the fixed time t = 4.4 (corresponding to the top,

right frame of Figure ?? for Λ = 1). Decreasing Λ, while keeping all the other parameters

the same, has a dual effect. First it increases the time scale Ts associated with the jet,

leading to slower internal dynamics (slower destabilisation). It also decreases the shear felt

by the vortex. However, the initial perturbation induced by the vortex on the jet remains

unchanged (at least until nonlinear effects become significant). It is clearly evident that the

larger Λ is, the faster the development of the jet is. Moreover the advection of the vortex

is enhanced by a larger value of Λ as both these effects are proportional to the maximum

buoyancy bm, hence to Λ. For weak jets (small Λ), the jet scarcely destabilises and mainly

twists locally over the vortex, even at later times (not shown). Eventually, the jet always

breaks up, but the influence of a strong vortex greatly modifies the way in which this occurs.

The same is true for the interaction between a vortex and a surface filament? .

We next examine the influence of the depth h of the vortex, holding other parameters
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FIG. 10. Top view of a surface jet and an internal vortex with Λ = 1, at t = 4.4, for h/a = 1, 2,

and 4 (left to right).

fixed. In Figure ??, for Λ = 0.5, we compare simulations with h/a = 1, 2 and 4 at a fixed

time. The closer the vortex is to the surface, the larger the (sustained) perturbation it

induces on the jet. Varying h however does not affect the sensitivity of the jet to perturba-

tions, and the jet in all cases destabilises on a similar internal time scale Ts associated with

linear instability, even for large values of h. On the other hand, the shear induced by the

jet on the vortex rapidly (exponentially) decreases as h increases and becomes much smaller

than bm/a. The vortex is sheared out only when it is close enough to the surface, i.e. when

the effective shear is approximately 0.1q.? Here, this requires Λ > 0.1 approximately.

FIG. 11. Surface jet and an internal vortex with h/a = 1 and Λ = 1. Top view of the flow at t = 2

and 3.9 for %/a = −0.5 (two left panels), then for %/a = 0.5 (two right panels).

Finally we consider the effect of a horizontal offset % between the vortex and the centre

of the jet. We have already seen in the results above that a vortex responds differently to

co-operative and adverse shear. The latter is generally more destructive.? ? ? ? Here, we

study this asymmetry by placing the vortex directly below one half of the jet initially. Recall

here that the vortex diameter is equal to the half-width of the jet, d = a. For %/a = −0.5

(resp. % = 0.5), the vortex lies fully below the side of the jet with which it is in co-operative
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FIG. 12. Surface jet and an internal vortex with H/a = 1 and Λ = 1. Top panel: trajectory of the

vortex centre for %/a = −0.5 (blue) and 0.5 (red). Bottom left (resp. right) panel: close-up on the

vortex at t = 39.5 for %/a = −0.5 (resp. 0.5). Only the contours in one every five layers are shown

for clarity.

(resp. adverse) shear. Results are presented in Figures ?? and ?? for Λ = 1, h/a = 1 and

%/a = ±0.5. The jet exhibits a similar evolution in both cases, as seen in the top panels

of this figure. We conclude that the evolution of the jet is, at leading order, controlled

by its internal dynamics, with the vortex mainly providing a source of perturbations. The

evolution of the vortex is however very different. It should be noted that these differences

will eventually affect the jet. First, as observed in the case % = 0, the vortex moves to the

left, the side of the jet with which it is in co-operative shear. This is best seen by plotting

the vortex centre xc vs time, also shown in Figure ??, bottom left. This is true even if

the vortex starts below the part of the jet in adverse shear. This motion results from the

interaction between the vortex and the billows of alternate sign which form on the jet. More

importantly, we clearly see that in the case of %/a = 0.5 the vortex is much more deformed

than in the case %/a = −0.5, see Figure ??, bottom right. This is again a consequence of

the fact that adverse shear is more destructive. Once the vortex is torn into filaments and
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small fragments, it ceases to have a significant influence on the jet.

V. INTERACTIONS BETWEEN THE JET AND A DIPOLE

We next consider the interaction between a jet and a self-advecting vortical structure. The

simplest such structure is a vortex dipole. For simplicity, we consider a dipole consisting of

two adjacent equal-sized spherical vortices (in the stretched coordinates (x, y, z)) of uniform

PV ±q0, lying at the same depth h. As above, we take the diameter of each vortex to be the

half-width of the jet, i.e. d = a. Such a dipole is not an exact equilibrium solution, but it

translates at a quasi-uniform velocity in the direction perpendicular to the axis joining the

two vortex centres. We can estimate the translation velocity of the dipole by modelling each

vortex by singularities of strengths κ = ±(4π)−1
∫∫∫

V
q0dV = ±q0d3/24. The translation

velocity is then Udip = q0d/24, using the fact that the distance between the vortex centres

is equal to the diameter d of the vortices.

The overall geometry of the interaction is the same as for the jet/vortex problem detailed

in the previous section, except that the single vortex there is replaced by a dipole. The key

new parameter is the angle θd between the trajectory of the dipole (in the absence of the jet)

and the axis of the jet (the angle of incidence). When θd = 0◦, the dipole initially travels

parallel to the jet and in the same direction; when θd = 90◦, the dipole initially travels

perpendicular to and toward the jet; and when θd = 180◦, the dipole initially travels parallel

to the jet but in the opposite direction. All possible cases of interest have θd ∈ [0, 180◦].

A. Idealised model

Before investigating the full nonlinear dynamics, we use an idealised model to anticipate

the likely interaction scenarios. We assume here that the dipole consists of two opposite-

signed singularities (point vortices in the three-dimensional, quasi-geostrophic system) sub-

ject to a steady uni-directional flow field mimicking the jet. The assumption that the jet

flow field remains steady is only valid if the time scale associated with the jet Ts is large

compared to the time scale associated with the motion of the dipole ∼ L/Udip, where L

is the jet half width. As seen shortly, even when the two timescales are comparable, the

idealised jet flow field provides a reasonable leading-order approximation of the actual, more
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FIG. 13. Geometry of the idealised model used to investigate the interaction between a jet and a

dipole.

complex, time and space-dependent profile. The geometry of the simplified model is illus-

trated in Figure ??. The jet flow field is approximated by two regions of linear shear with

a constant shear rate of ±α (α > 0) between −L < x < 0 and 0 < x < L respectively. The

flow vanishes for |x| ≥ L. A pair of point vortices of strength ±κ, separated by a distance

` and oriented at an angle θ with respect to the jet axis are initially located outside the jet

flow. The precise location of the vortices does matter since they propagate in a straight line

until they encounter the jet flow.

The motion of each point vortex is integrated in time using Kirchhoff’s two-dimensional

model of interacting point vortices for simplicity, with the addition of the steady jet flow field

above. The principal non-dimensional parameters governing the interaction are A = αL/Udip

and θd at t = 0. The actual value of A is unimportant for a qualitative description. Here,

we set L = 1, A = 4 and ` = 0.1, Udip = 100, and we vary the angle θ0d, the value of θd at

t = 0.

When the dipole encounters the jet, its constituent vortices experience different induced

velocities due to the horizontal shear. Part of this difference contributes to the rotation of

the axis joining the vortices, thereby altering their direction of propagation. The leading

order effect is thus a rotation of the dipole. This rotation ceases when the dipole leaves the

region of shear, and the dipole then resumes a steady translation.

We next describe the possible trajectories of the dipole. Referring to Figure ??, the dipole
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initially travels towards the jet (increasing x) at a constant angle θd = θ0d. Once one of the

vortices crosses the edge of the jet at x = −L, the angle θd begins to decrease since α > 0

on the left hand side of the jet. If θd remains positive, the dipole crosses the jet axis at

x = 0, the angle increases again, and the dipole leaves the opposite side of the jet at x = L

in the same direction as it started, θd = θ0d. The limiting case is when θd approaches 0◦ as

x → 0. In this case the dipole ends up translating along the axis x = 0, i.e. along the jet

axis. Finally, if θd reverses sign, the dipole never reaches x = 0 and is ejected out the same

side of the jet it entered. That is, the dipole is ‘reflected’, and ends up travelling toward

decreasing x at the angle θd = −θ0d.

The maximum rotation of the angle θd depends on L and A. For fixed L and A, the

trajectory of the dipole is entirely determined by the angle θ0d. A few representative examples

FIG. 14. Trajectories of a pair of point vortices in an idealised model used to understand the likely

interactions between a vortex dipole and a jet. Here, we set ` = 0.1, L = 1, and A = 4 (see Figure

?? for definitions). Trajectories of the vortices in the (x, y)-plane for θ0d = 45◦ (top, left), 33.9◦

(top, right), 33.8◦ (bottom, left) and 25◦ (bottom right).
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are presented Figure ??. The numerical results indicate that the critical angle θ∗d separating

crossing trajectories from reflected trajectories is here between 33.8◦ and 33.9◦. In general,

θ∗d depends on L and A. The qualitative results are however generic. We can expect that

dipoles initially travelling at small incidence angles will be reflected while dipoles initially

travelling at moderate incidence angles will cross below the jet.

This idealised model makes a strong assumption, namely that the jet remains steady

and uni-directional. In reality, the incoming dipole deforms the jet as it approaches (and

moreover the jet is unstable). To estimate what influence this may have, we next consider

the effect of a steady jet deformation. Assuming that Ts is much larger that the typical time

scale of the deformation imposed by the dipole, we calculate the velocity field induced by

a ‘quasi-steady’, deformed jet. The deformation considered is infinitely differentiable and is

set to a Gaussian: b(x, y, z = 0) = ỹ
√

1− ỹ2, where ỹ = y − 0.5 exp(−x2). The deformed

buoyancy distribution and the associated induced velocity field are illustrated in Figure ??,

both at the surface z = 0 and at the depth z = −a. The y = const (transversal) cross-

FIG. 15. Buoyancy and velocity fields associated with a deformed jet. From left to right across the

top: surface buoyancy field b(x, y, 0), surface longitudinal velocity v(x, y, 0) and surface transversal

velocity u(x, y, 0). Bottom left: v(x, y, z = −a). Bottom right: u(x, y, z = −a).

sections of the longitudinal velocity v are similar for all y, except for the offset in x due to
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the deformation. The most striking difference from the undeformed case is the presence of

strong transversal velocities u of alternate signs. Note that these velocities have magnitudes

of the same order of the longitudinal ones, |u| ≈ 0.4|v| (recall that the unperturbed jet has

u = 0). These strong transversal velocities may repel or attract the vortices of the dipole.

This is likely to have an impact in the full nonlinear dynamics, in particular on the deflection

of the dipole by rotating its translation axis. These considerations help to interpret the full

numerical simulation results described in the following section.

B. Regime diagram

We now examine the interaction between a buoyancy jet and a deep dipole in the full

quasi-geostrophic model. To obtain an overall picture of what may occur, we first discuss the

results of a sweep through the parameter space (θ0d,Λ), performing simulations at a moderate

resolution (1283 in CASL). Higher resolution simulations are performed for a selected set of

examples for detailed analysis. Results of the parameter sweep are presented in Figure ??.

We identify five qualitatively-distinct forms of interaction:

(i) Reflection, when the dipole remains a dipole but is deflected by the jet, forcing the

dipole to eventually move away from the jet toward decreasing x.

(ii) Crossing, when the dipole remains a dipole, crosses below the jet, and moves away

towards positive x.

(iii) Partial shearing out, when the dipole remains a dipole but is partially sheared out

below the jet. A dipole is said to be partially sheared out if one of the vortices loses

at least 10% of its initial volume.

(iv) Separation, when the dipole separates. In this case, the two vortices decouple and

move away from each other.

(v) Separation and partial shearing out: a combination of (iii) and (iv) when the dipole

separates and at least one of the vortices loses 10% of its initial volume.

For Λ ≤ 0.1, the jet is weak, and hence the idealised model discussed in the previous

subsection may be relevant. The full nonlinear results in Figure ?? confirm that a dipole
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FIG. 16. Jet–dipole interaction regime diagram in the (θ0d,Λ) parameter space, for h/a = 1. •:

Reflection, ×: Crossing, �: Partial shearing out, �: Separation, 4: Separation and partial shearing

out.

with a small initial angle of incidence, θ0d ≤ 20◦, is reflected. For moderate angles, 40◦ ≤

θ0d ≤ 150◦, the dipole crosses below the jet, also in agreement with the idealised model. For

θ0d ≥ 160◦, the dipole is also reflected. This however does not occur in the idealised model.

This discrepancy can however be explained in part, we believe, by the transversal velocity

induced by the jet deformed under the influence of the incoming dipole. Indeed, on the left

hand side of the jet, Figure ?? indicates that ∂us/∂y > 0, where us is the jet’s transversal

velocity. This extra shear, at right angles to the unperturbed jet shear, helps deflect the

vortex away from the jet for large angles of incidence. Recall that the jet does not push

the vortex away. It merely rotates it, changing its orientation, and hence the direction of

its translation. In all cases with weak Λ (apart from θd0 = 30◦ and Λ = 0.1), the jet is not

strong enough to shear out more than 10% of the volume of either vortex.

For stronger jets (Λ > 0.1), the dipole experiences higher levels of both horizontal and

vertical shear. This leads to the separation of the dipole. For moderate to large angles of
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incidence, this separation is accompanied by the partial straining out of at least one of the

vortices. The physical mechanisms underlying this behaviour are examined in the following

subsection.

C. Nonlinear flow evolution

We now illustrate the forms of interaction summarised in the previous section. Here,

we use higher resolution simulations (2563 in CASL) and again take h/a = 1. We first

consider the nonlinear evolution of a weak jet with Λ = 0.02. In all cases, the dipole

is centred at (x, y) = (0,−π) initially. Snapshots of the time evolution of the flow for

θ0d = 20◦, 45◦, 90◦, 150◦ and 160◦ are shown in Figure ??. The corresponding trajectories of

the vortex centres are shown in the companion Figure ??.

For θ0d = 20◦, the dipole moves towards increasing y. Note that by periodicity, the dipole

is seen leaving the computational box at the top boundary (y = π) only to re-enter the

domain from y = −π. While moving close to the jet, the dipole rotates due to the shear

induced by the jet. The trajectory of the dipole is illustrated in Figure ??. The rotation

of the dipole is monitored in time by calculating the angle θd that the dipole makes with

the y-axis, following the convention defined in Figure ??. The angle is determined from

the location of the vortex centres xc. The angle θd decreases from θ0d reaching θcd = 0◦ at

t ' 77. Then the angle becomes negative, and the dipole moves back towards decreasing

x. The vortices of the dipole wobble, and shed a small amount of PV. This induces a small

asymmetry in the dipole and explains the late curvature of the dipole’s trajectory: only a

symmetric dipole travels in a straight line. Note also that the jet is only weakly deformed

— a small indentation is induced at the level of the dipole.

For both θ0d = 45◦ and 90◦, the dipole crosses below the jet. The dipole is only slightly

deflected by the jet as it passes below. Its trajectory remains nearly straight. As the dipole

passes below the jet, it induces the jet to break up. Recall that the top of the dipole is a full

radius a below the surface, so it is the dipole velocity field and not the dipole itself which

separates the jet. The strong deformation of the jet in turn generates small billows in the

buoyancy field.

For θ0d > 90◦, the dipole initially travels towards decreasing y (opposite to the jet). For

θ0d = 150◦ the dipole crosses below the jet, but the dipole rotates due to the interaction
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with the jet. Near the end of the simulation the dipole travels almost parallel to the jet in

opposite direction. Finally for θ0d = 160◦, the dipole rotates and is reflected. As explained

above, we believe that this is, in part, due to the small deformation that the dipole induces

on the jet. In turn, the jet generates a transversal velocity, with positive shear ∂us/∂y > 0

on the dipole, thereby rotating it away from the jet.

For shallow angles of incidence (i.e. for both θ0d = 20◦ and θcd = 160◦), another effect helps

to deflect the dipole away from the jet. Since the dipole travels nearly parallel to the jet,

one vortex in the dipole is closer to the jet than the other one. The vortex closest to the

jet experiences higher levels of strain and tends to lose a small amount of volume, or more

volume than the vortex further away. This induces an asymmetry, with the vortex closest

to the jet becoming weaker, and causing the dipole to rotate about the stronger vortex. For

both θ0d = 20◦ and θcd = 160◦, this helps deflect the dipole away from the jet.

In the simulations just described, the time scale Ts associated with the growth rate of the

perturbation within the jet is long enough that the jet does not break into a series of billows

over the time scale associated with the dipole propagation. A stronger jet (corresponding

to a larger value of Λ) may destabilise before the dipole reaches it.

This is illustrated in Figure ?? for the case Λ = 0.1 for just two representative angles of

incidence, θ0d = 25◦ and θ0d = 90◦. Here, we see that the jet destabilises and the buoyancy re-

organises into large billows. Despite the turbulent breakup of the jet, the general behaviour

of the dipole is qualitatively similar to that illustrated previously for Λ = 0.02. For the

shallow angle θ0d = 20◦, the vortex is slowly deflected. The main difference with the similar

case with Λ = 0.02 is that the buoyancy distribution breaks up into turbulent billows which

spread over a large area at the surface. As a consequence, the dipole remains under the

influence of the buoyancy distribution rather than escaping from it. Note also that part

of the buoyancy field remains trapped over the dipole. For θ0d = 90◦, the dipole crosses

below the destabilising jet, again entraining part of the jet and leaving a wake of small-scale

vortices.

Increasing the strength of the jet still further, to Λ = 0.3, can lead to dipole separation,

as illustrated in Figure ?? for h/a = 1 and θ0d = 90◦. Here, the dipole attempts to cross

underneath the jet but cannot before it is separated by the large jet shear (see the trajectories

of each vortex centre and the final image of the vortices at the bottom of the figure). This

happens despite the rapid breakup of the jet. The vortices each trap surface buoyancy,
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and the reflected vortex appears to propagate under a buoyancy dipole, forming a tripolar

structure. The vortex here is subject to both horizontal and vertical shear induced by the

buoyancy dipole above it, and is consequently more deformed than its separated partner.

Further discussion on the impact of shear on vortices may be found in McKiver & Dritschel

(2003)? and in Reinaud et al. (2016)? , as applied to the present context.

D. A dipole aligned with the axis of the jet

A special case occurs when the dipole is placed directly underneath the axis of the jet

initially and made to propagate along it (θ0d = 0). Again, we consider only the case h/a = 1

for simplicity, though similar results are found for other dipole depths.

The configuration is symmetric about the y axis. Each vortex feels co-operative shear

induced by the jet, and the vortices in turn excite the varicose mode of instability on the

jet, leading to billow formation.

There are three possible scenarios depending on the velocity at which of the dipole moves

and the velocity of the billows in the jet. These motions are fundamentally nonlinear as

now the vortex dipole at depth and the pairs of opposite-signed billows at the surface self

propagate and affect the rest of the flow. The flow evolution is shown for the three scenarios

in Figure ??. For Λ = 0.02, the vortex dipole moves faster than the billows generated at

the surface (see Figure ??, top row). As a consequence the dipole forms billows, stretches,

and keeps on perturbing the jet ahead of the developing billows. By contrast, for Λ = 0.5

(Figure ??, central row), the jet at the surface is faster than the dipole and thus destabilises

downstream of the dipole. There is therefore a range of values of Λ for which the billows

travel at a velocity similar to that of the dipole. Numerical experiments indicate that the

dipole aligns with the surface billows for Λ ∼ 0.12 to 0.14. The case Λ = 0.12 is shown

on the bottom row of Figure ??. The aligned dipole and billows leave behind a small zone

fully depleted of both surface buoyancy and vortex PV (see the pinched section of the jet).

This pinched section shrinks to a point and acts as a stagnation point, causing the buoyancy

behind it to accumulate and generate a local recirculation zone.

If the dipole is reversed (results not shown), i.e it travels along the jet axis but in the

opposite direction, both the jet and the dipole destabilise more readily. The vortices of the

dipole are then subject to adverse shear induced by the jet and are hence more strongly
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deformed. Perturbations in the jet spread rapidly and become turbulent.

VI. CONCLUSION

This paper has investigated the dynamical coupling between the surface and the interior

of an idealised ocean. Such investigations are important since, although the ocean’s surface

may be observed with considerable detail by modern satellite imagery, it is difficult to obtain

matching detailed observations of the ocean’s interior.

The paper has examined the specific problem of the coupling between a surface jet and

deep vortices. We have first considered the dynamics of a surface buoyancy jet in the

framework of the quasi-geostrophic model. The jet is sensitive to two modes of instability,

namely the sinuous (anti-symmetric) and the varicose (symmetric) modes. The varicose

mode is the fastest growing mode for small longitudinal wavenumber k perturbations (long

waves), while the sinuous mode is fastest for moderate values of k. Both modes are neutrally

stable for short waves.

When a single vortex is introduced below the jet, it provides a source of perturbations.

These perturbations mainly excite the sinuous mode which amplifies and forms billows,

ultimately breaking down into turbulence. Before this occurs, the vortex can be partially

or completely sheared out by the jet, if the jet is sufficiently strong compared to the vortex.

Typically, in the early stages of evolution, the vortex is displaced towards the part of the jet

with which it is in co-operative shear. When the jet subsequently forms billows, the vortex

tends to partially align with co-rotating billows. Counter-rotating billows induce adverse

shear and tend to be more disruptive to the vortex.

We have also considered the interaction between a surface jet and a deep dipole. The

dipole has a self-induced motion enabling it to approach the jet. Depending on the angle of

incidence, the vortex may be reflected by the jet (low or high angles of incidence), or cross

below (moderate angles of incidence). The effect of the jet on the dipole is twofold. First,

it can make the dipole rotate, and second it can make the dipole asymmetric by shearing

out one vortex of the dipole more than the other. Moreover, intense jets rapidly break into

billows. These billows, in turn, interact with the vortices of the dipole. Again, the vortices

may pair with surface billows leading to the separation of the dipole and forming other

compound structures such as a tripole.
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Although this work is theoretical, it has implications for our understanding of the coupling

between the widely-occurring mesoscale eddies in the interior of the oceans and the surface

dynamics. In particular, this study may help understand the fate of mesoscale vortices when

encountering surface-intensified density fronts and their associated jets. These fronts may

result from the general circulation of the ocean, from convergent motions and ageostrophic

overturning, from coastal upwelling, or from local buoyancy fluxes.

Other dipolar structures are observed in the interior of the oceans: hetons. Hetons are

baroclinic dipoles, where the two opposite-signed vortices lie at different depths? . As such,

the vortices experience different levels of vertical shear coming from a surface jet, even if

the heton is vertically aligned. This results in an asymmetry in the flow that can induce a

stationary heton to move toward the jet. This interaction is currently under investigation

and we hope to report on it in the near future.
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FIG. 17. Top view of the interaction of a surface jet and a deep dipole with h/a = 1 and Λ = 0.02.

First row: θ0d = 20◦ at times t = 40, 60, 100, 125. Second row: θ0d = 45◦ at times t = 22, 30, 43, 65.

Third row : θ0d = 90◦ at times t = 18, 25, 33, 44. Fourth row θ0d = 150◦ at times t = 40, 58, 70, 100.

Fifth row: θ0d = 160◦ at times t = 55, 75, 92, 120.
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FIG. 18. Trajectories of the vortex centres for the jet–dipole interactions illustrated in Figure ??,

θ0d = 20◦ (a), θ0d = 45◦ (b) θ0d = 90◦ (c). θ0d = 150◦, (d) θ0d = 160◦ (e). Bottom right panel:

Angle θ0d vs time t for θ0d = 90◦ (solid), θ0d = 20◦ (dotted), and θ0d = 160◦ (solid), and θd = 45◦

(dashed-dotted).

.
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FIG. 19. Top view on the interaction of a surface jet and deep dipole with h/a = 1 and Λ = 0.1.

First row: θ0d = 25◦ and t = 40, 60, 76, 100. Second row: θ0d = 90◦ and t = 20, 30, 35, 47.

FIG. 20. Interaction of a surface jet and deep dipole with h/a = 1, Λ = 0.3, and θ0d = 90◦. Top

panels, top view of the flow at times t = 18, 22, 30, and 36. Bottom left, trajectories of the vortex

centres. Bottom right, close-up of the vortices at t = 36.
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FIG. 21. Interaction of a surface jet and a deep dipole with h/a = 1. Top row Λ = 0.02 at (from

left to right) t = 8, 12, 16, 20.5, Central row: Λ = 0.5 at t = 2, 3, 5, 7.2 Bottom row: Λ = 0.12 at

t = 2, 6, 10, 12.
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