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Abstract :   
 
The aim of our work was to develop an analytical strategy to quantify naphthalene, acenaphthylene, 
acenaphthene, fluorene, phenanthrene and anthracene in fish products by on-line dynamic headspace 
extraction, followed by thermodesorption injection and gas chromatography analysis coupled with tandem 
mass spectrometry using electron ionization mode (DHS-TD-GC-EI-MS/MS). The developed protocol 
used 1 g of freeze-dried or oil sample supplemented with perdeuterated light PAHs. The sample was 
heated at [90 - 100°C], the headspace of the sample was swept by nitrogen and the trapping of the PAHs 
was carried out on a Tenax-type adsorbent placed at 25°C. Analytes were thermodesorbed at 300°C from 
the dried adsorbant and then cryofocused on a cooled injection system (CIS) at ¬25°C before injection 
(12°C s−1 up to 300°C). The chromatographic separation of PAHs was carried out on a 5-MS type column 
(30 m × 0.25 mm, 0.25 μm) and the acquisition of the signals was performed in SRM following the 
transitions, involving the loss of one or two hydrogen atoms from the molecular ion. In view of the principle 
of extraction, the calibration curve was performed on a representative matrix or using the standard 
addition method. Quantification limits were determined between 0.01 and 0.6 ng g−1 of matrix from the 
method blank results. The method was validated by a series of multi-level supplemented matrix assays 
and by the analysis of a reference material from an inter-laboratory test (mussels, IAEA-432). The average 
of the expanded measurement uncertainty was from 9 to 44% for the four lightest PAHs, except for 
fluorene when the sample incubation was set at 90°C. Occurrence measurements were performed on 
almost two hundred samples of molluscs, echinoderms and fish. The results have shown a quantification 
frequency greater than 66% for naphthalene and fluorene, at concentrations below a few ng g−1 of dry 
matter of fishery products. With this methodology, the light PAHs occurrence can now be measured in a 
wider range of foodstuffs in order to better characterize their contamination trends and the associated risk 
simultaneously.   
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Highlights 

► A DHS-TDU-GC-MS/MS method was developed to quantify light PAHs in seafood ► Two methods 
are now available, one is more accurate and the second more robust ► Validation was performed to 
determine measurement uncertainties at [1-20] ng g−1 dw ► A first occurrence level was measured in 
around 200 seafood samples 

 

Keywords : Light Polycyclic Aromatic Hydrocarbons (PAHs), Dynamic HeadSpace (DHS), Thermo 
Desorption (TDU), GC-MS/MS, isotope dilution, seafood 
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range of foodstuffs in order to better characterize their contamination trends and the associated 

risk simultaneously. 

Keywords :  

Light Polycyclic Aromatic Hydrocarbons (PAHs); Dynamic HeadSpace (DHS); Thermo 

Desorption (TDU); GC-MS/MS; isotope dilution; seafood 

 

1. Introduction 

Polycyclic Aromatic Hydrocarbons (PAHs) are organic compounds constituted of at least two 

condensed aromatic hydrocarbonated rings. Their natural and anthropic sources, resulting from 

pyrogenic and petrogenic inputs, lead to their global release into the environment [1-3]. Food 

processing can also induce PAHs contamination, as in grilled food or in smoked fish [4]. 

Moreover, food from animal origin can be contaminated by bioaccumulation of PAHs all along 

the food chain, because of their lipophilic properties [5]. PAHs human exposure is of major 

concern since their toxicity was demonstrated in regard to their carcinogenicity, teratogenicity 

and mutagenicity [6]. 

The US Environmental Protection Agency first, and then the European Food Safety Agency, 

have determined priority lists which are more focused on the heaviest PAHs [7], because they 

represent greater harmful effects [8]. Therefore, the PAHs exposure assessment studies found in 

literature more often reported occurrence of « heavy PAHs » with at least four benzene rings [9]. 

However, light PAHs, made up of 2 or 3 condensed rings (cf. Fig. 1), are also of scientific 

concern. Actually, naphthalene (NAP) is classified 2B whereas acenaphtene (ACE), fluorene 

(FLU), phenanthrene (PHE) and anthracene (ANT) are classified 3 in the International Agency 

for Research on Cancer (IARC) classification [10]. Their occurrence in the total environment 

was already reported thanks to the US EPA list which includes these compounds. Obviously, 

their human exposure is more correlated to air contamination because of their volatility, 

particularly naphthalene, fluorene and phenanthrene [11]. Nevertheless, food remains a 

significant way of Human exposure. A Spain dietary exposure study conducted in 2006 has 

reported the prevalence of light PAHs compared to heavy PAHs in food [12] . Human 

biomonitoring studies have also confirmed the relevance to monitor these light PAHs. Actually, 

Thai et al. [13] found significant amount above the tens of µg L
-1

 of OH-naphtalene in urine in 

the Australian population. This biomarker was present at concentrations ten times higher than 

those observed for the other metabolites of light PAHs. 

Multiresidue methods have been developed in the last two decades to determine and monitor 

PAHs exposure according to the regulation, mainly using GC-MS/MS analysis [14, 15] to 

discriminate isomers. In most cases, the sample preparation included Pressurized Liquid 
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Extraction (PLE) [16] or Soxhlet extraction [17] to maximize recovery yields before purification. 

However, these extraction steps are critical for light PAHs. On the one hand, losses of light 

PAHs were demonstrated during solvent evaporation. On the other hand, naphthalene 

contamination remains an important issue in the laboratory because of its ubiquitous behaviour. 

PLE instruments but also evaporators and indoor air could contribute to increase the 

environmental contamination of naphthalene.  Many different sample preparation methods have 

been proposed in the literature [18], among which SPME has been suggested as an interesting 

alternative to monitor light PAHs . They described mixtures of DVB, Carbon and PDMS 

adsorbents to achieve PAHs extraction from vegetable oil [19, 22], milk [20], fish [21] or 

smoked food [23]. The sample preparation was carried out in a closed headspace vial where the 

external contamination was kept under control. Moreover, no additional evaporation step was 

required and the light PAHs were preserved on the SPME fiber before analysis. However, the 

enrichment capability of SPME is limited to its stationary phase quantity and to the partition 

coefficient of PAHs between the gaseous and the stationary phases during the extraction step. 

SPME fibers are also known as brittle and could present carry-over issues. More recently, 

headspace mode of liquid phase microextraction (HS-SDME) was described as easy to 

implement with automation ability for PAHs extraction from water and environmental samples 

[24, 25]. However, the partition coefficient between liquid and gaseous phase could also limit the 

enrichment capability and, thus, the sensitivity of the method.  

Therefore, to shift the balance of PAH partitioning from the sample to the gaseous phase, 

Dynamic HeadSpace (DHS) extraction can be performed by continuously sweeping the 

headspace of the sample with a significant quantity of gas. Then, the extracting gas is loaded on 

a selective adsorbent where analytes are trapped. Thermodesorption of analytes from the trap is 

then required before cryofocalisation and GC-MS analysis. This approach has already been used 

for volatile compounds determination in ham [26] based on the work of Barcarolo and Casson 

[27], and also for wine studies [28, 29], for olive oil characterisation [30] or for biomonitoring 

studies such as chlorinated contaminants determination in human urine [31]. As a result, 

sensitivity was significantly improved in comparison to static headspace techniques. Moreover, 

the authors have validated their DHS-TDU-GC/MS methods and have demonstrated a promising 

intermediate precision for this kind of non-targeted approach [29, 30]. 

The aim of our study was to assess the DHS-TD-GC/MS/MS approach for light PAHs 

quantification in seafood which is quite challenging because of the complexity and diversity of 

such matrix. The final goal of our work is to cover the whole PAHs list, monitoring the four 

lightest PAHs with this new approach and the other ones with the conventional method 

published by Veyrand et al. in 2007 [14] in parallel. 
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2. Experimental 

2.1 Reagents and material 

Toluene of picograde quality was obtained from LGC (Wesel, Germany). The native compounds 

(Naphthalene ; Acenaphthylene (ACY) ; Acenaphthene ; Fluorene ; Phenanthrene ; Anthracene ; 

Fluoranthene ; Pyrene ; Benz[a]anthracene ; Chrysene ; Benzo[b]fluoranthene ; 

Benzo[k]fluoranthene ; Benzo[a]pyrene ; Indeno[1,2,3-cd]pyrene ; Benzo[ghi]perylene ; 

Dibenz[a,h]anthracene) and the perdeuterated internal standard compounds (Naphthalene-d8 ; 

Acenaphthylene-d8 ; Acenaphthene-d10 ; Fluorene-d10 ; Phenanthrene-d10 ; Anthracene-d10 ; 

Fluoranthene-d10 ; Pyrene-d10 ; Benz[a]anthracene-d12 ; Chrysene-d12 ; Benzo[b]fluoranthene-

d12 ; Benzo[k]fluoranthene-d12 ; Benzo[a]pyrene-d12 ; Indeno[1,2,3-cd]pyrene-d12 ; 

Benzo[ghi]perylene-d12 ; Dibenz[a,h]anthracene-d14) were purchased from Dr Ehrenstorfer 

(Augsburg, Germany). The concentration of these commercial mixtures was 100 ng µL
-1

 in 

toluene. Successive dilutions by ten or twenty were prepared in toluene at 10, 1 and 0.1 ng µL
-1

 

for the native compounds and at 10, 1 and 0.05 ng µL
-1

 for the labelled ones. Mixtures of native 

and labelled compounds were prepared in toluene at a constant concentration of 50 pg µL
-1

 for 

labelled compounds and 5, 10, 25, 50, 100, 250, 500, 1000 and 2500 pg µL
-1

 for native ones. 

For Dynamic HeadSpace extraction, 20 mL headspace vials with screw caps were purchased 

from Gerstel (Mülheim, Germany). 

Samples of mollusc, echinoderm, algae oil and fish were collected in 2017 and 2018 by the 

French chemical monitoring network (ROCCH) managed by the French Marine Science 

Research Institute along the French coasts, and by the departmental civilian population 

protection services as part of the French control plan. 

2.2. Sample pretreatment 

To avoid the risk of contamination, samples were prepared in an air-conditioned room away  

from solvent vapor. After freeze-drying, each sample was weighed in order to determine its 

water content. One gram of the ground dried sample was introduced in a 20 mL headspace vial 

and spiked with 20 µL of a labelled internal standard solution at 50 pg µL
-1

. A few samples of 

algae oil (expanded scope of seafood) were analyzed using the same principle associated to 

standard addition method. To this end, four vials were prepared with 1 g of the same oil sample. 

Twenty microliters of the labelled internal standard solution at 50 pg µL
-1

 were added into the 

first vial, whereas the three other ones received 20 µL of solutions at 50, 250 or 1000 pg µL
-1

 of 

native PAHs and systematically 50 pg µL
-1

 of labelled ones. Simultaneously, a method blank 

was prepared introducing only 20 µL of a labelled internal standard solution at 50 pg µL
-1

, at the 

bottom of the headspace vial. For all the dried matrices, 20 µL of a labelled internal standard 

solution at 50 pg µL
-1

 were loaded on the matrix. Each vial was then screwed thoroughly to 

                  



- 6 - 

avoid any losses of the headspace phase during the extraction step. Before placing the vials into 

the autosampler, they were gently shaken manually without reversing the vial, in order to 

enhance the spiking solution impregnation and the homogeneity of the sample. 

2.3. On-line Dynamic Headspace extraction 

Firstly, to prevent any issue on the automatic dynamic headspace instrument, several precautions 

were implemented in our lab. Each headspace septum was pierced only once. The dry purge 

septum cap was changed each sequence or everyday if the sequence was longer, to keep a good 

tightness and to keep the required flow rate stable.  

Then, two DHS methods were developed in this work, called Method 1 and Method 2. 

Method 1: The vial was incubated during 10 minutes at 100°C under stirring (500 rpm) before 

extraction. The sample was then maintained at 100°C during extraction without stirring. To 

achieve analyte extraction,  500 mL of nitrogen were used as sweep gas at 75 mL min
-1

. The 

Tenax TA trap and the DHS transfer line were set at 25°C and 150°C during the extraction step 

respectively. The Tenax TA trap was then slightly heated at 50°C and dried with 1 L of nitrogen 

at 50 mL min
-1

 before thermodesorption. 

Method 2: The vial was incubated during 10 minutes at 90°C under stirring (500 rpm) before 

extraction. The sample was then maintained at 90°C during extraction without stirring. To 

achieve analyte extraction, 2 L of nitrogen were used as sweep gas at 100 mL min
-1

. The Tenax 

TA trap and the DHS transfer line were set at 25°C and 150°C during the extraction step 

respectively. The Tenax TA trap was then slightly heated at 50°C and dried with 2 L of nitrogen 

at 100 mL min
-1

 before thermodesorption. 

2.4. Thermodesorption injection 

The trap was thermodesorbed in the TDU programmed from 30°C (0.1 min) up to 300°C (5 min) 

at 60°C min
-1

. The TDU transfer line was set at 300°C and analytes were refocused in the CIS 

equipped with a baffle liner and cooled at ¬25°C by a chiller. GC injection was performed 

thanks to a fast heating of the CIS up to 300°C (5 min) at 12°C s
-1

. 

2.5. DHS-TDU-GC-MS/MS 

A robotic arm MultiPurpose Sampler (MPS) was equipped with a DHS system [32] and a 

ThermoDesorption Unit (TDU) coupled to a Cooled Injection System (CIS), all from Gerstel 

company (Mülheim, Germany) [33]. The GC-MS/MS instrument consisted in a gas 

chromatograph Agilent 7890 Series coupled to a triple quadrupole analyzer Agilent 7000 

operating in electron ionization (70 eV). Gas chromatography was performed on a non-polar 

column DB-5MS (30 m × 0.25 mm, 0.25 µm) purchased from Agilent (Santa Clara, CA USA). 

Helium was used as carrier gas at a constant flow rate of 1 ml min
-1

. The gradient of temperature 

was 90°C (2 min), 10°C min
-1

 to 240°C (0 min) and 40°C min
-1

 to 320°C (10 min). The GC 
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transfer line was maintained at 300°C. Temperature of the source was kept at 230°C. A mix of 

Nitrogen and Helium was used as collision gas. Two transitions per PAH were selected (cf. 

Table 1 and Fig.S1). 

2.6 Identification 

The following requirements have to be fulfilled before light PAHs quantification [34]: presence 

of internal standard (S/N > 3), acceptable relative retention time of the analyte (tolerance of 

±0.5%), detection of the two diagnostic transitions (S/N > 3), acceptable intensity ratio of the 

two diagnostic transitions (tolerance from 20 to 50% depending on the ratio). 

2.7 Quantification 

The quantification was based on the isotope dilution approach. Each native compound amount 

was determined taking into account each corresponding labelled compound as internal standard. 

The calibration was performed using a similar matrix spiked at 10 different levels for native 

compoundsincluding 0 and constant level for labelled ones (cf. Fig. S2a), as described in the 

“reagents and material” part. The calibration used an unweighted method and each calibration 

point was injected once, at the beginning of each sequence. As calibration curves were built with 

a pool of similar matrix, only slopes were used to determine concentrations. Using the standard 

addition method, the calibration curves being built with the sample matrix, amounts were 

calculated dividing intercepts by slopes (cf. Fig. S2b). Method blanks were quantified with a 

calibration without matrix. 

2.8 Validation procedure 

Each validation was based on three series of four-level supplemented matrix assays (pool of 

dried mussels) at 0, 1, 5 and 20 ng for native compounds, resulting in n=6, 10, 6 and 6 samples 

respectively. A reference material coming from an inter-laboratory test (mussels, IAEA-432) was 

included once in each series. Each performance criterion was assessed at each level and 

averaged. We classically used the following definitions: the limit of detection (LOD) 

corresponds to amounts for which the first transition presents a signal-to-noise ratio (S/N) of 3, 

and limit of quantification (LOQ) corresponds to amounts for which the second transition 

presents a S/N of 3 [35]. The linearity was assessed on 10 calibration levels at 0 ng and from 0.1 

to 50 ng. Absolute recovery rates were determined on labelled compounds (at constant amount of 

spiking) using matrix and matrixless tests.  

3. Results and discussion 

3.1 Sample preparation 

3.1.1. Solvent addition and sensitivity 

PAH quantification requires the addition of native standard solutions in calibration samples and 

internal standard solution in all the samples. Thus, toluene (solvent used for standard dilutions) 
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was added in all samples. This solvent can become a competitor against the target analytes on the 

adsorbent during the extraction. Then, trapping recoveries of analytes can be affected by the 

solvent volume added in the sample. In our study, toluene could saturate the adsorbent because 

of its volatility at 90 or 100°C (sample temperatures during extraction). In order to determine the 

more adapted volume for standard spiking, the first tests were performed without any matrix. 

Standard solution volumes of 20, 50 and 100 µL containing the same quantity of PAHs were 

introduced into headspace vials. We found that the less solvent volume there was, the more 

intense the signal to noise ratio was for the light PAHs (factor 200 to 7 from naphthalene to 

pyrene, data not shown). The solvent of the spiking solution, toluene, is also volatile. Thus, there 

is a competition between toluene and light PAHs, about volatility but above all adsorption on the 

trap. This explain why, for an equal amount of light PAHs, responses (areas and S/N ratios) 

increase when the solvent volume decreases. The lowest volume was chosen but we did not try 

under a 20 µL volume to ensure a convenient use and a satisfactory pipetting uncertainty. 

Therefore, each spiking level, of native and labelled compounds, requires using one spiking 

solution, in order to ensure that the same volume of 20 µL is added. Thus, we prepared ten 

different solutions: one containing only labelled compounds to spike samples and blanks, and 

nine solutions containing labelled compounds at the same concentration and native ones at 

various concentrations. 

3.1.2. Elimination of water traces 

After freeze-drying, the homogenized dried sample was kept at room temperature until the 

analysis. Dried samples were kept in the freezer for several weeks and samples were slightly 

rehydrated because of the relative humidity in the closed chamber. Then, traces of moisture led 

to a plugging, located in the CIS at ¬25°C, by ice formation. To avoid this critical point, we now 

recommend to perform an additional frozen cycle when dried samples are not analyzed directly 

after drying. Moreover, we advise to limit the dried samples preservation time after freeze-drying 

to one week at room temperature to avoid any moisture re-capture. Furthermore, we did not 

observe any light PAH amounts loss during storage at room temperature.  Freeze-drying yields 

were studied (cf. Fig. S3) by comparing responses of the four lightest labelled PAHs with or 

without freeze-drying. Results showed that there is no impact on PAHs from 3 cycles, whereas a 

2 cycles PAH (NAP) freeze-drying induced some losses. We have to keep this weakness in mind 

for NAP. 

3.1.3. Sample size optimization 

Several tests with different sample weights (0.25, 0.5, 1 and 2 g) were assessed. Areas of 

chromatographic peaks were not importantly different between sample sizes (cf. Fig. 2a). 

However, a higher variability occurred for a sample size of 2 g, probably correlated to the first 
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observable matrix effects. Considering the relatively low impact of the sample weight, 1 g of 

dried matrix was finally set in the method, to ensure a better representative sample weight and to 

facilitate the conversion between amount and concentration simultaneously. 

3.2 On-line Dynamic Headspace optimization 

3.2.1. Nature of the adsorbent  

The nature of the trap adsorbent was assessed on Tenax TA, Tenax GR and Carbopack B/X, 

after Method 1 extraction on a mussel sample spiked at 20 ng g
-1

. Tenax TA proved to be an 

efficient option compared to Tenax GR and Carbopack B/X, particularly for the four lightest 

PAHs (cf Fig. 2b). Despite a better repeatability of PAH recoveries with the Tenax GR, Tenax 

TA gave the highest responses, with a gain of 30% for acenaphtene. 

3.2.2. Incubation parameters  

The incubation allows reaching the equilibrium point of PAH partition between the solid phase 

(the sample) and the gas phase (headspace). This step remains crucial to lead an efficient 

headspace extraction afterwards. To reach this equilibrium, we have played on incubation 

temperature, from 60 to 120°C with an incubation time of 10 min (cf Fig. 2c and 2d), and 

incubation time, i.e. 10 and 20 min with an incubation temperature of 100°C (cf. Fig. 2e). First 

of all, Method 1 was applied on a spiked mussel (20 ng g
-1

) at four incubation temperatures from 

90 to 120°C by step of 10°C (cf. Fig. 2c). The best responses were obtained at 100°C for the four 

lightest PAHs, 90°C also being acceptable regarding intensities and standard deviation 

overlapped with results obtained at 100°C. The experiment was then reproduced on incurred 

mussel sample, in order to observe the PAH behaviour in a naturally contaminated matrix (cf. 

Fig 2d). In this experiment, Method 2 was used. The results confirmed the efficient incubation 

temperature of 90°C for NAP, ACY and ACE, while 100°C showing that preferable for the 

heaviest PAHs. Incubation temperatures below 90°C were also assessed as they could prevent 

potential water traces into the headspace, but PAH extraction efficiencies became drastically low 

from 80°C, with a loss of 50% of FLU compared to 100°C. Therefore, Method 1 was set with an 

incubation temperature of 100°C, whereas Method 2, elaborated to minimize water residue, used 

an incubation temperature of 90°C. Finally, incubation time above 10 min was not required as 

shown in Fig. 2e. This shortest time was chosen to minimize the time of analysis. 

3.2.3. Trapping parameters  

To improve PAH recoveries, we have investigated the parameters to reach an efficient purge of 

the headspace to move the balance between solid and gas phases, without exceeding the 

breakthrough volume of the trap. A preliminary experiment was led according to Method 1 

without any repetition on a spiked mussel matrix (20 ng g
-1

) to assess trapping flows between 25 

and 75 mL min
-1

 and trapping volumes between 0.25 and 0.75 L (cf. Fig. 2f). The parameters 

kept in Method 1 were the last tested, i.e. swept sample headspace by a 0.5 L of nitrogen at a 
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75 mL min
-1

. As the incubation temperature of Method 1 was set at 100 °C, additional nitrogen 

was not allowed without capturing water traces from sensitive samples (cf. 3.1.2). However, we 

investigated using more sweeping gas with Method 2 where the incubation temperature was set 

at only 90°C. This time, the experiment was led on an incurred sample (n=3) with trapping flows 

between 50 and 100 mL min
-1

 and trapping volumes between 0.5 and 2 L (cf. Fig. 2g). PAH 

enrichment was proportional to the volume of nitrogen used. We choose to use 2 L of nitrogen at 

100 mL min
-1

 flow to prevent any water traces, without exceeding the breakthrough volume of 

the trap. 

3.2.4. Dry purge parameters 

Nitrogen volume and flow rate for the dry purge were set according to the Gerstel 

recommendations in Method 1 (1 L at 50 mL min
-1

) [32]. To optimize the drying of the trap, we 

increased the drying gas volume up to 4 L at flow rates up to 100 mL min
-1

 (cf. Fig. 2h), without 

reaching the breakthrough volume. Nevertheless, a 2 L dry purge volume at a 100 mL min
-1

 dry 

purge flow rate was chosen to gain time. 

3.2.5. General consideration on DHS optimization 

The DHS optimization was finally a compromise between the highest possible responses for at 

least the four lightest PAHs without reaching the breakthrough volume, including the lowest 

moisture content and in the shortest analysis time. Two slightly different combinations of 

parameters were finally chosen, i.e. Method 1 and Method 2, with complete validation for each 

one. In summary, Method 2 was chosen to provide a better robustness without the risk of 

plugging the GC injector with ice, whereas a few samples followed an additional freeze-drying 

for correct use of the Method 1. 

3.3 Thermo Desorption injection 

TDU and CIS initial temperatures were optimized to improve the chromatographic peak shape, 

mainly for Naphthalene which is the lightest PAH. Several tests with different initial 

temperatures of TDU (from 20 to 40°C) and CIS (from ¬32°C to ¬20°C) were assessed (cf. Fig. 

S4). The lower these temperatures are, the better the shape of the peak is. The optimization gave 

better results for an initial temperature of the CIS at ¬32°C. However, this temperature was too 

long to reach for routine purposes. A refocusing temperature of ¬25°C in the CIS was then 

chosen (results shown in Fig S1). In parallel, the initial TDU temperature less impacts the 

chromatographic peak shape than those of the CIS. Then, initial TDU temperature of 30°C was 

set to keep a reasonable cooling delay. Under these conditions, the peak shape of NAP is still 

improvable. Additional focusing could be achieved by applying a starting oven temperature 

below 90 °C. However, these lower temperatures were not evaluated in this study. Indeed, this 
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peak shape was considered acceptable. In addition, we did not want to lose more time during GC 

cooling. 

Finally, we have optimized the throughput of the analysis. As the bottleneck resulted in the 

number of traps used, we assessed the intermediate precision using two different traps containing 

the same adsorbant, i.e. Tenax TA. No significant variability was observed when an incurred 

mussel sample was analysed with these two different traps (cf. Fig. S5). Therefore, during a 

sequence, the alternative use of two traps saved time and kept the analysis duration to a 

minimum, with a total overlap of the next DHS cycle (incubation, trapping and dry purge) with 

the last GC-MS/MS analysis. 

3.4 MS/MS optimisation 

The mass spectrometry method was developed for light PAHs according to the same principle as 

described by Veyrand et al. [14] for heaviest ones. Briefly, the acquisition of the signals was 

ensured in selected reaction monitoring (SRM) following the transitions involving the loss of one 

[M-H]
+
 or two hydrogen atoms [M¬H2]

+
 from the molecular ion [M]

+
, or one or two deuterium 

atoms for the labeled compounds. Under high energy voltage applied in the collision cell, 

another specific daughter ion was [M¬C2H2]
+

. 

3.5 Performances 

Results of validations are summarized in Tables 3 and 4. In the light PAHs specific case, the 

limiting factor was contamination measured by the method blank which represents the 

environmental contamination level during the batch analysis and which is above S/N of 3. 

Therefore, LOD were not of interest. LOQ were set at 1 ng in the vial to keep a degree of 

confidence according to the maximum content of PAH measured in method blanks at 0.67 ng. 

This amount of 1 ng is also the low level of supplemented matrix assays. These limits are fully 

compatible with the amount range potentially met in seafood [12]. 

Regarding linearity performances, determination coefficients (R²) were better than 0.98 for all 

analytes, except for phenanthrene in two calibration curves of the second validation. 

Absolute recovery rates were determined on labelled compounds (at constant amount of spiking) 

using matrix and matrixless tests. Indeed, absolute recovery rates in matrix samples on the basis 

of Dynamic headspace extraction is the ratio of the response of a compound in a matrix test on 

the response of the same compound in a matrixless test. Results are shown in Table 2. Absolute 

recovery rates in mussel ground dried samples were between [9-45] % and [13-62] % for method 

Method 1 and method Method 2 respectively. These results were expected since the principle of 

extraction is based on the balance between the volatility and the adsorption of the compounds in 

the matrix. Absolute recoveries are classically below 10% with headspace method, and increase 

with Dynamic headspace method due to enrichment. In spite of weak values for a few 
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compounds, accurate calculated amounts were guaranteed for native compounds by the use of 

isotope dilution method with labelled compounds corresponding to each native compound. The 

isotope dilution method allows to automatically correct the amounts in each sample whatever the 

matrix. Moreover, the GC-MS/MS sensitivity has compensated some low recovery rates to keep 

satisfactory response levels.The intermediate precision was below 15% for most of the light 

PAHs, except for naphthalene, fluorene and phenanthrene in the second validation. The bias 

values on the supplemented matrix were roughly sufficient, with better results at higher levels of 

spiking and for Method 1. Quantification in the reference material was within the target range 

(from 1.5 to 27 ng g
-1

) when given for most light PAHs, except for fluorene in the second 

validation (cf. Table 4). Indeed, we assume that an unexpected contamination could occur in the 

sample without any detection in the blank sample. The result is then an extreme bias value. 

Taking into account all uncertainties contributions, including the uncertainty component 

associated to the concentrations of the standard solutions (3.2/3.2/3.3% at low/middle/high 

level), the expanded measurement uncertainties, with a coverage factor of 2 (confidence level of 

95%), were ranging from 8 to 73% for Method 1, depending on the quantified analytes and the 

level. Method 2 gave higher uncertainties, particularly for fluorene. We assume that a kind of 

unexpected contamination occurs frequently for PHE and FLU. Indeed, their intermediate 

precision error and associated bias were relatively high, leading to extremely high-expanded 

uncertainties, particularly when method 2 is used. The next stage is now to monitor this 

suspected contamination to treat its sources. For the next batches of analysis, a recommendation 

could be to use Method 2 in routine analysis to prevent any ice formation in the CIS and to use 

Method 1 for confirmatory purposes, particularly for fluorene quantification, in order to increase 

the intermediate precision of measurement. 

3.6 Light PAHs Occurrence 

Analyses were performed with Method 1 on almost two hundred samples of molluscs, 

echinoderms and fishes. The aim of this work was to assess the methodology and to estimate the 

order of magnitude of light PAHs amounts in seafood simultaneously. The four lightest PAHs 

amounts were reported in Fig. 3, taking a value equal to zero when the compound was not 

quantified (lowerbound). These results have highlighted a quantification frequency greater than 

66% for naphthalene and fluorene at amounts of up to 8 ng g
-1

 of dry matter. 

Conclusions 

The work carried out has led to develop two methods to determine light PAHs both in the 

mollusc matrix and in other matrices such as oils, then proceeding by standard addition method. 

The developed methods were validated for the lightest PAHs: NAP, ACY, ACE, FLU but also 

PHE and ANT. Analytical performances matched with the levels of contamination observed in 
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seafood. In addition, the first analyses produced with this method show the interest of continuing 

to monitor these parameters in seafood and more generally on a wide range of foodstuffs in order 

to better characterize the associated risk to light PAHs dietary exposure. 
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Figure Captions 

 

 

 

Fig. 1. Chemical structure of the light PAHs 

 

 

Fig. 2. (a) PAHs response in matrix spiked at 1 ng regardless of the sample weight (n = 2 ; SD in 

brackets); (b) PAHs response in matrix spiked at 20 ng in relation to adsorbent types (n = 3 ; SD 

in brackets); PAHs response (c) in matrix spiked at 20 ng and (d) in incurred mussel in relation 

to incubation temperature (n = 2(c) and n=3(d) ; SD in brackets); (e) PAHs response in matrix 

spiked at 20 ng in relation to incubation times (n = 2 ; SD in brackets); (f) PAHs response in 

matrix spiked at 20 ng in relation to traping volume and flow rates; (g) PAHs response in 

incurred mussel sample in relation to trapping volume and trapping flow(n = 3 ; SD in brackets); 

(h) PAHs response in matrix spiked at 2 ng in relation to drying purge volume and flow rate (n = 

3 ; SD in brackets) 
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Fig. 3. Lowerbound occurrences in ng g
-1

 of dry matter by matrix type 
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Table 1: Monitored transitions, indicative ratios and retention times of light PAHs. (IS : Internal 

Standard ; A : Analyte ; RT : retention time.) 

Compounds Type Transition 1 
Collision 

T1 (eV) 
Transition 2 

Collision 

T2 (eV) 

Indicative 

Ratio 

(T2/T1) 

Indicative 

RT (min) 
Window 

Naphthalene-d8 IS 136..1>108..1 25 136..1>134..1 20  6..40 1 

Naphthalene A 128..1>102..0 25 128..1>127..1 20 0.473 6..43  
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Acenaphthylene-d8 IS 160..1>158..1 25 160..1>132..1 30  9..83 2 

Acenaphthylene A 152..1>151..1 25 152..1>126..0 30 0.439 9..86  

Acenaphthene-d10 IS 164..1>162..1 20 164..1>160..1 40  10..17 3 

Acenaphthene A 154..1>153..1 20 154..1>152..1 40 0.553 10..24  

Fluorene-d10 IS 176..1>174..1 25 176..1>172..1 40  11..42 4 

Fluorene A 166..1>165..1 25 166..1>164..1 40 0.189 11..48  

Phenanthrene-d10 IS 188..1>160..1 30 188..1>184..1 35  13..72 5 

Phenanthrene A 178..1>152..1 30 178..1>176..1 35 1.106 13..76  

Anthracene-d10 IS 188..1>160..1 30 188..1>184..1 35  13..86  

Anthracene A 178..1>152..1 30 178..1>176..1 35 1.305 13..91  

 

Table 2 : Absolute recovery rates of labelled light PAHs (determined at constant amount using 

matrix and matrixless tests). 

Compounds 
Absolute recovery rate 

with Method 1 parameters validation 

Absolute recovery rate 

with Method 2 parameters validation 

Naphthalene-d8 45% 13% 

Acenaphthylene-d8 30% 62% 

Acenaphthene-d10 37% 53% 

Fluorene-d10 25% 41% 

Phenanthrene-d10 9% 21% 

Anthracene-d10 11% 36% 
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Table 3: Performances of light PAHs for Methods 1 and 2. Uncertainties are given for each level 

of concentration and average uncertainty is indicated in bold (Low level (1 ng)/Middle level 

(5 ng)/High level (20 ng)/Average) 

Compounds 

LOQ 

method 

blank 

(ng g
-1

 

dw) 

Linearity 

R² 

Intermediate 

precision 

RSD 

(%) 

Bias 

(%) 

Expanded 

mesurement 

uncertainty U 

k=2 

(%) 

Method 1 

Naphthalene 0.17 1.000 2.9/2.0/2.9/2.6 4.0/0.3/-2.2/0.7 9.9/7.5/9.1/8.8 

Acenaphthylene 0.38 1.000 16.0/6.5/5.1/9.2 12.9/5.9/-1.3/5.8 36.0/15.9/12.3/21.4 

Acenaphthene 0.43 0.999 2.0/1.9/3.9/2.6 10.5/2.8/-2.2/3.7 14.3/8.0/10.6/11.0 

Fluorene 0.64 0.999 8.5/2.9/2.5/4.6 6.1/2.4/-2.6/1.9 19.5/9.0/8.8/12.4 

Phenanthrene 0.60 0.990 21.7/16.5/5.9/14.7 -50.6/-3.3/-5.9/-

19.9 

73.1/33.8/15.2/40.7 

Anthracene 0.20 0.998 10.9/6.2/4.9/7.3 7.5/-2.0/-8.2/-0.9 24.3/14.1/15.2/17.9 

Method 2 

Naphthalene 0.40 0.997 26.9/20.4/7.3/18.2 -30.9/-6.5/-16.3/-

17.9 

65.0/41.9/24.6/43.8 

Acenaphthylene 0.01 1.000 3.6/2.8/3.3/3.2 -2.8/1.5/1.4/0.0 10.1/8.6/9.4/9.4 

Acenaphthene 0.01 0.999 10.5/9.6/5.0/8.3 -5.9/6.3/5.7/2.1 22.9/21.4/13.7/19.3 

Fluorene 0.02 0.995 27.6/35.6/43.7/35.6 59.1/38.6/67.6/55.1 88.0/84.2/117.4/96.5 

Phenanthrene 0.05 0.896 99.2/71.1/79.5/83.3 -38.8/16.2/17.0/-

1.9 

203.6/143.5/160.4/169.2 

Anthracene 0.04 0.996 13.5/12.4/4.2/10.0 -22.1/6.2/6.1/-3.3 37.7/26.6/12.8/25.7 
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Table 4: quantified values vs. reference values in RM IAEA-432. ( : in the target range ;  : 

out the target range.) 

Compounds 

Reference 

values 

(ng g
-1

) 

Amounts 

with Method 1 

parameters 

validation 

(ng g
-1

) 

Amounts 

with Method 2 

parameters 

validation 

(ng g
-1

) 

Bias 

with Method 1 

parameters 

validation 

(%) 

Bias 

with Method 2 

parameters 

validation 

(%) 

Naphthalene 15 ± 18 13    7    -11 -53 

Acenaphthylene - 1.8 0.3 - - 

Acenaphthene - 2.5 0.7 - - 

Fluorene 4.1 ± 2.2 3.9    26.2    -5 539 

Phenanthrene 27 ± 21 16    8    -39 -69 

Anthracene 1.5 ± 1.1 1.1    1.0    -25 -36 

 

 

 

 

                  


