FN Archimer Export Format PT J TI Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe BT AF MASSELINK, Gerd CASTELLE, Bruno SCOTT, Tim DODET, Guillaume SUANEZ, Serge JACKSON, Derek FLOC'H, France AS 1:1;2:2,3;3:1;4:4;5:4;6:5;7:6; FF 1:;2:;3:;4:;5:;6:;7:; C1 Univ Plymouth, Sch Marine Sci & Engn, Coastal Proc Res Grp, Plymouth PL4 8AA, Devon, England. CNRS, UMR EPOC, Pessac, France. Univ Bordeaux, UMR EPOC, Pessac, France. Inst Univ Europeen Mer UBO, CNRS, UMR 6554, LETG Brest Geomer, Plouzane, France. Univ Ulster, Sch Geog & Environm Sci, Ctr Coastal & Marine Res, Coleraine BT52 1SA, Londonderry, North Ireland. Inst Univ Europeen Mer UBO, CNRS, UMR 6538, Domaines Ocean, Plouzane, France. C2 UNIV PLYMOUTH, UK CNRS, FRANCE UNIV BORDEAUX, FRANCE UBO, FRANCE UNIV ULSTER, UK UBO, FRANCE UM LGO IF 4.253 TC 227 UR https://archimer.ifremer.fr/doc/00606/71852/70473.pdf https://archimer.ifremer.fr/doc/00606/71852/70474.pdf https://archimer.ifremer.fr/doc/00606/71852/70475.jpg https://archimer.ifremer.fr/doc/00606/71852/70476.xls https://archimer.ifremer.fr/doc/00606/71852/70477.xls https://archimer.ifremer.fr/doc/00606/71852/70478.zip LA English DT Article DE ;waves;storms;beaches;Atlantic;Europe AB Studies of coastal vulnerability due to climate change tend to focus on the consequences of sea level rise, rather than the complex coastal responses resulting from changes to the extreme wave climate. Here we investigate the 2013/2014 winter wave conditions that severely impacted the Atlantic coast of Europe and demonstrate that this winter was the most energetic along most of the Atlantic coast of Europe since at least 1948. Along exposed open-coast sites, extensive beach and dune erosion occurred due to offshore sediment transport. More sheltered sites experienced less erosion and one of the sites even experienced accretion due to beach rotation induced by alongshore sediment transport. Storm wave conditions such as were encountered during the 2013/2014 winter have the potential to dramatically change the equilibrium state (beach gradient, coastal alignment, and nearshore bar position) of beaches along the Atlantic coast of Europe. PY 2016 PD MAR SO Geophysical Research Letters SN 0094-8276 PU Amer Geophysical Union VL 43 IS 5 UT 000373109800043 BP 2135 EP 2143 DI 10.1002/2015GL067492 ID 71852 ER EF