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SUMMARY

As an alternative to spectral methods, stochastic self-similar slip can be produced through a
composite source model by placing a power-law scaling size-frequency distribution of circular
slip dislocations on a fault surface. However these models do not accurately account for
observed surface rupture behaviour. We propose a modification to the composite source model
that corrects this issue. The advantage of this technique is that it accommodates the use of
fractal slip distributions on non-planar fault surfaces. However to mimic a surface rupture
using this technique, releasing the boundary condition at the top of the fault, we observed
a systematic decrease in slip at shallow depths. We propose a new strategy whereby the
surface is treated like a reflector with the slip being folded back onto the fault. Two different
techniques based on this principal are presented: the first is the method of images. It requires
a small change to pre-existing codes and works for planar faults. The second involves the
use of a multistage trilateration technique. It is applied to non-planar faults described by an
unstructured mesh. The reflected slip calculated using the two techniques is near identical on
a planar fault, suggesting they are equivalent. Applying this correction, where reflected slip is
accounted for in the composite source model, the lack of slip at shallow depths is not observed
any more and there is no systematic trend with depth. However, there are other parameters
which may affect the spatial distribution of slip across the fault plane. For example, the type of
probability density function used in the placement of the subevent is also important. In the case
where the location of maximum slip is known to a first order, a Gaussian may be appropriate to
describe the probability function. For hazard assessment studies a uniform probability density
function is more suitable as it provides no underlying systematic spatial trend.

Key words: Numerical approximations and analysis; Self-organization; Theoretical seismol-

ogy.

1 INTRODUCTION

The production of rapid, realistic heterogeneous slip distributions is
essential in many applications. The linking of the stress drop with
power law scaling (Hanks 1979) and self-similar/self-affine slip dis-
tributions with seismic radiation (Andrews 1980) provided a means
to producing stochastic slip distributions based on generic features
of earthquakes. Herrero & Bernard (1994) demonstrated that such
distributions could be produced efficiently in the wavenumber do-
main using a limited number of parameters and a fast Fourier trans-
form. Since then, a number of different techniques for producing
self-similar/self-affine slip distributions with nuanced differences
based on particular observations have been produced (e.g., Mai
& Beroza 2002; Lavallée & Archuleta 2003; Song & Somerville
2010; Goda et al. 2015; Davies et al. 2015). However, the effect the
surface boundary has on slip are rarely discussed (e.g. Shimazaki
1986), particularly in the case of stochastic source models. Wells &
Coppersmith (1994) found that slip at depth and at the surface were

similar for most earthquakes in their database. It is this feature that
we aim to reproduce in our stochastic models.

Generally, in order to avoid singularities at the fault boundary,
the slip is constrained through a selective choice of phases in the
frequency space or is tapered to zero (e.g. Herrero & Bernard 1994).
In the case where a rupture reaches and breaks the surface, a simple
solution, to take into account this phenomena, is to extend the fault
plane above the surface in the air. The slip distribution is generated
on this virtual fault, and afterwards the section above the surface is
removed and the slip rescaled. Alternatively a careful application
of the phases can be used to position the maximum slip near the
surface. None of these solutions are easy to apply to non-planar
fault surfaces.

In order to address this issue we use a composite source model
(Frankel 1991; Zeng et al. 1994) to generate stochastic slip dis-
tributions. The advantage of this technique is that it is performed
solely in the spatial domain requiring no fast Fourier transforms
and therefore the fault surface may be described by an unstructured
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Figure 1. Reflecting slip back onto the fault plane using the method of
images. The radial distance from the imaginary source is given by eq. (2).
The red circle is the original subevent and the dash black line is the imaginary
source. The zone in yellow marks the slip contribution from the imaginary
source to the original subevent.
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Figure 2. (a) 2-D subevent with a radially dependent slip distribution on
a planar fault containing the reflected contribution. The slip profile of the
primary subevent is centred at (2,2) with the free surface located at y = 0.
The black line represents location of the cross-section shown in subplot b.
(b) A cross-section of slip shown in subplot (a) decomposed into the primary
subevent u,(r) in green, the imaginary contribution u;(+") in blue and the
total slip [u,(r) + u;(r')] in red.

mesh. This method involves the placement of a large number of
circular subevents, with self-similar distribution in size, onto the
fault surface. Their distribution is based on a pre-defined spatial
probability density function. The summation of all the subevents
produces a final slip distribution which exhibits a self-similar spec-
tra. This is equivalent to k2 slip distributions (Ruiz et al. 2007).
Herrero & Murphy (2018) extended the use of the composite source
model from planar to non-planar surfaces by using a double trilater-
ation technique to calculate the distance across unstructured grids.
An advantage of these methods is their capacity to guarantee null
slip at the boundary of the fault. This is achieved by redeploying
subevents whose radii extend outside the edge of the fault plane.
If such a manoeuvre is applied along the top of the fault this will
result in no surface rupture.

The inclusion of large surface rupture is challenging. Loosening
the boundary condition along the free surface, so that subevent
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Figure 3. The steps in calculating the reflection from the surface. Panel (a)
is the distance from the point source, denoted by the red x to all points on
the fault plane. The black contours are at 5 km intervals. The free surface
is represented by nodes at y = 0. Panel (b) is the distance from the point
source in subplot a to all the surface nodes. (c) Setting the distance to zero
at all nodes across the mesh with the exception of the surface nodes which
retain the values calculated in the original step and plotted in subplot (b),
the reflected distance is now calculated across the mesh.

which extend above the surface are not rejected, does produce slip
at the surface. However it is systematically lower compared with
slip at depth, a feature that will be demonstrated and explained in
more detail in the following sections. Another approach is to extend
the fault plane above the surface of the earth. Then, the slip is placed
on the extended fault and the protruding part of the fault is removed
afterwards (Murphy ez al. 2016). This generates a smoother depth
dependent function. However it requires a number of additional
computational steps and, in the case of non-planar faults, it may be
very difficult to apply.

Surface ruptures with systematic small values are at odds with
a number of numerical and seismological observations. Originally
earthquakes with surface slip were modelled as mirrored crack-
like dislocations (Knopoff 1958) where the initial fault width was
double and centred on the free surface, the fault plane was then
halved and the slip doubled. This results in maximum slip always
being located at the surface with the implicit assumption that the
healing phase is generated from edges of the fault and not at the
free surface. Heaton (1990) has since proposed that rupture may be
pulse-like rather than crack-like in nature implying that a healing
phase may be created before the rupture front reaches the fault edge.
This has a collateral effect: the largest slip in an earthquake may
occur anywhere on the fault. Dynamic simulations have shown that
dipping thrust faults produce larger amounts of slip when compared
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Figure 4. The difference in reflected distance/secondary slip when using the method of images compared to the MSTT. A subevent has been placed at a
distance of 25 km along strike and 6.5 km depth with a radius of 15 km. (a) The colour bar depicts the percentage difference in the reflected distance between
the two techniques divided by the method of images distance [i.e. 100X (rysor — rystr)/rmor where ryor and rysrr is the distance calculated using the method
of images and MSTT techniques, respectively]. The calculated values are at the level of numerical noise. In subplot (b) the difference in the reflected slip
distribution (i.e. secondary source) using the same subevent location as in subplot (b) is divided by the method of images slip (i.e. similar to the equation used
for the distance in subplot (a). The difference between the two techniques is close to numerical noise.

with normal faulting due to seismic waves being reflected onto
the fault during dynamic rupture (Nielsen 1998; Oglesby et al.
1998). Murphy et al. (2016) observed that the Japan Trench is
susceptible to slip amplification at shallow depths while Scala et al.
(2019a) demonstrated that seismic radiation interaction with rupture
causes increased slip-rate and slip near the surface. Additionally
slip inversions for a number of tsunamiogenic earthquakes such
as Tohoku 2011, Illapel 2015, Mentawai 2010, Haida Gwaii 2012
(Romano et al. 2014; Lorito et al. 2015; Romano et al. 2016)
have all shown substantial surface rupture. This is a particularly
important feature in the case of tsunami hazard where shallow slip
amplification can lead to increased tsunami wave height (Murphy
et al. 2016; Scala et al. 2019D).

In summary, while the question as to whether rupture is pulse-
or crack-like remains open, large slip in the near surface does ap-
pear to occur and is important, particularly for tsunami generation.
Therefore, we need to introduce a way to balance the systematic
behaviour of a composite source model approach in the case of
surface rupture.

In this paper, we propose two new techniques to tackle this issue.
They are based on the principle that the slip can be reflected back
onto the fault plane. Thus it negates the need to extend the fault
above the surface. The first technique is based on the method of
images and requires only a modest alteration of the original com-
posite source model equations. It is only applicable to planar faults.

The second involves a multistage grid based technique commonly
used in calculating traveltimes in seismology (Vidale 1990; Podvin
& Lecomte 1991; Noble et al. 2014). It can be applied to non-planar
complex fault geometries.

2 SURFACE RUPTURE: PLANAR
FAULTS

The composite source model involves the placement of a large num-
ber of circular slip functions, that is subevents, on the fault plane
(Frankel 1991; Zeng et al. 1994). The size— frequency relationship
of these subevents are power law in nature and were originally de-
scribed as uniform slip distributions where the slip was proportional
to the radius of the subevent (§oxr). Ruiz et al. (2007, 2011) built
on this model by changing the slip function for the subevents from
one that is uniform to an Eshelby crack (Eshelby 1957):

(e rz
u(r)={72iAuV1_R2 r=R )
0

r > R.

In the eq. (1), R is the radius of the subevent [at position (x,, y,)]
and ris radial distance from the centre of the subevent to any position
on the fault plane. When one of these circular subevents crosses
the boundary of the fault [i.e. /(x5 — x,)? + (5 — ¥,)?> < R where
(x5, v») s the nearest point on the fault boundary to the centre of the
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Figure 5. Example of surface rupture for M8.5 earthquake on the Scotia
subduction slab. Panel (a) is the slip distribution obtained when using only
the initial subevents and not accounting for any reflections from the free
surface. Panel (b) is the slip contribution from all the secondary sources
[us(r”) in eq. (4)] in the cases where the initial subevent had a boundary that
extended above the surface. Panel (c) is the final slip on the fault containing
both the initial subevents and the secondary reflected ones.

subevent] a new subevent centre is randomly chosen. This procedure
allows the slip to naturally taper to zero at the fault boundary.

In order to generate slip up to the surface this condition is re-
laxed so that subevents with radii extending across the surface are
allowed. As mentioned in the introduction, this provides a mean of
generating surface rupture. However the slip distributions tend to
systematically decrease near the surface (Murphy ez al. 2016) . This
is due to the spatial asymmetric distributions of subevents whereby
fault cells located in the vicinity of the surface only receive contri-
butions of slip from subevents located at or below the surface and
not above it. Moving down-dip the effect of the surface decreases
as a buried point on the fault is receiving slip from progressively
more subevents of varying sizes across a wider azimuthal range.

A remedy is to reflect the segments of the subevents that extend
over the free surface back onto the fault plane. This technique does

not require an extension of the fault plane but rather the addition of
a secondary source that represents this reflected slip.

In the case of a planar fault where the free surface occurs along
the x-axis (i.e. y = 0) this can be achieved by using the method of
images (Fig. 1). By placing an identical mirrored subevent centred
at (x,, —,) (assuming depth is positive) above the surface, that is
an ‘imaginary source’. This requires only a slight modification to
original eq. (1) where the radius is altered to:

P =V =X+ ) )

The slip at/beneath the surface from this imaginary source provides
the reflected contribution to the total slip. The total slip, u(x, y), for
one subevent that contains reflected slip is given as:

ulx, y) = up(r) +ui(r'), 3)

where u,(r) is the slip contribution from the original subevent while
u;(r")is the reflected contribution. A schematic of the location of the
two subevents is provide in Fig. 1. The combination of the primary
and imaginary sources now doubles the slip along the surface. An
example of the different components in eq. (3) is given in Fig. 2.

3 SURFACE RUPTURE: NON-PLANAR
FAULTS

The method of images described in the previous section provides an
easy solution in the case of a planar fault where the shortest distance
to the surface is perpendicular to it. In the case of a non-planar fault
where the surface is no longer straight, use of the method of images
becomes non-trivial. However computing distance or travel time
from a technical point of view is the same. Therefore calculating the
reflected distance from a boundary is similar to the issue of calcu-
lating the travel time from a particular reflector in a complex media
(e.g. Podvin & Lecomte 1991; Rawlinson & Sambridge 2005). We
introduce a multistage method that uses the trilateration technique
(Herrero & Murphy 2018), which computes the geodesic distance
on a complex surface, to estimate the distance from a source after
a reflection. To obtain this result we need to apply the technique to
all the points defining the reflector twice. Consequently this method
is called the ‘multistage trilateration technique’ (MSTT). Methods
to solve this problem involve either setting the velocity below the
reflector to zero (e.g. Podvin & Lecomte 1991) or by resetting and
recalculating the travel time in the layer above the reflector (e.g.
Rawlinson & Sambridge 2005). The MSTT method we apply for
calculating the reflected difference off the free surface is based on
the latter scheme with the reflector of interest situated along the
edge of the mesh.

First, the nodes in the mesh making up the free surface were
noted, henceforth referred to as the ‘surface nodes’. Then, the dis-
tances were calculated from a point source, that is the centre of the
subevent, to all other points on the mesh/grid—this is depicted in
Fig. 3(a). The distance along the surface nodes are then saved (see
Fig. 3b). Next, the distance is then recomputed across the mesh a
second time using all the surface nodes as a line source . To ensure
a correct computation, the distance is reset on all the nodes to their
initial condition, with the exception of surface nodes which retain
their distance value from the first iteration (Fig. 3c).

The strength of this technique is the ease of application with the
repeated use of the same technique for calculating distance across
the mesh. A disadvantage of the method is that the computation cost
is doubled.

To compute the slip this reflected distance is substituted into eq.
(1) in place of . The slip function generated using the reflected
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distances, r”, is similar to the contribution u;(r’) in eq. (3) and is
added to the primary subevent in similar way:

u(x, y) = up(r) +u(r"), “4)

where u,(r") is the contribution of the secondary source (i.e. the
reflected source).

With a planar fault the two techniques can be tested against
each other. In Fig. 4(a) the reflected distance for a point source
at a distance of 25 km along strike and 6.5 km depth has been
computed using the two techniques. In Fig. 4(b) a subevent with a
radius of 25 km has been placed in the same location as in subplot
4(a) and the u; and u;, in eqs (3) and (4) have been calculated and
compared against each other. In both figures the error is normalized,
see caption for more details. For this reason error in reflected slip
in Fig. 4(b) is highest at the edge of the subevent (i.e. due to the slip
approaching zero). In both tests the error is near to the numerical
noise.

To demonstrate the accumulative contribution that the secondary
source can potentially provide, a M8.5 earthquake with surface
rupture was generated on the Scotia slab (Hayes e al. 2012). In
Fig. 5 the contributions from all the primary (u,) and secondary
(us, i.e. reflected) slip have been summed up separately in subplots
(a) and (b), respectively. Comparing the three subplots the secondary
source provides a large slip component right at the surface which
would not be possible to achieve if only the primary source was used
(in some cells up to 40 per cent of the surface rupture is supplied

by uy).

4 DISCUSSION

With both techniques (i.e. MSTT and method of images), the surface
has been treated as a mirror reflecting the slip at shallow depth.
This is similar to Knopoff (1958) assumption where the surface
is also treated as a mirror. However the assumption that rupture
is crack-like is not being made in our case. Only the individual
local subevents near the surface are being reflected but not the
final slip across the fault. Dynamic simulations suggest that the
amount of surface rupture is a function of fault dip and faulting
mechanism (Oglesby et al. 1998; Nielsen 1998; Scala et al. 2019a).
Such phenomena could be incorporated into this model by adding a
multiplicative factor to the reflected slip contribution, thereby acting
as a ‘tuning factor’. It would require a more complete description
of the effect that different geometries and faulting mechanism play
on the slip.

A further step for the surface rupture model is the inclusion
of variable rise time functions based on local subevent size, that
is xR (Ruiz et al. 2007). Bilek & Lay (1998, 1999) observed a
systematic variation in the source duration with depth in subduction
zones, suggesting earthquakes in such zones call for a careful depth
dependent treatment. Again a depth dependent ‘tuning factor’ in
this case for the rise-time could be added.

Fig. 5 highlights the contribution of the reflected slip on a single
earthquake. To better quantify the trend due to the inclusion of the
reflected slip, we have produced 500 stochastic slip distributions. As
in Figs 5(a) and (c) two slip distributions from each simulation are
generated: one containing only the initial subevents and the other
containing both the initial and secondary slip sources. The initial
slip sources represents the standard composite source model.

The mean slip per cell for the two groups of slip distributions,
primary slip and the sum of primary and secondary slip, is displayed
in Fig. 6. The depth profile shown in the top panel (Fig. 6¢) highlights
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Figure 6. Spatial distribution of mean slip for 500 simulations exclud-
ing/including near surface slip reflection. Panels (a) and (b) depict the spatial
distribution of average slip across the fault in the case where near surface
reflected slip is excluded/included respectively. Panels (c¢) and (d) are cross-
sections of the average slip taken from subplots (a) and (b) respectively at
25 km along strike.

the issue that this paper aims to address: a systematic and relative
decrease of the slip close to the surface, when we use a composite
source model. The lower panel demonstrates the validity of the
correction we have applied. The depth profile (Fig. 6d) exhibits a
constant average slip value from the centre of the fault up to the
surface.

Such a feature is particularly important for the probabilistic haz-
ard assessment where large numbers of earthquake sources are used.
The family of slip distributions used in such models should, if pos-
sible, converge to a spatially uniform distribution across the fault.
Consequently if a slip needs to vary spatially (e.g. accounting for
recent earthquakes, coupling, depth dependency, etc.) this can be
added as a subsequent step on the corrected composite source model.

The choice of the type of probability density function (PDF)
used in the placement of the subevents on the fault can alter the
distribution of'the slip. Up until now (i.e. Figs 5 and 6) the subevents
have been placed on the fault plane using an uniform PDF. An
alternative option is a Gaussian function (e.g. Cultrera et al. 2010;
Akinci et al. 2017) as shown in Fig. 7(a) which can provide a
first order constraint on the location of the largest slip (for e.g.
compare the location of the peak of the Gaussian function in Fig.
7(a) with the location of maximum slip in Fig. 7(b). Achieving
a spatially uniform average slip for a family of slip distributions
using such a PDF is challenging. 1000 stochastic slip distributions
were generated using a Gaussian PDF to place the subevents. The
location of the maximum of the Gaussian was in turn randomly
placed on the fault using a uniform PDE. All the other conditions
are the same as those used in producing Fig. 6(b). However Fig. 7(d)
exhibits again a systematic decrease in slip near the surface even
if the surface rupture effect is corrected for. Therefore this feature
is only due to the choice of the PDF. Calculating the average PDF
used in the placement of subevents generates a function which is
concentrated in the centre of the fault, see Fig. 7(c). This is similar
to the coverage of the final slip distribution (compare to Fig. 7d).
It demonstrates that the average a priori for our stochastic model,
that is the PDF used to place the subevents, is representative, to a
first order, of the characteristic output of the model.
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Figure 7. Different PDFs for defining subevent locations have different effects on the slip distributions both for a singular event and a family of simulations.
Panel (a) is an example of a Gaussian function that has been used as a PDF for the location of subevents in the production of the slip distribution in (b). Panel
(c) is the mean PDF for 1000 simulations where a Gaussian function similar to that shown in subplot (a) was randomly placed on the fault. Panel (d) is the
spatial distribution of mean slip for 1000 stochastic slip distributions produced using the randomly placed Gaussian functions.

An additional feature of using a Gaussian function is the need for
more simulations to converge to a stable average slip distribution
compared to a uniform function [500 earthquakes were required to
produce Fig. 6(b) compared to 1000 in Fig. 7c].

In the case of probabilistic seismic hazard assessment or proba-
bilistic tsunami hazard assessment a spatially uniform distribution
of slip over a large family of earthquakes may be more desirable.
Conversely, where the operator would like to constrain the location
of maximum slip to a first order, a probability density function based
on a Gaussian function may be more appropriate. However a non-
uniform distribution will generate systematic spatial biases when
a number of the slip distributions are summed together. Therefore
choosing the probability density function used in the placement of
subevents on the fault plane has consequences and requires careful
analysis.

The inclusion of surface rupture translates into larger surface
deformation which is particularly important in the case of tsunami
generation. To demonstrate this, two slip distributions were pro-
duced, one with only the primary slip contribution (i.e. no surface
rupture) and the second containing both primary and secondary slip
contributions (which will be referred to as the ‘surface rupture’
case). A regular, planar, grid with a length of 60 km, width of 30
km and a dip of 30° hosting a magnitude 7 earthquake was used so
that the triangles could be combined to create squares which were
in turn used to calculate the surface deformation vector for a range
of points using an analytical solution for a simplified half-space
media (Okada 1992). In Fig. 8(c) the difference between the surface
deformation between the two cases is given as a percentage based
on the magnitude of the difference between the two deformation
vectors divided by the magnitude of the deformation in the case of
surface rupture. The formula is given as:

Jds = d2p + (dy — a2+ (@ — d2y

d; +dy + d;
where ¢ is the deformation in the case of surface rupture and
d" is for the case containing only the primary slip contribution,

subscripts denote the component. Fig. 8(c) demonstrates that the
deformation shows substantial increase (i.e. above 20 per cent and

100 %

up to 60 per cent) at distances of roughly 5 km from the fault
trace. The orientation of the surface deformation vector also varies
between the two earthquakes as well. For every deformation vector
we apply the equation:

ds_.db
¢ = arccos [ 2|,
<|diz||dfz

where the superscript corresponds to the deformation due to the
case where only the primary slip source was used (i.e. ‘b”) or sur-
face rupture was properly accounted for, ‘s’. d,. relates to the 2-D
vector made up of the deformation in the yz plane (i.e. the vertical
- perpendicular to strike plane). Fig. 8(d) shows that there is +5°
change of angle up over 10 km zone on the hanging wall side of
the fault with the largest change occurring at the edge of the fault
trace. While this is a single example, it demonstrates that account-
ing for surface rupture affects a sizeable zone around the fault trace,
where both the magnitude and direction of the surface deforma-
tion changes. This is particularly important in tsunami generation
where both the vertical and horizontal deformation (depending on
the bathymetry) influences the tsunami source (Tanioka & Satake
1996).

Ground motion may also be influenced by the presence of surface
rupture. In the case of our stochastic slip distribution a k=2 spectra is
maintained when surface rupture is accounted for. This is described
in more detail in Appendix A. Observations point to a relative
decrease in amplitude around 1 Hz for ground motion recorded for
surface rupturing earthquakes compared with buried cases with the
hypothesis that it is due to different rupture processes (Kagawa et al.
2004). Therefore a combination of surface rupture and particular
choices in the source time function with depth may be required in
order to match such observations. A future aim is to investigate the
effect of surface rupture on ground motion which would require the
construction of stochastic source time functions which is beyond
the scope of this paper.
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Figure 8. Comparison of surface deformation for two slip distributions with and without surface rupture for a M 7 reverse earthquake with a dip of 30°.
Panels (a) and (b) are the two slip distributions, the first is the surface rupture case while the second contains only the primary slip. Panel (c) is the difference
in the magnitude of the surface deformation between the two slip distributions. The percentage is calculated by subtracting the magnitude of the two surface
deformations away from each other and dividing by the magnitude of the surface deformation in the case of the surface rupture. (d) The difference in angle
between the two sets of deformation vectors. The angle is calculated from the vertical and perpendicular to the fault trace (i.e. the y-direction in the figure)
components of the surface deformation. The yellow dashed line in subplots (c) and (d) represent the projection of the fault plane onto the surface.

5 CONCLUSION

The composite source model provides a technique for placing fractal
slip on non-planar faults. A limitation of the methodology to date
is a depth dependent trend that systematically underestimates near-
surface slip in the case of surface rupture. This behaviour is not

always in agreement with some theories and observations. We have
proposed two new techniques to correct this trend. In both cases the
slip from subevents that extend over the surface have been reflected
back on to the fault plane. In the first case, the method of images was
used. This requires only a minor change to composite source model
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and works for planar faults. For non-planar faults, a multistage
trilateration technique was applied. This technique requires that
the fault is described by an unstructured mesh. The reflected slip
calculated using the two different techniques is near identical on a
planar fault.

Incorporation of the reflected slip generates much higher slip at
the fault surface consistently. The choice of the probability density
function for deciding the location of the subevents in the individual
slip distributions should depend on the overarching objective of the
stochastic modelling. If the rough location of the maximum slip is
an a priori feature, a Gaussian function is more appropriate. If, on
the other hand, the spatial distribution of slip is required to converge
to an uniform level across the fault, an uniform probability density
function should be used.

6 RESOURCES

The codes used to calculate the stochastic slip distribution are writ-
ten in Fortran90. The code to compute the slip with surface rupture
is available on Github at this address https://github.com/s-murfy/k
223d, while the code used to calculate distance across a non-planar
surface which is used in the stochastic slip code can be found at this
address https://github.com/andherit/trilateration. The codes used to
produce the data used in all the figures have been put in the public
domain. The geometry of the slab for Fig. 5 comes from the Slab1.0
database (Hayes et al. 2012) and may be found at this address
https://earthquake.usgs.gov/data/slab/.
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APPENDIX: POWER-LAW SCALING OF
SLIP DISTRIBUTION

The high frequency radiation of the source is expected to be gener-
ated by a distributed roughness of the rupture process or a stopping
phase. In the case of the fault boundary along the surface we ex-
pect no stopping phase to be generated. However, it is important to
check if the high frequency distribution of the source parameters
are changed by the introduction of reflected slip.

To check the power-law scaling of the slip distribution with sur-
face rupture we generated a planar fault described by a uniform
mesh. As the spatial discontinuity of the slip at the surface would
introduce noise at all wavelengths, the slip distribution is mirrored
along the surface (i.e. the fault area has now been doubled, see
Fig. Ala). Fig. A1(b) shows that the slip spectrum for this mirrored
fault contains a k=2 scaling.

With the assumption of fault mirroring the only variation of
the slip spectrum from a buried fault is at the lowest wavenumber
which is doubled in amplitude. In reality this is just an artefact. The
main point is the stability of the behaviour of slip spectrum at high
wavenumbers in a kinematic framework.
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Figure Al. Checking the power-law scaling of a slip distribution with surface rupture. Panel (a) demonstrates how the slip distribution is mirrored around the
surface. Panel (b) is the spectrum of the slip distribution shown in subplot (a). Each dot represents the amplitude spectra for each radial wavenumber. The red
line represents a k=2 slope for reference. The downgrading observed at high frequencies is a classical behaviour (e.g. Ruiz et al. 2007).
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