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Abstract :   
 
Marine shellfish exposed to the microalgae Karenia selliformis can accumulate gymnodimines (GYM). 
Shellfish samples collected from Beihai City in Guangxi Autonomous Region, and Ningde City in Fujian 
Province, in the South China Sea, as well as mussels Mytilus galloprovincialis fed on K. selliformis under 
laboratory conditions were analyzed. Gymnodimines and various fatty acid ester metabolites were 
detected in the clam Antigona lamellaris and pen shell Atrina pectinata, while no esters were found in the 
oyster Crassostrea sp. and the gastropod Batillaria zonalis despite positive detection of free GYM in both 
species. When present, the predominant acyl esters observed were 18:0-GYM-A and 20:1-GYM-A. Under 
laboratory conditions GYM-A was accumulated and metabolized to fatty acid esters in mussels exposed 
to K. selliformis, with 16:0-GYM-A and 20:1-GYM-A as the major variants. A novel compound with the 
same accurate mass as GYM-A and its 16:0 fatty acid ester were observed in the experimental mussels 
but was not present in the microalgal strain to which mussels were exposed. No significant differences of 
reactive oxygen species (ROS) levels and antioxidant enzymes were found between mussels fed on 
K. selliformis or GYM-free microalgae Isochrysis galbana. This suggests the accumulation of GYM and 
its metabolites does not significantly impact the physiological status of mussels. While it is currently not 
proven that GYM affects human health, risk assessments should consider the presence of GYM esters in 
naturally contaminated shellfish as part of exposure analysis. 
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Highlights 

► GYM-A was detected in four species of field marine mollusks from Chinese coast. ► Diverse fatty acid 
esters of GYM-A were found in clam and pen shell, but not in oyster and gastropod. ► GYM-A and its 
different fatty acid esters accumulated in mussels fed with Karenia selliformis. ► The esters 16:0-GYM-
A and 20:1-GYM-A were the major components in the experimental mussels. ► A novel compound with 
the same accurate mass as GYM-A and its esters were also observed in mussels. 
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1. Introduction 56 

Marine bivalves have the capacity to accumulate phycotoxins produced by 57 

harmful algae and generate a diverse range of secondary metabolites, collectively 58 

known as shellfish toxins (Salas and Clarke, 2019). These toxins can be divided into 59 

eight groups, including saxitoxins, azaspiracids, brevetoxins, cyclic imines, domoic 60 

acids, okadaic acids, pectenotoxins, and yessotoxins (Toyofuku, 2006). Gymnodimines 61 

(GYM) (Fig. 1) are a group of fast-acting cyclic imine toxins initially identified in 62 

oysters collected in New Zealand (Seki et al., 1995; Stewart et al., 1997). GYM-A, 63 

GYM-B and GYM-C are produced by the dinoflagellate Karenia selliformis (Miles et 64 

al., 2000, 2003; Seki et al., 1995). 12-methyl-gymnodimine was subsequently verified 65 

as natural product in the dinoflagellate Alexandrium ostenfeldii from estuaries on the 66 

U.S. East Coast (Van Wagoner et al., 2011) and the Netherlands (Van de Waal et al., 67 

2015). Additionally, A. ostenfeldii from the northern Baltic Sea was shown to produce 68 

a new analogue, GYM-D (Harju et al., 2016). Gymnodimines have also been 69 

documented in shellfish from coastal regions of Tunisia (Biré et al., 2002; Marrouchi 70 

et al., 2010), Australia (Takahashi et al., 2007), Europe & North America (Kharrat et 71 

al., 2008), South Africa (Krock et al., 2009) and China (Jiang et al., 2017; Li et al., 2015; 72 

Liu et al., 2011a). A recent study demonstrated that fatty acid ester metabolites of GYM-73 

A constitute the majority (>90%) of GYM toxins present in clam samples (Ruditapes 74 

decussatus) from Tunisia (de la Iglesia et al., 2013). Several unknown GYM-like 75 

compounds have been detected in shellfish (McCarron et al., 2014) and in A. ostenfeldii 76 

by liquid chromatography-mass spectrometry (LC-MS) (Harju et al., 2016; Qiu et al., 77 

2018). Considering the high intraperitoneal toxicity (LD50 of 80-96 mg kg-1) of GYM-78 

A to mice, and albeit lower relative oral toxicity (Munday et al., 2004), these 79 

metabolites should be considered when evaluating the risks of GYMs in shellfish for 80 

human consumption.  81 

Antioxidant enzyme activity in bivalves is influenced by reactive oxygen species 82 

(ROS) and may be an indication of organism health and oxidative stress (Box et al., 83 

2007; Fernández et al., 2012; Gillis et al., 2014; Hu et al., 2015a; Regoli and Principato, 84 
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1995). Antioxidant responses are enhanced when the production of ROS increases, 85 

resulting in oxidative stress (Hu et al., 2015b; Pan et al., 2006). The antioxidant and 86 

immune systems of shellfish, including superoxide dismutase (SOD), catalase (CAT), 87 

glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione (GSH) and 88 

lysozyme (LZM), are responsible for eliminating ROS and foreign particles. Paralytic 89 

shellfish toxins accumulated from toxic microalgae induced oxidative stress in mussels 90 

(Mytilus galloprovincialis) and scallops (Patinopecten yessoensis), where ROS were 91 

reduced by antioxidant enzymes under laboratory conditions (Qiu et al., 2013).  92 

The objective of this work was to analyze the profiles of GYM and its fatty acid 93 

esters in various species of shellfish relevant to the coastal regions of China, with a 94 

specific focus on the South China Sea. Laboratory studies were conducted on mussels 95 

(M. galloprovincialis) fed with the GYM-producing microalgae K. selliformis to study 96 

the uptake and metabolism of GYM-A, and to monitor the response of antioxidant 97 

enzymes (SOD, CAT, GSH). 98 

2. Materials and Methods 99 

2.1 Reagents 100 

Ammonium formate and formic acid were from Fisher Scientific (Fair Lawn, NJ, 101 

USA) or Honeywell-Fluka (Oakville, ON, Canada). Acetonitrile, methanol, 102 

monopotassium phosphate (KH2PO4) and disodium hydrogen phosphate (Na2HPO4) 103 

were from Merck Ltd. (White-house Station, NJ, USA). A certified reference material 104 

(CRM) of GYM-A was obtained from the National Research Council of Canada 105 

(Halifax, NS, Canada). Milli-Q water was supplied by a Milli-Q water purification 106 

system from Millipore Ltd. (Bedford, MA, USA) to 18.2 MΩ quality or better.  107 

2.2 Culture of microalgae and sample preparation  108 

K. selliformis (strain GM94GAB) used in the feeding experiment was isolated 109 

from the Gulf of Gabes, Tunisia (Medhioub et al., 2009). The strain was maintained in 110 

sterilized seawater filtered with 0.45 μm mixed fiber membrane (Jinjing Ltd., China) in 111 

photo-bioreactors (120 L) without aeration. The culture was enriched with f/2 medium 112 

without silicate (Guillard and Ryther, 1962) at 18±2°C under 6000 lx light intensity 113 
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with a 12 h: 12 h illumination cycle. Algal cells were counted by optical microscopy at 114 

a magnification of 100 on a Sedgewick Rafter Counting Chamber and collected at the 115 

stable growth stage to feed mussels.  116 

Isochrysis galbana 3011 kept at Ocean University of China was used as a control 117 

diet in the feeding experiment. The culture conditions of I. galbana were as above for 118 

K. selliformis, without aeration. The batch of I. galbana was collected when the algal 119 

density approached 108 cells mL-1.  120 

A freeze-dried pellet (2.6 × 106 cells) of the cultured K. selliformis was extracted 121 

using a 1/16’’ microtip ultrasonicator probe with coupler (QSonica LLC (CT, USA) in 122 

1 mL methanol using a cycle with 40% amplitude pulse mode for a total of 3 min. The 123 

sample was held in an ice bath to prevent the solution from heating during extraction. 124 

The sample was then filtered using a 0.45 µm PVDF centrifugal filter (Merck Millipore 125 

Ltd.) prior to LC-MS analysis.  126 

2.3 Shellfish samples 127 

Multiple species of commercially grown shellfish were collected at shellfish 128 

harvesting regions in the South China Sea in March 2016. This included clams 129 

(Antigona lamellaris), pen shells (Atrina pectinata) and oysters (Crassostrea sp.) from 130 

Beihai City, Guangxi Autonomous Region, and gastropod (Batillaria zonalis) from 131 

Ningde City, Fujian Province. Whole tissue samples (~1 g) were weighed and extracted 132 

with 3 mL methanol on an ice using a superfine homogenizer (F6/10, Fluko) at speeds 133 

ranging from 5000 to 32000 rpm in three 30 s cycles. The supernatant was carefully 134 

transferred to a 10 mL volumetric flask after centrifugation (2400 ×g for 10 min at 4oC). 135 

The remaining pellet was re-extracted twice more as above and the combined 136 

supernatants were adjusted to a final volume of 10 mL and passed through 0.22 μm 137 

polyamide nylon filters into HPLC vials and stored at -20oC until LC-MS analysis. 138 

2.4 Feeding experiment and sample preparation 139 

Mussels (M. galloprovincialis) were obtained from a marine aquaculture zone 140 

along the coast of Qingdao, China, in October 2016. They were transported alive to the 141 

laboratory and washed to remove epibionts. Mussels were randomly divided into two 142 
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tanks (60 L) and acclimated in filtered seawater with continuous aeration at 16 ± 2°C 143 

for 3 days. During this period, seawater (without any feed) was renewed twice daily at 144 

08:00 and 20:00.   145 

After acclimation, mussels in the first tank (treatment group) were fed with 146 

K. selliformis for four days and then starved for three days. They were maintained in a 147 

60 L tank with fresh seawater containing the toxic microalgae at an initial density of 148 

1000 cells mL-1. The K. selliformis culture and fresh seawater were continuously 149 

supplied for four days using a peristaltic pump to maintain the initial algal density. The 150 

volume of seawater in the tank was kept constant. Fresh seawater alone was added for 151 

the three days of starvation. Acclimated mussels in the second tank were used as a blank 152 

control. Experimental settings for the control group were the same as for the treatment 153 

group, with the exception of the diet. The non-toxic microalga I. galbana was pumped 154 

and maintained at a density of 10 000 cells mL-1 for the first four days. Both tanks were 155 

continuously aerated during the entire experiment. Mussels (n=10) were selected 156 

randomly and dissected at various time points (0, 12, 24, 48, 72, 96, 120, 144, and 168 157 

h). The muscle (containing foot and adductor muscle) and digestive gland of mussels 158 

were separated. Tissue samples (1 ± 0.1 g) of both treatment groups were prepared as 159 

described in section 2.3. 160 

For ROS determinations, tissue samples (0.5 g) were homogenized in 10 mL 161 

phosphate buffer (0.1 M, pH=7.0) containing 2.6 mM KH2PO4 and 4.1 mM Na2HPO4 162 

for 3 mins on an ice-water bath. The supernatant from centrifugation (2400 ×g, 4oC, 20 163 

min) was collected. To analyze activity of antioxidant enzymes (CAT, SOD, GSH) 164 

additional tissue samples (1 ± 0.1 g) were homogenized and centrifuged in 9 mL 165 

physiological saline (0.9%) following the conditions as described above. The 166 

supernatant was collected.  167 

2.5 LC-MS analysis for GYM and esters  168 

The LC-MS method was modified from a previous study (Li et al., 2016). An 169 

HPLC (Agilent 1290, Palo Alta, CA, USA) was coupled with a triple quadrupole mass 170 

spectrometer (Agilent 6430, Palo Alta, CA, USA) equipped with an ESI interface. A 171 
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Luna C18 column (50 × 2.1 mm i.d., 3 μm, Phenomenex) was used at 35°C. Mobile 172 

phases A (water) and B (95% acetonitrile) contained with 50 mM formic acid and 2 173 

mM ammonium formate. A gradient at 300 μL min-1 was run from 25% to 100% B over 174 

7 min, held for 3 min and returned to 25%B over 1 min before re-equilibration for 3 175 

min. Injection volume was set at 5 μL. Selected reaction monitoring (SRM) transitions 176 

for all the acyl ester derivatives of GYM-A were described previously (de la Iglesia et 177 

al., 2013). Product ion m/z 490.3, fragmentor energy 150 V, collision energy 30 V, and 178 

dwell time 15 ms were used to scan fatty acid esters of GYM-A. Concentrations of 179 

GYM and metabolites of GYM-A were roughly estimated using CRM-GYM-A as a 180 

reference material assuming equal molar responses. 181 

2.6 LC-HRMS analysis for GYM and esters 182 

An HPLC (Agilent 1200, Palo Alto, CA, USA), was coupled with high resolution 183 

mass spectrometer (Q-Exactive HF, Thermo Fisher Scientific, Bremen, Germany) 184 

equipped with a heated electrospray ionization probe (HESI-II). A Luna C18 column (50 185 

× 2 mm i.d., 2.5 µm, Phenomenex) was used with mobile phase, flow rate, and 186 

temperature the same as described in section 2.5. The gradient ran from 15% to 100% 187 

B over 10 min, held for 15 min, and then returned to 15%B over 0.1 min before re-188 

equilibration for 7 min. Injection volumes were 1 µL. Mobile phase was diverted to 189 

waste for the first 1.5 minutes of the run. Source conditions were spray voltage 3000, 190 

capillary temperature 350°C, sheath gas and auxillary gas at 35 and 10 (arbitrary units) 191 

respectively with heat set to 300°C, and S-Lens RF Level at 50. Full scan data was 192 

acquired in positive mode from m/z 400-900 using the 60 k resolution setting with an 193 

automatic gain control (AGC) target 1e6 ions, 100 ms maximum injection time. MS/MS 194 

spectra were collected through ‘TopN’ experiments. These TopN experiments used 195 

data-dependent acquisition with the top 10 most intense ions (not on an exclusion list 196 

of background ions) selected for fragmentation from the full scan survey, with 197 

preferential fragmentation given to ions above an intensity threshold of 1.6e5 ions from 198 

an inclusion list of known GYM and acyl ester variants. Apex trigger was set from 2-6 199 

s with dynamic exclusion for 4 s in efforts to capture spectra near the apex of the 200 
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chromatographic peak. Spectra were collected at the 15 k resolution setting, 50 ms 201 

maximum injection time, an isolation window of 1 m/z about the parent mass with a 202 

collision energy spread of 30, 65 eV. Focused collection of free GYM spectra was done 203 

using parallel reaction monitoring (PRM) mode at the 30 k resolution setting, 2e5 AGC 204 

target, 100 ms maximum injection time, isolation window 0.4 m/z, and collision energy 205 

spread set at 40, 75 eV.   206 

2.7 Analysis of antioxidant enzymes 207 

The level of ROS and activities of antioxidant enzymes (SOD, CAT, GSH) in the 208 

digestive gland and muscle of mussels from both groups were analyzed using test kits 209 

for antioxidant enzyme biomarkers acquired from Nanjing Jiancheng Bioengineering 210 

Institute Ltd. (Nanjing, China) as described by (Liu, et al., 2011b; Ji et al., 2018a). The 211 

measuring principles are in accordance with specifications in kits.   212 

3. Results 213 

3.1 Profiles of GYM and esters in field shellfish collected from China 214 

 Varying concentrations of GYM-A was present in the four shellfish species tested. 215 

Concentrations of GYM-A as well as the relative molar percentages of predominant 216 

acyl esters in field mollusk samples are shown in Table 1. Acyl esters of GYM-A were 217 

found in the clam (Antigona lamellaris) and the pen shell (Atrina pectinata), while no 218 

fatty acid esters were found in the oyster (Crassostrea sp.) and the gastropod (Batillaria 219 

zonalis). The profile of GYM-A acyl esters observed varied between clams and pen 220 

shell samples. Octadecanoic acid (18:0) ester was the most abundant (50%), followed 221 

by the eicosenoic acid (20:1) (23%) in the clam. While 20:1-GYM ester (23%), 18:0-222 

GYM ester (20%), and the docosadienoic acid (22:2) (18%) ester dominated the profile 223 

in the pen shell sample. The extent of GYM-A esterification was estimated for clam 224 

and pen shell samples assuming equimolar response for the esters against GYM-A 225 

standard, and were approximately 58% and 87% respectively.  226 

3.2 GYM and esters in mussels from feeding experiment 227 

LC-MS/MS SRM chromatograms for esters of GYM-A in digestive gland tissue of 228 
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mussels (M. galloprovincialis) fed with K. selliformis after 96 h are shown in Fig. 2. 229 

Twenty-eight fatty acid esters (odd- and even-chains) were identified in the 230 

experimental mussels. The K. selliformis used as feed microalga for mussels in this 231 

study primarily produces only free GYM-A and a trace amount of GYM-B (Fig. S1A). 232 

The mussels were free of GYM toxins before feeding on K. selliformis (Fig. S1C and 233 

D). LC-HRMS full scan chromatograms for GYM-A CRM, 16:0 GYM-A positive 234 

control tissue which was previously confirmed in using synthetic 16:0 GYM-A (Iglesia 235 

et al., 2013), K. selliformis culture and experimental mussels are shown in Fig. 3. 236 

Product-ion spectra (MS/MS) (Fig. 4) of GYM-A in the extract of digestive gland 237 

sample (treatment group-96 h), were acquired to confirm the accumulation and 238 

esterification of GYM-A in mussels fed with K. selliformis in laboratory. An additional 239 

GYM peak (4.66 min), not present in the microalgae, was also observed in the shellfish 240 

with the same measured accurate mass as GYM (Fig. 3 and 4). This new GYM analogue 241 

also formed esters (14.84 min) in the mussels (Fig. 3).  242 

The concentrations of GYM-A and the relative amounts of acyl ester metabolites 243 

varied in the muscle and digestive gland tissues of mussels (Fig. 5). The acyl esters 244 

accounted for an estimated 98% of the GYM total in the muscle and digestive glands. 245 

Toxin concentrations increased during the algae-feeding period and stabilized during 246 

the starvation period. The highest concentration in the muscle tissues was at 120 h and 247 

96 h for the digestive gland tissues. The sum concentration of GYM and GYM esters 248 

reached a maximum of ~760 nmol kg-1 in the muscle tissues, while it was four times 249 

higher in the digestive gland samples. The relative proportion of GYM-A and the major 250 

ester metabolites (16:0, 18:0, 18:1, 20:1, 20:2, 22:2) differed in both tissues (Fig. 5). In 251 

the muscle samples, the relative abundance of 16:0-GYM-A was dominant (33%) in 252 

the first 48 h but gradually declined to 14%, while the relative abundance of 20:1-253 

GYM-A increased from 12% to 34%, and reached the highest level among ester 254 

metabolites after 48 h. The relative proportions of acyl esters in the digestive gland 255 

samples was consistent over the duration of the experiment with 16:0-GYM-A 256 

constituting approximately 30% esters detected.  257 

Molar concentrations of GYM-A in the muscle and digestive gland tissues are 258 
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shown in Fig. S2A. The esters 22:2-GYM-A, 20:1-GYM-A, 18:0-GYM-A and 16:0-259 

GYM-A were most abundant for their respective carbon chain lengths (Fig. S2B-E). 260 

The nutritionally important ω-3-fatty acids, EPA (C20:5) and DHA (C22:6) abundant 261 

in mussels (Fernández-Reiriz et al., 1996), formed much less acyl esters compared to 262 

the four derivatives above. Trends of each metabolite over time in these four groups 263 

were similar to the variations of GYM-A in the digestive gland tissues.  264 

3.3 Responses of Antioxidant System 265 

 The ROS levels from the control and treatment groups followed similar trends (Fig. 266 

S3). ROS levels reduced slightly when feeding on toxic or non-toxic microalgae at 12 267 

h, and did not change significantly until 144 h. Variations of CAT activity, SOD activity 268 

and GSH level in muscle and digestive glands are also shown in Fig. S3. These enzyme 269 

activity levels exhibited similar trends, showing minor fluctuation without significant 270 

changes over the course of the study.  271 

4. Discussion 272 

Accumulation of marine phycotoxins in shellfish is an important seafood safety 273 

issue due to frequent occurrence of toxic algal blooms in coastal areas worldwide 274 

(James et al., 2010). To properly assess the toxicity of shellfish exposed to harmful algal 275 

species, esterification of lipophilic toxins such as okadaic acid, pectenotoxins, 276 

spirolides and pinnatoxins has been studied (JØrgensen et al., 2005; Aasen et al., 2006; 277 

McCarron et al., 2012). The occurrence of GYM esters in shellfish highlights the need 278 

for methods to quantitate total profiles of GYM. Gymnodimines degrade under alkaline 279 

hydrolysis conditions and the enzymatic hydrolysis method still needs modification to 280 

be applied to cyclic imines (de la Iglesia et al., 2013; Doucet et al., 2007). Currently 281 

direct analysis of acyl esters by LC-MS is the most practical option for GYM ester 282 

measurement, however this is limited by availability of standards for GYM esters. In 283 

this work, individual ester concentrations were estimated assuming equal response of 284 

the esters and GYM-A. While total GYM esters measured were significant, these 285 

numbers can only be considered indicative. Monitoring lipophilic toxins in cultured 286 

mussels (Mytilus coruscus) during a previous study (Li et al., 2015) showed low 287 
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amounts of GYM-A are common throughout the year in the mariculture zone of Gouqi 288 

Island in the East China Sea. A subsequent study on lipophilic shellfish toxins showed 289 

higher concentrations of GYM-A were frequently detected in shellfish collected from 290 

the South China Sea (Ji et al., 2018b). GYM-A was present in the four field mollusk 291 

samples tested here. GYM-B, an analog of GYM-A, was first isolated and elucidated 292 

from K. selliformis (Miles et al., 2000). No GYM-B was detected in field samples.  293 

Trace amounts of GYM-B were present in the K. selliformis, and both the experimental 294 

mussels and seawater collected at 96 h during the feeding experiment (Fig. S1A and B). 295 

A positive detection of GYM-B in clams also occurred in a previous study (Naila et al., 296 

2012).  297 

Acyl ester metabolites have been observed for a variety of marine phycotoxins in 298 

a range of shellfish species (Comesaña Losada et al., 1999; Garcı́a et al., 2004; 299 

JØrgensen et al., 2005; Torgersen et al., 2008a; 2008b; Wilkins et al., 2006). Based on 300 

previous reports of acyl ester metabolites for other classes of cyclic imines including 301 

spirolides (Aasen et al., 2006) and pinnatoxins (McCarron et al., 2012), and because of 302 

the previous study showing GYM esters in Tunisian clams (Ruditapes decussatus) (de 303 

al Iglesia et al., 2013), the presence of GYM esters in Chinese shellfish is not 304 

unexpected. In this study, concentration and profile of ester metabolites varied in clam 305 

(Antigona lamellaris) and pen shell (Atrina pectinata) samples, but weren’t detected in 306 

oyster (Crassostrea sp.) or gastropod (B. zonalis) samples (Table 1), indicating that 307 

GYM esterification in mollusks may be species-specific. Possibly some key enzymes 308 

govern the metabolism of GYM esters in shellfish. The species specific profiles 309 

observed in GYM esterification should be studied further.  310 

The feeding experiment demonstrated the acylation process under controlled 311 

laboratory conditions. GYM-A and GYM derived esters analyzed in this work showed 312 

parent masses < 5 ppm, and 490-fragment masses < 3.5 ppm. The 392-fragment 313 

observed for GYM-A and its esters, was not present for GYM-like species (m/z 508) 314 

(Fig. 4). Various ester metabolites were confirmed in the experimental mussels based 315 

on characterized transitions and relative retention times of esters published before (Fig. 316 

2). The high relative abundance (90%-98%) of esterified GYM at each sampling-time 317 
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point (Fig. 5), including the first time point at 12 h, indicates that these Phase-II 318 

metabolites of GYM-A are formed very rapidly and that esterification constitutes a 319 

major metabolic process for these toxins. Relatively static distribution of acyl esters 320 

and GYM-A in digestive gland samples indicates GYM-A and its metabolites are 321 

readily retained in shellfish, possibly explaining the persistence of GYM-A in oysters 322 

(Seki et al., 1995) and clams (Naila et al., 2012). Considering the relative abundance of 323 

different GYM-A esters in the digestive gland tissue, percentages of free GYM-A and 324 

16:0 ester slightly decreased in the depuration period after 96 h, which demonstrated 325 

that they were excreted or transformed faster than 20:1 ester, 22:2 ester, and 18:0 ester. 326 

This tendency is also observed for GYM-A and the 16:0 ester in muscle tissue in the 327 

depuration period (data not shown).  328 

It is interesting to note that the unidentified GYM analog observed in the mussels 329 

after feeding, with the same accurate mass as GYM-A, also formed ester metabolites 330 

(Fig. 3 and 4). The origin of this GYM analog was not confirmed in this study, but it 331 

was not observed in direct analysis of the toxin-producing K. selliformis by LC-HRMS. 332 

The typical GYM-A product ions m/z 392 and 446 were absent in the MS/MS spectra 333 

of this new compound (Fig. 4), indicating a possible structural variation between C1-4 334 

(Fig. 1). This compound may have been a product of metabolism in the mussels, or may 335 

be an artefact from sample preparation or processing. LC-HRMS experiments did not 336 

reveal the presence of any other significant GYM related compounds in the microalgae 337 

(data not shown). The formation of this compound will be considered in further studies.  338 

All mussels were alive during the feeding experiment. Similar to the response of 339 

scallops (Chlamys farreri) and mussels (M. galloprovincialis) exposed to azaspiracids 340 

in our previous study (Ji et al., 2018), no significant difference of ROS levels and 341 

antioxidant enzymes were found in mussels exposed to the GYM-producing microalgae. 342 

This indicates there is no measurable impact of GYM accumulation on the antioxidant 343 

enzyme system of mussels based on this study.  344 

5. Conclusions 345 

GYM-A and ester metabolites were confirmed in the clam (Antigona lamellaris) 346 
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and pen shell (Atrina pectinata) samples collected from the South China Sea and in 347 

experimental mussels (M. galloprovincialis) fed with K. selliformis under laboratory 348 

conditions. While GYM-A was detected in the oyster (Crassostrea sp.) and gastropod 349 

(B. zonalis) samples, no GYM-A esters were detected. Various acyl esters were detected 350 

by SRM analysis and the predominant esters were confirmed by LC-HRMS. 351 

Esterification and ester profiles appear to be species-specific for mollusks. In mussels, 352 

ester metabolites constituted the majority of total GYMs (>90% for laboratory fed 353 

samples), with the 18:0-GYM-A and 20:1-GYM-A formed as the most abundant ester 354 

derivatives in the field samples analyzed. K. selliformis feeding demonstrated no toxic 355 

effects on mussels based on responses of antioxidant enzymes. A novel GYM analogue 356 

with the same accurate mass as GYM-A, which also formed fatty acid ester, was found 357 

in the experimental mussels. Risks posed by GYMs and their acyl esters should be 358 

assessed in future toxicological studies and risk assessments. 359 
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Tables  

Table 1. Concentrations of GYM-A (nmol/kg) and molar percentages of predominant 

GYM-A esters (to the sum esters in each sample) in the field samples collected from 

Chinese coasts.  

Sample 
GYM-A  

(nmol/kg) 

percentage of predominant esters (%) ER*

（%） C16:0 C18:0 C18:1 C20:1 C20:2 C22:2 

clam (Antigono lamellaris) 382 4.9 50 4.3 23 5.9 4.2 58 

pen shell (Atrina pectinata) 99 11 20 7.6 23 7.1 18 87 

oyster (Crassostrea sp.) 42 - - - - - - - 

gastropod (Batillaria zonalis) 55 - - - - - - - 

Esters of GYM-A were estimated using GYM-A as calibration standards. 

* ER means the esterification rate of GYM-A roughly estimated by GYM-A reference material; ER(%) = esters/(esters 

+ GYM-A) ×100. 

- means not detected in samples. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Legends of Figures 

Figure 1. Chemical structures of select gymnodimine analogs. 

Figure 2. LC-MS/MS chromatograms for fatty acid esters of GYM-A in digestive gland 

tissue of mussels (M. galloprovincialis) fed with K. selliformis after 96 h. 

Figure 3. LC-HRMS full scan chromatograms for GYM-A (left) and 16:0 GYM-A 

(right) using a 1.5 ppm mass tolerance, normalized to 100% intensity for m/z 508.3421 

in each sample. Samples shown are NRC-CRM gymnodimine (A), NRC positive 

control tissue (B), microalgal feed culture (K. selliformis) (C), and muscle tissues (D) 

and digestive gland tissues (E) of mussels (M. galloprovincialis) after 96 h feeding time 

point of this study. 

Figure 4. High resolution MS/MS spectra for GYM-A in certified reference material, 

and GYM-A and a second peak bearing GYM-A mass in mussel digestive gland (MDG) 

sample (LEFT). Spectra for 16:0 GYM-A acyl ester in positive control tissue, and the 

two 16:0 acyl esters derived from the GYM-A and the second GYM-like compound in 

MDG sample (RIGHT). 

Figure 5. Fatty acid esters of GYM-A in muscle (A) and digestive gland (B) tissues of 

mussels (M. galloprovincialis) collected at each sampling time point. The bars show 

the relative distribution of GYM-A including free form, selected individual ester and 

other esters (total free form and esters of GYM-A =100). The lines show the sum of the 

relative amounts of esters to the total toxin burden in % (filled triangle), the level of 

esters (filled squares) and esters + toxin (filled circles), both in nmol kg-1 tissue (right 

hand side axis). 
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