Additional Table S1: Calculations and parameters involved in the bio-economic model.

Parameters	Formulas
Fish model	
Thermal growth coefficient (TGC) :	
$1-b = weight \ exponent = 0.51$	
$K_i = daily \ corrected \ temperature$	$TGC = \frac{W_{H}^{1-b} - W_{I}^{1-b}}{\sum_{i=1}^{n} K_{i}}$
W_H (harvest weight) = 13 g	
W_l (initial weight) = 1300 g	
n is the length of growing period until harvest	
weight	
Fish weight (W _n) in kg :	$W_n = [W_1^{0.51} + (TGC \times \sum_{i=1}^n K_i)]^{1/0.51}$
Daily weight gain (DWGn) in g :	$DWG_n = W_n - W_{n-1}$
Feed conversion ratio (FCR _{Wn}) in g/g :	
$ECD = \alpha \times$	$\frac{W_{n}^{0.14}}{+\left(0.007174\times T_{i}^{\ 2}\right)-(0.0001395\times T_{i}^{\ 3})}$
$FCK_{Wn} - u \times \frac{1.318 - (0.103 \times T_i)}{1.318 - (0.103 \times T_i)}$	$+ \left(0.007174 \times {T_{i}}^{2}\right) - (0.0001395 \times {T_{i}}^{3})$
Daily feed intake (DFIn) in g :	$DFI_n = DWG_n \times FCR_{Wn}$
Daily dissolved N (N_dissolved_ n) in g:	$N_{dissolved_n} = DWG_n((65.988 \times FCR_{Wn}) - 25)$
Daily emission of P in effluent water (P effn) in g:	$P_{eff_n} = 00876 \text{ DFI }_n - 004 \text{ DWG}_n$
Batch model	
Biomass of fish of 10 g stocked per batch (biomass _{ini})	$biomass_{ini} = \frac{\text{maximum_standing_stock}}{\sum_{i=1}^{j} biomass_{i}}$
 Maximum_standing_stock = 435 tons 	
- <i>j</i> = number of batch reared simultaneously (34)	
- biomass _i = biomass of batch i a maximum standing	
stock	