FN Archimer Export Format PT J TI The genetic correlation between feed conversion ratio and growth rate affects the design of a breeding program for more sustainable fish production BT AF Besson, Mathieu Komen, Hans Rose, Gus Vandeputte, Marc AS 1:1,2,3;2:1;3:1;4:2,3; FF 1:;2:;3:;4:; C1 Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France Ifremer, Chemin de Maguelone, 34250, Palavas-les-Flots, France C2 UNIV WAGENINGEN, NETHERLANDS INRAE, FRANCE INRAE, FRANCE IN DOAJ IF 1.229 TC 24 UR https://archimer.ifremer.fr/doc/00610/72195/70976.pdf https://archimer.ifremer.fr/doc/00610/72195/70977.pdf https://archimer.ifremer.fr/doc/00610/72195/70978.pdf https://archimer.ifremer.fr/doc/00610/72195/70979.pdf LA English DT Article AB Background Most fish breeding programs aim at improving growth rate and include feed conversion ratio (FCR) neither in the breeding goal nor in the selection index, although decreasing FCR is known to increase farm profit and decrease environmental impacts. This is because FCR is difficult to measure in fish that live in groups and FCR is assumed to have a favourable (negative) genetic correlation with growth, although the magnitude of this correlation is unknown. We investigated the effect of the genetic correlation between growth and FCR on the economic and environmental responses of a two-trait breeding goal (growth and FCR), compared to a single-trait breeding goal (growth only). Next, we evaluated the weights to assign to growth and FCR in a two-trait breeding goal to maximize sustainability of fish production. Methods We used pseudo-best linear unbiased prediction (BLUP) index calculations to simulate a breeding program for sea bass. For the single-trait breeding goal, the trait in the breeding goal and in the index was thermal growth coefficient (TGC) and for the two-trait breeding goal, the traits in the breeding goal were TGC and FCR and the traits in the index were TGC and percentage of fat in the dorsal muscle (an indirect measure of FCR). We simulated responses to selection for genetic and phenotypic correlations between TGC and FCR ranging from 0 to − 0.8. Then, in the two-trait breeding goal, we calculated the economic return and the change in eutrophication when using economic values (EV) or environmental values (ENV). Results When the genetic correlation between TGC and FCR was lower than − 0.45, we found major differences in economic returns and in eutrophication between single and two-trait breeding programs. At a correlation of − 0.25, the two-trait breeding goal based on EV increased economic return by 25% compared to the single-trait breeding goal, while using ENV decreased eutrophication by 1.34% per ton of fish produced after one generation of selection. Conclusions The genetic correlation between TGC and FCR affects the magnitude of economic losses due to omitting FCR in the breeding program. In addition, the genetic correlation affects the importance of choosing EV or ENV to reduce eutrophication and increase profit. PY 2020 PD FEB SO Genetics Selection Evolution SN 0999-193X PU Springer Science and Business Media LLC VL 52 IS 1 UT 000512709600002 DI 10.1186/s12711-020-0524-0 ID 72195 ER EF