Supplementary Figures and tables

Chara	Patients (n=32)						
Age (years) Median (range)		63 (48;76)					
Sex							
	Male (%)	18 (56)					
	Female (%)	14 (44)					
Karnofsky performa							
	60-80 (%)	11 (34)					
	90-100 (%)	21 (66)					
Survival time (mont							
Median (range)	12 (5;50)						
Extent of surgery (%	Extent of surgery (%)						
	Biopsie	0					
	Partial resection	0					
	Complete resection	32 (100)					
MGMT methylatior	1						
	Methylated (%)	15 (47)					
	Unmethylated (%)	17 (53)					
IDH1 mutation							
	Wild-type (%)	31 (97)					
	Mutated (%)	1 (3)					

Supplementary Table T1.

Chara	Patients (n=48)						
Age (years) Median (range)		62 (48;76)					
Sex							
	Male (%)	26 (54)					
	Female (%)	22 (46)					
Karnofsky performa							
	60-80 (%)	16 (33)					
	90-100 (%)	32 (67)					
Survival time (mont							
Median (range)	13 (4;53)						
Extent of surgery (%							
	Biopsie	0					
	Partial resection	0					
	Complete resection	48 (100)					
MGMT methylatior	ı						
	Methylated (%)	23 (48)					
	Unmethylated (%)	25 (52)					
IDH1 mutation							
	Wild-type (%)	47 (98)					
	Mutated (%)	1 (2)					

Supplementary Table T2.

Base modification detection	Methods	References
Detection of cytosine methylation in RNA	Bisulfite sequencing	Legrand et al. (2017) Genome Res. PMID: 28684555
Detection of Adenosine methylation in pri-miR	m6A Immunoprecipitatio n and RNA seq	Alarcon et al. (2015) Nature. PMID: 25799998
Detection of phospho- dimethylated pre-miR-145	Incorporation of radiolabelled groups	Xelmace et al. (2012) Cell. PMID: 23063121
Detection of cytosine methylation in RNA	Bisulfite sequencing	Schaefer et al. (2009) Nucleic Acids Res. PMID: 19059995
Detection of cytosine methylation in tRNA	Mass spectrometry	Goll et al. (2006) Science. PMID: 16424344
Detection of guanosine methylation in miRNA	Borohydride Reduction sequencing [BoRed-seq]	Pandolfini et al. (2019) Molecular Cell. PMID: 31031083
Detection of cytosine and adenosine methylation in miRNA	MALDI-TOF-MS	Konno et al. (2019) Nature Communications. PMID: 31467274

Supplementary Table T3.

Figure S1. Experimentations illustrating the purity of our miRNA extractions.

В

Figure S2. Calibration of HPLC for 5mC.

Figure S3. miRNA-Bseq workflow.

Figure S4. In-cell ELISA investigating the siRNA-mediated downregulation alidation of Dicer, NSUN2, DNMT1/3A/3B and AGO1/2/3/4

Original image from ChemiDoc (BioRad France)

Figure S5. Original image of co-immunoprecipitation experiments.

Figure S6. Validation of antibodies used in P-LISA experiments.

Original images from ChemiDoc (BioRad France)

Figure S7. Original images of pull-down experiments.

Figure S8. Impact of siDNMT3A or AGO4 and α AGO4¹⁻¹⁶⁴ on the miR-Array profile

Ctrl	Ctrl	Ctrl	IgG	IgG	IgG	siCtrl	siCtrl	siCtrl
aAGO4	aAGO4	aAGO4	siDNMT3 A	siDNMT3 A	siDNMT3 A	siAGO4	siAGO4	siAGO4
aAGO4	aAGO4	aAGO4	siDNMT3 A	siDNMT3 A	siDNMT3 A	siAGO4	siAGO4	siAGO4

С

Α

Figure S9. Dot blot illustrating the impact of the siRNA-mediated invalidation of DNMT3A and AGO4 and the use of the aAGO4¹⁻¹⁶⁴ antibody on the global level of cytosine-methylation of miRNA.

В

-	-			-	+	-	-
		-	-			(MC	
		-	-		-	-	

Figure S10. Correlation between the level of DNMT3A/AGO4 interactions and the global level of cytosine-methylation of miRNA

3'UTR BIM	Α	U	G	U	Α	Α	G	U	G	U	U	G	U	U	U	G	Α	Α	G	G	U	Α	Α				
		I	I	I	I	Ι	I	I			I	I	:			I	I		:	I	:		I				
miRNA-181a (MIMAT0000256)	а	а	с	а	u	u	с	а	-	-	а	с	g	-	-	с	u	g	u	С	g	g	u	g	а	g	u
Position	4	2	ω	4	л	6	7	∞			9	10	11			12	13	14	15	16	17	18	19	20	21	22	23
Cytosine- methylated												х								х							
Mutated#1			u		С		а	g																			
Mutated#2												а								а							

Figure S11. Illustration of the he miR-181a binding site in the 3'UTR of Bim and the miRNA-181a mutant or methylated sequences.

Figure S12. Western blot and RT-qPCR investigating the effect of miRNA-181a-5p on BIM expression at protein and mRNA levels.

Figure S13. Validation of 5methylcytosine (5mC) antibodies used in our study.

Figure S14: The presence of 5mC in miRNA-451a abolishes its functions

Figure S14: The presence of 5mC in miRNA-451a abolishes its functions

Figure S15: The presence of 5mC in miRNA-193a-5p abolishes its functions

Κ

Figure S15: The presence of 5mC in miRNA-193a-5p abolishes its functions

Figure S16.