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ABSTRACT The identification of bivalve larvae and early postlarvae in plankton and benthic samples has long been a

challenge, hampering both basic and applied research efforts inmarine, estuarine, and freshwater environments. The usefulness of

published optical micrographs of the early life-history stages of bivalves is limited because of the great morphological similarity of

the imaged articulated shells, particularly at the early (straight-hinge) developmental stages. While a number of techniques have

been refined in recent years and show promise for use in routine identifications of larval and post-larval bivalves (e.g., single-step

nested multiplex polymerase chain reaction; in situ hybridization protocols through color coding with taxon-specific, dye-labeled

DNA probes; coupled fluorescence in situ hybridization and cell sorting; and image analysis techniques using species-specific shell

birefringence patterns under polarized light), no adequate comprehensive reference source exists that accurately depicts the

morphology andmorphometry of the shells of larval and post-larval stages of target bivalve species in a consistent format to assist

in identification of such stages. To this end, scanning electron micrograph (SEM) sequences are presented of the disarticulated

shell valves of laboratory-reared larval and post-larval stages of 56 species of bivalve molluscs from a wide spectrum of marine,

estuarine, and freshwater habitats. Emphasis is placed on the usefulness of the morphology and morphometrics of consistently-

oriented, disarticulated shell valves and associated hinge structures in discriminating the early life-history stages of these various

bivalve species. Although the scanning electron micrograph sequences presented accurately depict the gross morphologies/

morphometrics and hinge structures of the disarticulated shell valves of the larvae and/or postlarvae of the 56 species of bivalves, it

is important to emphasize that a scanning electron microscope is not necessary to observe even fine hinge structures associated

with the early ontogenetic stages of these species. Such structures are readily visible using a wide range of optical compound

microscopes equipped with high-intensity reflected light sources, although the disarticulated shell valves must be viewed in several

planes of focus to discern the often subtle details seen clearly in the scanning electron micrographs. These morphological

characters provide researchers with invaluable aids for the routine identification of the early life-history stages of these species

isolated from plankton and benthic samples.

KEY WORDS: bivalve, larvae, postlarvae, identification, scanning electron microscopy

*Corresponding author. E-mail: rlutz@marine.rutgers.edu

DOI: 10.2983/035.037.0202

Journal of Shellfish Research, Vol. 37, No. 2, 247–448, 2018.

247
Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



INTRODUCTION

The identification of bivalve larvae and early postlarvae has

been important for many ecological research efforts in marine,

estuarine, and freshwater environments for over a century

(Stafford 1912, Odhner 1914, Lebour 1938, Werner 1939,

Jørgensen 1946, Sullivan 1948, Rees 1950, Miyazaki 1962,

Loosanoff & Davis 1963, Newell & Newell 1963, Loosanoff

et al. 1966, Le Pennec & Lucas 1970, Chanley & Andrews 1971,

de Schweinitz & Lutz 1976, Lutz & Jablonski 1978a, 1978b,

1979, 1981, Jablonski & Lutz 1980, Le Pennec 1980, Lutz et al.

1982a, 1982b, Lutz 1988, 2012, Fuller & Lutz 1989, Kennedy

et al. 1989, 1991,Goodsell et al. 1992,Hu et al. 1992, 1993, Lutz&

Kennish 1992, Baldwin et al. 1994, Hare et al. 2000, Garland &

Zimmer 2002, Tiwari & Gallager 2003a, 2003b, Hendriks et al.

2005, Larsen et al. 2005, 2007, Wang et al. 2006, North et al.

2008, Henzler et al. 2010, Thompson et al. 2012a, 2012b,

Malchus & Sartori 2013, Goodwin et al. 2014, 2016a, 2016b).

As Hendriks et al. (2005) emphasized, ‘‘Despite the importance

of the planktonic larval stage in intertidal bivalves, our un-

derstanding of this stage is still insufficient. A major obstacle in

the quantification of planktonic larval distributions is the

identification of sampled larvae.’’
In early efforts to assist with the identification of larval

bivalves isolated from plankton samples, Chanley and Andrews

(1971) published a key to the larval stages of a number of bivalve

species along the east coast of North America based on optical

micrographic sequences of articulated shells of laboratory-

cultured larval specimens; however, the usefulness of this key is

limited because of the great morphological similarity of the

imaged articulated shells, particularly at the early (straight-

hinge) developmental stages. Although a number of techniques

have been refined in recent years and show promise for use in

routine identifications of larval and post-larval bivalves (e.g.,

single-step nested multiplex polymerase chain reaction; in situ

hybridization protocols through color coding with taxon-

specific, dye-labeled DNA probes; coupled fluorescence in situ

hybridization and cell sorting; and image analysis techniques

using species-specific shell birefringence patterns under polar-

ized light; Larsen et al. 2005, 2007, Henzler et al. 2010,

Thompson et al. 2012a, 2012b, Goodwin et al. 2014, 2016a,

2016b, 2018), no adequate comprehensive reference source

exists that accurately depicts the morphology and morphome-

try of the shells of larval and post-larval stages of target bivalve

species in a consistent format to assist in identification of such

stages.
With the aforementioned as background, in this monograph

scanning electron micrograph (SEM) sequences of the disar-

ticulated shell valves of laboratory-reared larval and post-larval

stages of 56 species of bivalve molluscs from a wide spectrum

of aquatic habitats are presented (Table 1). Emphasis is placed

on the usefulness of the morphology and morphometrics of

consistently-oriented, disarticulated shell valves and associated

hinge structures in discriminating the early life-history stages of

these species. Most of these species are from environments

along the east coast of North America and include most of the

commercially important species in this region.
Taxonomic nomenclature was assigned according to the

latest ‘‘accepted name’’ (or acceptable ‘‘alternate representa-

tion’’) and associated classification hierarchy in the World

Register of Marine Species (www.marinespecies.org).

Over the years, various workers have used both optical and
scanning electron microscopy to describe in detail the larval

and/or post-larval hinge structures of a number of bivalves and
have suggested that such structures may be diagnostic at the
generic, or even specific, level (Chanley 1965, 1969, Turner &
Johnson 1970, Pascual 1971, 1972, Scheltema 1971, Le Pennec

1973, 1978, 1980, LaBarbera 1975, Boyle & Turner 1976,
Culliney & Turner 1976, Dinamani 1976, Le Pennec & Masson
1976, Booth 1977, 1979a, 1979b, Siddall 1977, 1978, Lutz &

Jablonski 1978a, 1978b, 1981, Carriker & Palmer 1979, Lutz &
Hidu 1979, Chanley & Dinamani 1980, Jablonski & Lutz 1980,
Lutz et al. 1982a, 1982b, Redfearn 1982, 1987, Jablonski & Lutz

1983, Ramorino & Campos 1983, Redfearn et al. 1986,
Tremblay et al. 1987, Fuller & Lutz 1989, Fuller et al. 1989a,
Kennedy et al. 1989, 1991, Hu et al. 1993, Paugam et al. 2006,
Wassnig & Southgate 2012). Despite these efforts, much of the

morphologic and morphometric data obtained over the years
has not been presented in an adequate or sufficiently consistent
format to permit unambiguous identification of early life-

history stages of bivalves at various taxonomic levels. In
recognition of this shortcoming, the SEM sequences of the
larval and post-larval stages of a number of the species depicted

in this monograph that have been previously published in
various journals are presented here in a consistent format,
together with other pertinent details related to procurement,

preparation, and descriptions of the specimens comprising these
sequences (Lutz et al. 1982b, Fuller & Lutz 1989, Fuller et al.
1989b, Kennedy et al. 1989, 1991, Goodsell et al. 1992,
Gustafson & Lutz 1992, Hu et al. 1993, Tan et al. 1993). These

sequences and pertinent details are included herein, together
with a large number of unpublished sequences and associated
pertinent details of most of the species in Table 1. The goal is to

present a coherent compilation of all 56 species in one single
publication to assist in the discrimination of larval and post-
larval stages of these species isolated from a variety of aquatic

environments.

MATERIALS AND METHODS

Sexually mature adults of 56 species of bivalves were
obtained from the sources indicated in Table 1. These adults
were induced to spawn (or larvae/juveniles were obtained from

spontaneous spawning/release events in the case of certain
species with nonplanktotrophic modes of development) using a
variety of protocols described by various workers (Loosanoff &

Davis 1963,Morse et al. 1977, Lutz et al. 1982a, 1982b,Gibbons&
Castagna 1984, Fuller & Lutz 1989, Fuller et al. 1989a,
Kennedy et al. 1991, Gustafson & Lutz 1992). The larvae and

postlarvae of most of these species were reared using standard
hatchery techniques (e.g., techniques described by Loosanoff &
Davis 1963, Turner & Johnson 1970, Chanley & Andrews 1971,
Castagna 1975, Castagna & Kraeuter 1977). Further specific

details concerning the culture of the larvae and postlarvae of
a number of these species may be found in Lutz et al. (1982b),
Fuller and Lutz (1989), Fuller et al. (1989a), Kennedy et al.

(1989), (1991), Goodsell et al. (1992), Gustafson and Lutz
(1992), Hu et al. (1993), and Tan et al. (1993).

Cultured larval and post-larval specimens were sampled at

frequent intervals (frequency dependent on the growth of
organisms since the previous sampling period) and placed in
distilledwater for 30min (Calloway&Turner 1979). Immediately
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following this treatment, specimens were preserved in 95%
ethanol. After various lengths of time (up to 2 months),

specimens were removed from the ethanol, rinsed in distilled
water, and immersed in a 5% solution of sodium hypochlorite
(Rees 1950) for approximately 10 min to facilitate separation of
shell valves and removal of soft tissue. After rinsing in distilled

water, disarticulated valves were mounted on copper or silver
tape (or double-sided sticky tape), coated (under vacuum) with
approximately 400 Å of gold–palladiumor a combination of gold

and carbon, and examined under an ETEC Autoscan scanning
electron microscope [or, in the case of Ostrea stentina (¼ Ostrea
equestris), Solemya velum and Mercenaria campechiensis speci-

mens, under Hitachi S-540 and JEOL 848 scanning electron
microscopes].

Procedures used for accurate documentation of shapes and
dimensions of the larval and post-larval shells using scanning

electron microscopy were those of Fuller et al. (1989b) and are
outlined below.

Before imaging individual larval or post-larval specimens

under the scanning electron microscope, great care was taken to
adjust the microscope so that x and y dimensions were equal on
a calibration sphere that was approximately the same size as the

specimen being photographed. In turn, these adjustments were
made at a magnification close to that at which the specimen was
to be photographed. The calibration spheres were sand-blasting

beads that were selected for roundness by comparing measure-
ments of the diameter on electron micrographs taken at
rotations of 0, 45, and 90 degrees (see Fuller et al. 1989b for
further details).

The method used for consistent orientation of the disarticu-
lated shell valves, in which each larval or post-larval valve is
positioned with points of the hinge and shell margin aligned in

a plane normal to the axis of the electron optical system, is
described by Fuller et al. (1989b, p. 59) as follows. ‘‘Specifically,
a disarticulated valve with the interior shell surface visible on

the microscope screen is rotated until the anterior and posterior
margins are at equal working distances. A digital voltmeter
(monitoring the reference voltage of the lens control) is used to
measure carefully the differences in working distance when

opposite margins of the shell are successively focused at
30,0003. A difference of 1 mV on the meter is equal to a change
in working distance of about 0.34 mm. Subsequently, the

specimen is tilted perpendicularly to the first axis until the
dorsal and ventral margins of the valve also are at the same
working distances. A photomicrograph of the shell in this

position documents its characteristic shape.’’
It should be noted that it was necessary to modify the

aforementioned procedure to obtain consistent orientations for

later post-larval stages of a number of species because of the
irregular contours of the shell margins of these stages. In the
case of post-larval Teredo navalis, for example, orienting
the specimens in a manner similar to that described previously

was impossible because points along the post-larval shell margin
do not lie in a single plane. As articulated by Fuller et al. (1989a,
p. 25) concerning T. navalis: Throughout the post-larval de-

velopmental period, however, points along the dorsoventral
margin of the anterior slope (except those at the extreme ventral
region) comprise a plane. Thus, consistent orientation of post-

larval shells was achieved by positioning specimens such that
this plane was perpendicular (Fuller et al.1989a mistakenly
indicated ‘‘parallel’’) to the electron optical axis. Additional

adjustments were made so that dorsal and ventral condyles were
at an equal working distance. Similar adjustments were also

used to obtain consistent orientations of post-larval specimens
of Bankia gouldi (Tan et al. 1993).

The dimensions of the larval and post-larval shells were
determined by positioning a flat 400-mesh copper transmission

electronmicroscope grid (on the same specimenmount, near the
shell valve) normal to the electron optical axis and photograph-
ing this grid at the identical magnification at which the shell

valve was photographed.Measurements of the shell dimensions
are based on the 63.5-mm grid spacings of the 400-mesh grid,
rather than on magnification or scale bar displays on the

microscope screen (for further details, see Fuller et al. 1989b).
The numbers depicted above each of the micrographs in

Figures 1–195 indicate the maximum linear distance in microm-
eters measured along any axis of the shell, with a few exceptions.

In most cases, this maximum distance represents ‘‘shell length’’
as defined by numerous authors (Fuller & Lutz 1989, Kennedy
et al. 1989, 1991, Goodsell et al. 1992, Gustafson & Lutz 1992,

Hu et al. 1993), although in the case of the larval stages of
certain pholads and teredinids [e.g., Bankia gouldi (Tan et al.
1993) (Figs. 69 and 70) and Teredo navalis (Fuller et al. 1989a)

(Figs. 73 and 74)], this maximum distance represents ‘‘shell
height.’’ Shell nomenclature of the teredinids is taken from
Turner (1966, 1971). The numbers depicted above the larval

stages of Crassostrea gigas, Crassostrea virginica, Ostrea edulis,
and Ostrea stentina (¼ Ostrea equestris) (Figs. 105–123) repre-
sent the maximum anteroposterior dimension (‘‘shell length’’,
which in some larval stages of these species is less than or equal

to ‘‘shell height’’; see Hu et al. 1993).
We use the term ‘‘provinculum’’ in the sense of Bernard

(1898) and Rees (1950). Provinculum length represents the

linear distance between the lateral extremes of the hinge
apparatus in larval and early post-larval shells (see Bayne
1976, p. 87, for a diagrammatic illustration of this dimension).

RESULTS AND DISCUSSION

An inability to identify bivalve larvae and postlarvae within

planktonic and benthic samples has long hampered both
applied and basic research efforts in marine, estuarine, and
freshwater environments (Hu et al. 1992). For example, assess-

ing the impact of natural or anthropogenic disturbances (e.g.,
chemical pollutants, thermal discharges, oil spills, dredge spoil
dumping, ocean acidification, discharges of ships� ballast water
containing entrained meroplanktonic organisms) on marine
ecosystems; predicting recruitment for fisheries management;
optimizing the timing of substrate placement for aquaculture;

assessing the impact of fluctuations in climatic conditions; and
conducting basic environmental surveys all depend on identi-
fying the temporal and spatial abundance of meroplanktonic
and/or early post-larval stages of various species. Along these

lines, the discovery of planktonic stages of a myriad of in-
vertebrate organisms within the ballast waters of ships traveling
between countries has led to concerns regarding potentially

severe and irreversible biological conservation impacts of the
introduction of invasive aquatic species via the discharge of
such ballast waters in areas where the entrained species are not

indigenous (Cohen & Carlton 1998, Carlton 1999, Ruiz et al.
2000, Gollasch 2002, Murphy et al. 2002). As Hayes and Hewitt
(1998) point out: ‘‘The assessment of risk associated with ballast
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water discharge depends on reliable knowledge of the identity,
viability and quantity of its inhabitants.’’ Hence, while this

monograph consists predominantly of species from environ-
ments along the east coast of North America, a number of
bivalve species (e.g., Arca noae, Pecten maximus, and Ruditapes
philippinarum) that various individuals collected from waters in

the eastern Atlantic and cultured under controlled laboratory
conditions have been included in this treatise.

For over a century, workers have attempted to define larval

and post-larval morphological characters diagnostic at various
systematic levels (for discussions, see Stafford 1912, Odhner
1914, Werner 1939, Rees 1950, Loosanoff & Davis 1963,

Chanley & Andrews 1971, Lutz & Hidu 1979, Fuller & Lutz
1989, Hu et al. 1993, Hendriks et al. 2005, Larsen et al. 2007,
Goodwin et al. 2014, 2016a, 2016b, 2018). Historically, the
larval and early post-larval characteristics generally used in

routine plankton and benthic identifications have been shell
length, height, and depth, as well as the length of the ‘‘straight-
hinge line’’; differences in larval shell shape, color, and texture;

provinculum length; number and configuration of hinge teeth;
and presence or absence of a byssal notch, eyespot, or apical
cilia (‘‘apical flagellum’’) (Loosanoff et al. 1966, Chanley &

Andrews 1971, Turner & Boyle 1975, Chanley & Chanley
1980, Lutz et al. 1982b, Fuller & Lutz 1989, Hu et al. 1993, Tan
et al. 1993, Larsen et al. 2007). More recently, a spectrum of

image analysis, cell sorting, and genetic techniques has proven
useful for the identification of a myriad of larval and post-
larval bivalves (Tiwari & Gallager 2003a, 2003b, Hendriks
et al. 2005, Larsen et al. 2005, 2007, Henzler et al. 2010,

Thompson et al. 2012a, 2012b, Goodwin et al. 2014, 2016a,
2016b, 2018).

The present monograph is designed to provide additional

tools for the identification of larval and post-larval bivalve
species isolated from planktonic and benthic samples from
aquatic environments. To this end, Figures 1–195 depict

scanning electron micrographic sequences of the gross shell
morphologies, morphometrics, and details of the hinge regions
of disarticulated shell valves of a spectrum of larval and post-
larval bivalves at various stages of development. These se-

quences are presented in a manner (i.e., a consistent orientation
of imaged specimens) that will facilitate comparison of the shell
morphologies andmorphometrics of the early life-history stages

of these species. The micrographic sequences depict larval and
post-larval shell features of species in 47 genera from 25 bivalve
families. The morphologies of the larval hinges range from

distinctly taxodont dentition in the case of the Arcoidea,
Mytiloidea, and Pectinoidea to a lack of prominent denticular
structures in the Arcticoidea, Hiatelloidea, Myoidea, and

Veneroidea (with the exception of the venerid Ruditapes
philippinarum that has fairly well-defined hinge teeth along the
larval shell provinculum). The morphological features of var-
ious ontogenetic stages of the disarticulated larval and post-

larval shell valves of many of the species are quite distinct,
permitting discrimination at the specific level. Although differ-
ences in morphological features among many other taxa are

subtle, it is believed that they can be defined, permitting
discrimination of bivalve larvae and postlarvae at the levels of
subfamily and genus, respectively.

The following sections summarize the utility (as articulated
by various authors) of comparing scanning electron micro-
graphs of early ontogenetic stages of species from a spectrum of

select families for discrimination of larval and post-larval
bivalves at various taxonomic levels.

Veneridae and Arcticidae

From detailed examination and analyses of the SEM

sequences of the early life-history stages of five venerids (Chione
cancellata—Figs. 168–170; Mercenaria mercenaria—Figs. 173–
175; Mercenaria campechiensis—Figs. 176–178; Mercenaria

campechiensis texana—Figs. 179–181; and Pitar morrhuanus—
Figs. 186–189), Goodsell et al. (1992) concluded that ‘‘documen-
tation and comparison of scanning electron photomicrographs

of larval and post-larval venerids would appear to be a success-
ful aid for identification at the levels of subfamily and genus,
respectively.’’ As articulated by Lutz et al. (1982b), the sequence
of ontogenetic changes in the morphology of the larval hinge

apparatus ofArctica islandica (Figs. 149 and 150) is remarkably
similar to that described and illustrated by Le Pennec (1978,
1980) for various species of venerids. Throughout larval devel-

opment, the provinculum of A. islandica is slightly wedge
shaped with the narrower portion toward the posterior region
of the shell (Fig. 150). ‘‘Denticles,’’ analogous to those de-

scribed by Le Pennec (1980) along the provinculum of certain
venerids, are absent. During the early straight-hinge stage, an
elongated ridge (‘‘fold’’; Le Pennec, 1980) develops in the left

valve along almost the entire length of the anterior half of the
provinculum (Figs. 149 and 150). At the anterior extremity of
the provinculum of the left valve, there is a slight depression in
shells of specimens greater than approximately 170 mm in

length. In the right valve, a relatively short projection develops
during the early straight-hinge stage along the central region of
the provinculum (Fig. 150). This latter projection subsequently

develops into the first cardinal tooth (according to the nomen-
clature of Le Pennec, 1978, 1980), which is readily apparent in
the post-larval stages (Figs. 151 and 152) (Lutz et al. 1982b).

No ‘‘primary’’ (after Trueman 1950; ‘‘primitive’’ of Le
Pennec 1980) ligament pits (‘‘fossettes ligamentaire’’ of Bernard
1896a) were observed in Arctica islandica specimens with shell
lengths <200 mm (Fig. 150) or in numerous specimens ranging in

length from 200 to 230 mm. Ligament pits, although often very
much reduced in size, appeared to be present in all specimens
examined with shell lengths >230 mm. Since the classic studies of

Bernard in the late nineteenth century (Bernard 1895, 1896a,
1896b, 1897, 1898), numerous workers have commented on the
presence of ligaments or ligament pits in ‘‘larval’’ specimens

(Rees 1950, Ansell 1962, Loosanoff et al. 1966, Chanley &
Andrews 1971, Bayne 1976; for further discussion concerning
the significance of the presence or absence of ligament pits in the

shells of early ontogenetic stages of bivalves, see Lutz et al.
1982b). Lutz and Hidu (1979) suggested that ‘‘primary’’ (after
Trueman 1950) ligament pits do not form until metamorphosis
has been initiated (see also Lutz 1979). It has been further

suggested that changes associated with metamorphosis proceed
in an orderly fashion (Bayne 1965, 1971, Turner 1976b) and that
‘‘any interruption . in the normal sequence of events affects

the ability of the larvae to progress to the next step whether that
be the loss of a larval organ or the acquisition of a post-larval
one’’ (Turner 1976a).

In specimens ofArctica islandica examined during the course
of preparation of the present monograph,,ligament pits were
observed in shells of a number of specimens with larval lengths
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ranging between 200 and 230 mm. If, as suggested by Lutz and
Hidu (1979, pp. 117–118), development of the primary liga-

ment pit is ‘‘one of the first morphological changes that occurs
duringmetamorphosis,’’ it is reasonable to conclude that larvae
within this size range are at least capable of metamorphosis
(Lutz et al. 1979). Ligament pits were not observed in any

A. islandica specimens with shell lengths <200 mm (Figure 150)
(Lutz et al. 1982b). This observation, when coupled with the
fact that no pediveliger larva with a length below 200 mm was

found in any of the cultures, strongly suggests that the larvae of
this species are not capable of metamorphosing at shell lengths
below this size and has implications for determining the size at

which most of the species in this monograph are capable of
metamorphosing.

After metamorphosis, relatively dramatic changes take place
in the morphology of the hinge apparatus of Arctica islandica.

The sequence of ontogenetic changes photographically illus-
trated in Figures 151 and 152 is similar to that diagrammatically
illustrated by Le Pennec (1978, 1980) in his detailed summary of

the development of the heterodont hinge. A close similarity
exists between the early post-larval hinge apparatus of Venus
verrucosa figured by Le Pennec (1980, p. 617) and that of A.

islandica. At a shell length of approximately 1–2 mm (Figs. 151,
152), the A. islandica hinge has acquired many adult character-
istics, although it does not attain its definitive form until

specimens have reached a shell length of approximately 4 mm
(Fig. 12 in Lutz et al. 1982b, p. 761).

Mytilidae

Fuller and Lutz (1989) published scanning electron micro-
graph sequences of the larvae and postlarvae of six mytilids

from the northwestern Atlantic: Arcuatula papyria (¼ Amygda-
lum papyrium) (Figs. 77–80);Brachidontes exustus (Figs. 81–84);
Geukensia demissa (Figs. 85–88); Ischadium recurvum (Figs. 89–

92);Modiolus modiolus (Figs. 97–100); andMytilus edulis (Figs.
101–104). All six species have a long provinculumwith taxodont
dentition, with provinculum length and number of teeth in-
creasing steadily during the larval period. The bold, compara-

tively few provincular teeth of A. papyria (Fig. 78) and the
small, numerous provincular teeth of M. edulis (Fig. 102)
clearly differentiate these two species. Most of these mytilid

species have a low umbo, round posterior margin, and more
pointed anterior margin, although A. papyria is distinguished
by a high, prominent umbo. The larval shells of G. demissa and

I. recurvum are difficult to differentiate because of the similarity
in their shapes and hinge dentition; however, as articulated by
Fuller and Lutz (1989), ‘‘discriminant analysis using larval

shell length, shell height, provinculum length, and number of
teeth aided in classification of these and other sympatric
species.’’

By contrast, post-larval stages of these six mytilid species are

plainly distinguished by the presence and type of lateral teeth
seen in the SEM sequences published by Fuller and Lutz (1989).
Brachidontes exustus has all three types of mytilid lateral teeth,

including (1) primary lateral teeth, which form immediately
posterior to provincular teeth; (2) secondary lateral teeth, which
are posterior to the primary lateral teeth and are part of the

dissoconch; and (3) dysodont teeth, which form on the anterior
margin of the dissoconch (Figs. 83 and 84). Modiolus modiolus
has primary lateral teeth (Figs. 99 and 100), Ischadium recurvum

has dysodont teeth (Figs. 91 and 92), Mytilus edulis has
secondary lateral and dysodont teeth (Figs. 103 and 104), and

there are no lateral teeth in Geukensia demissa (Figs. 87 and 88)
or Arcuatula papyria (Figs. 79 and 80) during early post-larval
development. The provinculum increases in size and complexity
during post-larval development in A. papyria, B. exustus, G.

demissa, I. recurvum, and M. modiolus, but not in M. edulis
(Fuller & Lutz 1989).

Ostreidae

Hu et al. (1993) published scanning electron micrograph

sequences to elucidate species-specific shell features in larval
and post-larval stages of four Ostreidae species: Crassostrea
gigas, Crassostrea virginica, Ostrea edulis, and Ostrea stentina
(¼ Ostrea equestris) (Figs. 105–123). Useful features for dis-

tinguishing larvae of the Ostreidae from those within other
families of bivalves include asymmetry of left and right valves
associated with a pronounced umbo of the left valve; one or two

provincular teeth on each side of the provinculum; and a fasciole
with a corresponding notch on the left valve. Qualitative
characters, such as hinge dentition and shell shape of the larvae

and postlarvae of the four ostreids, distinguish noncongeneric
species, whereas species in the same genus generally are
differentiated by quantitative features such as the dimensions

of the provinculum and shell.
The results of the study by Hu et al. (1993), when combined

with those of previous studies on Crassostrea angulata (Pascual
1971), Crassostrea ariakensis (Tanaka 1980), Crassostrea glom-

erata (Dinamani 1973), Crassostrea iredalei (Ver 1986), Ostrea
denselamellosa (Tanaka 1980), Ostrea lurida (Loosanoff et al.
1966),Ostrea permollis (Forbes 1967),Ostrea puelchana (Castro&

Le Pennec 1988),Ostrea stentina (Pascual 1972), andOstrea spp.
(Chanley & Dinamani 1980), illustrate that the morphological
differences between early ontogenetic stages of species within

the genus Crassostrea and those within the genus Ostrea are
quite striking. The diagnostic characters for larval and post-
larval shells of species within these two genera are summarized
as follows.

Morphological larval features of species within the genus
Crassostrea include (1) a knobby or beak-shaped umbo directed
posteriorly; (2) shell height that is generally greater than shell

length; (3) provinculum length that ranges from 68 to 88 mm;
(4) the presence of two rectangular teeth on each side of the
provinculum; (5) awell-definedcentral apparatus; and (6)posterior

obscured teeth. By contrast, morphological features of species
within the genus Ostrea include (1) a round shell with a large,
moderately prominent umbo directed dorsally; (2) shell length

that is greater than shell height; (3) provinculum length that
ranges from 70 to 100 mm; (4) the presence of one anterior and
one posterior tooth on the left valve and two anterior and two
posterior teeth on the right valve, with teeth that are square or

triangular; (5) a partially developed central apparatus; and
(6) anterior obscured teeth.

Post-larval features of species within the genus Crassostrea

include (1) a left valve umbo that is beak shaped and skews
backward; (2) two posterior hinge teeth in shells up to 500 mm in
length; and (3) a ligament that is 40 mm from the anterior end of

the provinculum. By contrast, post-larval features of species
within the genus Ostrea include (1) an umbo that is round and
prominent dorsally; (2) one or two anterior hinge teeth in shells
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up to 500 mm in length; and (3) a ligament that is close to the
anterior end of the provinculum (Hu et al. 1993).

The shell morphological features that are most useful for
discriminating larval and post-larval specimens of the four
ostreids that are included in this monograph are articulated by
Hu et al. (1993) and may be summarized as follows:

(1) The species-specific characteristics of the provinculum
remain relatively constant throughout the developmental

stages. These diagnostic characters include the dimensions

of the provinculum, the shape of the hinge teeth, and the
modification pattern of the hinge teeth during the late

larval stages. For example, the provinculum of larval and

post-larval (up to a shell length of 550 mm) specimens of

Crassostrea virginica is shorter but wider (50 mm long and
14 mm wide) than that of Crassostrea gigas (56 mm long

and 10 mm wide). The transverse ridges are less defined

and fewer in C. gigas than in C. virginica. The posterior
hinge teeth of C. virginica are well defined even in late-

stage larvae. These observations agree with the pattern of

larval hinge modification in the genus Crassostrea postu-

lated by Dinamani (1976). The range of provincular
lengths of Ostrea stentina is 70–79 mm, which is much

shorter than the 80–95 mm provincular length range of

Ostrea edulis (Hu et al. 1993).
(2) The four species have different shell shapes, including

prominence of umbos, shapes of anterior and posterior

ends, rotation of the longitudinal axis, and shell length–

height ratio. The shell shape of larval specimens ofCrassos-

trea virginica is relatively compressed dorsoventrally, with
a narrow and pointed anterior end, whereas that of

Crassostrea gigas larvae is more extended in dorsoventral

directions and its anterior end appears broad and blunt. A
knobby umbo with an elongated anterior end is present in

late-stage larval specimens of Ostrea stentina, whereas the

umbo of Ostrea edulis is always flat and the anterior and

posterior are nearly equally developed. Shell shape is also
useful for identification of post-larval specimens. For

example, two shoulders (anterior and posterior dorsal

margins) extend at an angle of approximately 90 deg in C.
gigas and at an angle of 140 deg in C. virginica, and were

well defined in O. stentina but irregular in O. edulis (Hu

et al. 1993).

In summary, generic and species diagnostic shell characters

have been identified for early life-history stages of two species
within the genus Crassostrea (C. gigas and C. virginica) and

two species within the genusOstrea (O. edulis andO. stentina).

A key has been presented by Hu et al. (1993) summarizing

thesemorphological characteristics that should provide a prac-
tical tool for the identification of larval and post-larval

specimens of these ostreids isolated from planktonic and

benthic samples.

Teredinidae

Scanning electron micrograph sequences published by
Fuller et al. (1989a) and Tan et al. (1993) of disarticulated

shell valves of Teredo navalis and Bankia gouldi, respectively,

revealed qualitative and quantitative differences in larval and

post-larval morphological features (Figs. 69–76). These se-
quences provide useful aids for the identification of larval and

post-larval specimens of these two species isolated from
plankton and benthic samples. In particular, the following

features are important in distinguishing the larvae of B. gouldi
from those of T. navalis: slope of the shoulders [the dorsal shell
margin on the anterior and posterior ends of the hinge
(Chanley & Dinamani 1980)]; length of the provinculum/

hinge-line; and length of the posterior tooth of the left valve
provinculum.

Tan et al. (1993) point out that, in larval shells of similar size,

the shoulders of Teredo navalis (Fig. 73) are considerably
steeper (less rounded) than those of Bankia gouldi (Fig. 69).
This difference in shell shape is useful in distinguishing the two

species. The initial size of the planktonic stage of a B. gouldi
larva is much smaller than that of the larviparous T. navalis
because of the difference in their development. Despite the

difference in initial larval shell size, both species metamorphose
at a shell height of about 230 mm, as indicated by the appearance
of the ligament pit.

The larvae of Bankia gouldi and Teredo navalis can be

distinguished on the basis of the length of the provinculum of
the left valve. The average length of the provinculum/hinge-line
measured by Tan et al. (1993) from micrographs of the left

valves of B. gouldi (38.1 ± 1.8 mm, n¼ 9) (Fig. 70) is significantly
smaller than that of T. navalis (46.7 ± 1.3 mm, n ¼ 9) (Fig. 74).
The provincular length measurements of the left valve are more

useful than those of the right valve because the latter varies
significantly with growth.

Larvae of Bankia gouldi can also be distinguished from those

of Teredo navalis by the length of the posterior provincular
tooth of the left valve (6.4 ± 0.6 mm, n ¼ 7) (Fig. 70) which is
significantly shorter than that of T. navalis (8.2 ± 0.3 mm) (Fig.
74) (Tan et al. 1993).

Practical Use of this Monograph

Although the SEM sequences presented in Figures 1–195
accurately depict the gross morphologies/morphometrics
and hinge structures of the disarticulated shell valves of the

larvae and/or postlarvae of 56 species of bivalves, it is
important to emphasize that a scanning electron microscope
is not necessary to observe even fine hinge structures associ-
ated with the ontogenetic stages of these species. Such

structures are readily visible using a wide range of optical
compound microscopes equipped with high-intensity re-
flected light sources, although the disarticulated shell valves

must be viewed in several planes of focus to discern the often
subtle details seen clearly in the scanning electron micro-
graphs.

The comparisons of the larval and early post-larval stages
of two mytilids (Mytilus edulis and Modiolus modiolus)
published by Lutz and Hidu (1979) and depicted in Figures

97–104 dramatically illustrate this point. In their studies,
measurements of larval dimensions (shell length, height, and
provinculum length) and dentition counts were made under
a standard petrographic microscope equipped with a high-

intensity reflected light source. Using this procedure, Lutz
and Hidu (1979) were able to obtain quantitative measure-
ments and counts on approximately 20 specimens per hour.

Numerous specimens were also examined and measured
under a scanning electron microscope to confirm the accu-
racy of these optical microscopic measurements and counts.
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Their results indicated that, for a given number of provinc-
ular teeth, there was no overlap between the range extremes

in either provinculum length or total shell length of the two

species. There were no quantitative differences between left

and right valve of individual specimens other than occasional

minor discrepancies in dentition counts due to the inter-

locking nature of the hinge teeth. Lutz and Hidu (1979,

p. 115) concluded that ‘‘careful examination of the hinge

morphology of prodissoconchs and early dissoconchs using

routine optical microscopic techniques should facilitate un-

ambiguous differentiation of all early life-history stages of

these two species.’’

In conclusion, scanning electronmicroscopy provides a pow-
erful tool for photographically depicting the accurate gross shell

morphology/morphometry and details of the hinge structure of

the disarticulated shell valves of the larvae and early postlarvae

of known species of bivalves cultured under controlled labora-

tory conditions. These morphological characters, in turn, pro-

vide researchers with invaluable aids for identifying (using

routine optical microscopic techniques) the early life-history

stages of these species isolated from plankton and benthic

samples.
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TABLE 1.

The 56 species of bivalves for which larval and/or post-larval SEM sequences are depicted in Figures 1–195.

Figure

numbers Order Family Genus Species Authority Source of sexually mature adult bivalves

1–4 Adapedonta Hiatellidae Hiatella arctica (Linnaeus, 1767) Pemaquid, ME

5–8 Adapedonta Pharidae Ensis leei M. Huber, 2015 Damariscotta River, ME

9–12 Arcida Arcidae Arca noae Linnaeus, 1758 Istrian Peninsula Coast, Rovinj, Croatia

13–16 Arcida Arcidae Lunarca ovalis (Brugui�ere, 1789) Wachapreague, VA

17–19 Arcida Noetiidae Noetia ponderosa (Say, 1822) Wachapreague, VA

20–23 Cardiida Cardiidae Dinocardium robustum (Lightfoot, 1786) Indian River near Grant, FL

24–27 Cardiida Cardiidae Laevicardium mortoni (Conrad, 1831) Coastal bay near Wachapreague, VA

28–31 Cardiida Solecurtidae Tagelus plebeius (Lightfoot, 1786) Delaware Bay, NJ

32–35 Cardiida Tellinidae Ameritella agilis (Stimpson, 1857) Wachapreague Inlet, Wachapreague, VA

36–39 Cardiida Tellinidae Ameritella mitchelli (Dall, 1895) Choptank River, MD

40–43 Cardiida Tellinidae Limecola balthica (Linnaeus, 1758) Lowe�s Cove, Walpole, ME

44 Carditida Carditidae Cyclocardia borealis (Conrad, 1832) Continental Shelf off NJ

45 Carditida Astartidae Astarte castanea (Say, 1822) Continental Shelf off NJ

46–49 Myida Dreissenidae Dreissena bugensis (Andrusov, 1897) Lake Ontario near Rochester, NY

50–53 Myida Dreissenidae Dreissena polymorpha (Pallas, 1771) St. Lawrence River near Cape Vincent, NY

54–57 Myida Dreissenidae Mytilopsis leucophaeata (Conrad, 1831) Hudson River near Piermont, NY

58–61 Myida Myidae Mya arenaria Linnaeus, 1758 Damariscotta River, Walpole, ME

62–64 Myida Myidae Mya truncata Linnaeus, 1758 Gulf of Maine off Boothbay Harbor, ME

65, 66 Myida Pholadidae Cyrtopleura costata (Linnaeus, 1758) Indian River, FL

67, 68 Myida Pholadidae Diplothyra curta (G. B. Sowerby I, 1834) Mississippi Sound, MS

69–72 Myida Teredinidae Bankia gouldi (Bartsch, 1908) York River, Gloucester Point, VA

73–76 Myida Teredinidae Teredo navalis Linnaeus, 1758 Coastal bay near Wachapreague Inlet, VA

77–80 Mytilida Mytilidae Arcuatula papyria (Conrad, 1846) Indian River, FL

81–84 Mytilida Mytilidae Brachidontes exustus (Linnaeus, 1758) Cabbage Island and Wilmington Island, GA

85–88 Mytilida Mytilidae Geukensia demissa (Dillwyn, 1817) Maurice River, NJ

89–92 Mytilida Mytilidae Ischadium recurvum (Rafinesque, 1820) James River, VA

93, 94 Mytilida Mytilidae Leiosolenus bisulcatus (d�Orbigny, 1853) Jamaica, West Indies

95, 96 Mytilida Mytilidae Modiolus americanus (Leach, 1815) West coast of Florida

97–100 Mytilida Mytilidae Modiolus modiolus (Linnaeus, 1758) Cape Newagen, ME

101–104 Mytilida Mytilidae Mytilus edulis Linnaeus, 1758 Continental Shelf off NJ

105–109 Ostreida Ostreidae Crassostrea gigas (Thunberg, 1793) Coast Oyster Company, Quilcene, WA

110–114 Ostreida Ostreidae Crassostrea virginica (Gmelin, 1791) Delaware Bay, NJ

115–118 Ostreida Ostreidae Ostrea edulis Linnaeus, 1758 Walpole, ME

119–123 Ostreida Ostreidae Ostrea stentina Payraudeau, 1826 Newport River Estuary, NC

124–127 Pectinida Anomiidae Anomia simplex d�Orbigny, 1853 Wachapreague Inlet, Wachapreague, VA

128–130 Pectinida Pectinidae Argopecten irradians (Lamarck, 1819) Cape Cod Bay, MA

131–134 Pectinida Pectinidae Argopecten irradians

concentricus

(Say, 1822) Coast of North Carolina near Morehead

City

135–138 Pectinida Pectinidae Pecten maximus (Linnaeus, 1758) Coast of Brest, France

139–143 Pectinida Pectinidae Placopecten magellanicus Gmelin, 1791 St. John�s, Newfoundland (larvae);

Damariscotta River, ME (postlarvae)

144, 145 Pholadomyida Lyonsiidae Lyonsia hyalina (Conrad, 1831) Mason�s Beach, VA
146 Pholadomyida Periplomatidae Periploma leanum (Conrad, 1831) Continental Shelf off New Jersey

147, 148 Solemyida Solemyidae Solemya velum Say, 1822 Upper Buttermilk Bay, MA and Shark

River, NJ

149–152 Venerida Arcticidae Arctica islandica (Linnaeus, 1767) Continental Shelf, off New Jersey and

Rhode Island

153–156 Venerida Mactridae Mulinia Lateralis (Say, 1822) Wachapreague, VA

157–159 Venerida Mactridae Rangia cuneata (G. B. Sowerby I,

1832)

Cohansey River near Bridgeton, NJ

160–163 Venerida Mactridae Spisula solidissima (Dillwyn, 1817) Continental Shelf off Rhode Island

164–167 Venerida Mesodesmatidae Mesodesma arctatum (Conrad, 1831) Sable Island Bank (depth 42 m) off Nova

Scotia, Canada

168–170 Venerida Veneridae Chione cancellata (Linnaeus, 1767) Indian River, FL

171, 172 Venerida Veneridae Gemma gemma (Totten, 1834) Delaware Bay, NJ

173–175 Venerida Veneridae Mercenaria mercenaria (Linnaeus, 1758) Milford, CT

176–178 Venerida Veneridae Mercenaria campechiensis (Gmelin, 1791) Gulf of Mexico near Apalachicola, FL

continued on next page
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TABLE 1.

continued

Figure

numbers Order Family Genus Species Authority Source of sexually mature adult bivalves

179–181 Venerida Veneridae Mercenaria campechiensis

texana

(Dall, 1902) Gulf of Mexico near Galveston, TX

182–185 Venerida Veneridae Petricolaria pholadiformis (Lamarck, 1818) Continental Shelf off southern New Jersey

186–189 Venerida Veneridae Pitar morrhuanus (Dall, 1902) Continental Shelf off Wachapreague, VA

190–193 Venerida Veneridae Ruditapes philippinarum (Adams & Reeve,

1850)

Obtained from the Carna Research

Station, Galway, Ireland

194, 195 Venerida Cyrenidae Corbicula fluminea (O. F. M€uller, 1774) Nassawango Creek, MD

Taxonomic nomenclature was assigned according to the latest ‘‘accepted name’’ (or acceptable ‘‘alternate representation’’) and associated

classification hierarchy in the World Register of Marine Species (www.marinespecies.org). Sexually mature adult bivalves were obtained from the

indicated sources and used as broodstock to obtain the larvae and postlarvae depicted in this monograph.
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Figure 1. Scanning electron micrographs of disarticulated shell valves ofHiatella arctica larvae. Numbers indicate the maximum linear shell dimension

in micrometers.
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Figure 2. Scanning electron micrographs of the hinge of disarticulated shell valves of Hiatella arctica larvae seen in Figure 1. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 3. Scanning electron micrographs of disarticulated shell valves of Hiatella arctica postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 4. Scanning electron micrographs of the hinge of disarticulated shell valves ofHiatella arctica postlarvae seen in Figure 3. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 5. Scanning electron micrographs of disarticulated shell valves of Ensis leei larvae. Numbers indicate the maximum linear shell dimension in

micrometers.
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Figure 6. Scanning electron micrographs of the hinge of disarticulated shell valves of Ensis leei larvae seen in Figure 5. Numbers indicate the maximum

linear shell dimension in micrometers.
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Figure 7. Scanning electron micrographs of disarticulated shell valves of Ensis leei postlarvae. Numbers indicate the maximum linear shell dimension in

micrometers.
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Figure 8. Scanning electron micrographs of the hinge of disarticulated shell valves of Ensis leei postlarvae seen in Figure 7. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 9. Scanning electron micrographs of disarticulated shell valves of Arca noae larvae. Numbers indicate the maximum linear shell dimension in

micrometers.
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Figure 10. Scanning electronmicrographs of the hinge of disarticulated shell valves ofArca noae larvae seen in Figure 9. Numbers indicate the maximum

linear shell dimension in micrometers.
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Figure 11. Scanning electron micrographs of disarticulated shell valves of Arca noae postlarvae. Numbers indicate the maximum linear shell dimension

in micrometers.
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Figure 12. Scanning electron micrographs of the hinge of disarticulated shell valves of Arca noae postlarvae seen in Figure 11. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 13. Scanning electron micrographs of disarticulated shell valves of Lunarca ovalis larvae. Numbers indicate the maximum linear shell dimension

in micrometers.
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Figure 14. Scanning electron micrographs of the hinge of disarticulated shell valves of Lunarca ovalis larvae seen in Figure 13. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 15. Scanning electron micrographs of disarticulated shell valves of Lunarca ovalis postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 16. Scanning electronmicrographs of the hinge of disarticulated shell valves ofLunarca ovalis postlarvae seen in Figure 15. Numbers indicate the

maximum linear shell dimension in micrometers.

LARVAL AND POST-LARVAL BIVALVE IDENTIFICATION 273

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 17. Scanning electron micrographs of disarticulated shell valves of Noetia ponderosa larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 18. Scanning electron micrographs of the hinge of disarticulated shell valves ofNoetia ponderosa larvae seen in Figure 17. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 19. Scanning electron micrographs of disarticulated shell valves ofNoetia ponderosa postlarvae (top) and higher magnification scanning electron

micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 20. Scanning electron micrographs of disarticulated shell valves of Dinocardium robustum larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 21. Scanning electronmicrographs of the hinge of disarticulated shell valves ofDinocardium robustum larvae seen in Figure 20. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 22. Scanning electron micrographs of disarticulated shell valves of Dinocardium robustum postlarvae. Numbers indicate the maximum linear

shell dimension in micrometers.
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Figure 23. Scanning electron micrographs of the hinge of disarticulated shell valves of Dinocardium robustum postlarvae seen in Figure 22. Numbers

indicate the maximum linear shell dimension in micrometers.

LUTZ ET AL.280

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 24. Scanning electron micrographs of disarticulated shell valves of Laevicardium mortoni larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 25. Scanning electron micrographs of the hinge of disarticulated shell valves of Laevicardiummortoni larvae seen in Figure 24. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 26. Scanning electronmicrographs of disarticulated shell valves ofLaevicardiummortoni postlarvae. Numbers indicate themaximum linear shell

dimension in micrometers.
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Figure 27. Scanning electron micrographs of the hinge of disarticulated shell valves of Laevicardium mortoni postlarvae seen in Figure 26. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 28. Scanning electron micrographs of disarticulated shell valves of Tagelus plebeius larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 29. Scanning electron micrographs of the hinge of disarticulated shell valves of Tagelus plebeius larvae seen in Figure 28. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 30. Scanning electron micrographs of disarticulated shell valves of Tagelus plebeius postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.

LARVAL AND POST-LARVAL BIVALVE IDENTIFICATION 287

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 31. Scanning electron micrographs of the hinge of disarticulated shell valves of Tagelus plebeius postlarvae seen in Figure 30. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 32. Scanning electron micrographs of disarticulated shell valves of Ameritella agilis larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 33. Scanning electron micrographs of the hinge of disarticulated shell valves of Ameritella agilis larvae seen in Figure 32. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 34. Scanning electron micrographs of disarticulated shell valves of Ameritella agilis postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 35. Scanning electron micrographs of the hinge of disarticulated shell valves of Ameritella agilis postlarvae seen in Figure 34. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 36. Scanning electron micrographs of disarticulated shell valves of Ameritella mitchelli larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Kennedy et al. (1989).
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Figure 37. Scanning electron micrographs of the hinge of disarticulated shell valves of Ameritella mitchelli larvae seen in Figure 36. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Kennedy et al. (1989).
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Figure 38. Scanning electron micrographs of disarticulated shell valves of Ameritella mitchelli postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Kennedy et al. (1989).
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Figure 39. Scanning electron micrographs of the hinge of disarticulated shell valves of Ameritella mitchelli postlarvae seen in Figure 38. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Kennedy et al. (1989).
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Figure 40. Scanning electron micrographs of disarticulated shell valves of Limecola balthica larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 41. Scanning electron micrographs of the hinge of disarticulated shell valves of Limecola balthica larvae seen in Figure 40. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 42. Scanning electron micrographs of disarticulated shell valves of Limecola balthica postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 43. Scanning electron micrographs of the hinge of disarticulated shell valves of Limecola balthica postlarvae seen in Figure 42. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 44. Scanning electron micrographs of disarticulated shell valves of Cyclocardia borealis postlarvae (top) and higher magnification scanning

electron micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 45. Scanning electron micrographs of disarticulated shell valves of Astarte castanea postlarvae (top) and higher magnification scanning electron

micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 46. Scanning electron micrographs of disarticulated shell valves of Dreissena bugensis larvae. Numbers indicate the maximum linear shell

dimension in micrometers.

LARVAL AND POST-LARVAL BIVALVE IDENTIFICATION 303

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 47. Scanning electron micrographs of the hinge of disarticulated shell valves ofDreissena bugensis larvae seen in Figure 46. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 48. Scanning electron micrographs of disarticulated shell valves of Dreissena bugensis postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 49. Scanning electronmicrographs of the hinge of disarticulated shell valves ofDreissena bugensis postlarvae seen in Figure 48. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 50. Scanning electron micrographs of disarticulated shell valves of Dreissena polymorpha larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 51. Scanning electronmicrographs of the hinge of disarticulated shell valves ofDreissena polymorpha larvae seen in Figure 50. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 52. Scanning electronmicrographs of disarticulated shell valves ofDreissena polymorpha postlarvae. Numbers indicate themaximum linear shell

dimension in micrometers.
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Figure 53. Scanning electron micrographs of the hinge of disarticulated shell valves of Dreissena polymorpha postlarvae seen in Figure 52. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 54. Scanning electron micrographs of disarticulated shell valves ofMytilopsis leucophaeata larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 55. Scanning electron micrographs of the hinge of disarticulated shell valves of Mytilopsis leucophaeata larvae seen in Figure 54. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 56. Scanning electron micrographs of disarticulated shell valves of Mytilopsis leucophaeata postlarvae. Numbers indicate the maximum linear

shell dimension in micrometers.
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Figure 57. Scanning electron micrographs of the hinge of disarticulated shell valves ofMytilopsis leucophaeata postlarvae seen in Figure 56. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 58. Scanning electronmicrographs of disarticulated shell valves ofMya arenaria larvae. Numbers indicate themaximum linear shell dimension in

micrometers.
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Figure 59. Scanning electron micrographs of the hinge of disarticulated shell valves of Mya arenaria larvae seen in Figure 58. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 60. Scanning electron micrographs of disarticulated shell valves of Mya arenaria postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 61. Scanning electron micrographs of the hinge of disarticulated shell valves ofMya arenaria postlarvae seen in Figure 60. Numbers indicate the

maximum linear shell dimension in micrometers.

LUTZ ET AL.318

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 62. Scanning electronmicrographs of disarticulated shell valves ofMya truncata larvae. Numbers indicate themaximum linear shell dimension in

micrometers.
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Figure 63. Scanning electron micrographs of the hinge of disarticulated shell valves of Mya truncata larvae seen in Figure 62. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 64. Scanning electron micrographs of disarticulated shell valves of Mya truncata postlarvae (top) and higher magnification scanning electron

micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 65. Scanning electron micrographs of disarticulated shell valves of Cyrtopleura costata larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 66. Scanning electron micrographs of the hinge of disarticulated shell valves of Cyrtopleura costata larvae seen in Figure 65. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 67. Scanning electron micrographs of disarticulated shell valves of Diplothyra curta larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 68. Scanning electron micrographs of the hinge of disarticulated shell valves of Diplothyra curta larvae seen in Figure 67. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 69. Scanning electronmicrographs of disarticulated shell valves ofBankia gouldi larvae. Numbers indicate themaximum linear shell dimension in

micrometers. Modified from Tan et al. (1993).
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Figure 70. Scanning electron micrographs of the hinge of disarticulated shell valves of Bankia gouldi larvae seen in Figure 69. Numbers indicate the

maximum linear shell dimension in micrometers. Modified from Tan et al. (1993).
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Figure 71. Scanning electron micrographs of disarticulated shell valves of Bankia gouldi postlarvae. Numbers indicate shell height (the greatest

dorsoventral dimension) in micrometers. Modified from Tan et al. (1993).
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Figure 72. Scanning electronmicrographs of the hinge of disarticulated shell valves ofBankia gouldi postlarvae seen in Figure 71. Numbers indicate shell

height (the greatest dorsoventral dimension) in micrometers. Modified from Tan et al. (1993).
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Figure 73. Scanning electron micrographs of disarticulated shell valves of Teredo navalis larvae. Numbers indicate the maximum linear shell dimension

in micrometers. Modified from Fuller et al. (1989a).
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Figure 74. Scanning electron micrographs of the hinge of disarticulated shell valves of Teredo navalis larvae seen in Figure 73. Numbers indicate the

maximum linear shell dimension in micrometers. Modified from Fuller et al. (1989a).
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Figure 75. Scanning electron micrographs of disarticulated shell valves of Teredo navalis postlarvae. Numbers indicate shell height (the greatest

dorsoventral dimension) in micrometers. Modified from Fuller et al. (1989a).
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Figure 76. Scanning electron micrographs of the hinge of disarticulated shell valves of Teredo navalis postlarvae seen in Figure 75. Numbers indicate

shell height (the greatest dorsoventral dimension) in micrometers. Modified from Fuller et al. (1989a).
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Figure 77. Scanning electron micrographs of disarticulated shell valves of Arcuatula papyria larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 78. Scanning electron micrographs of the hinge of disarticulated shell valves of Arcuatula papyri larvae seen in Figure 77. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 79. Scanning electron micrographs of disarticulated shell valves of Arcuatula papyri postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 80. Scanning electron micrographs of the hinge of disarticulated shell valves of Arcuatula papyri postlarvae seen in Figure 79. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 81. Scanning electron micrographs of disarticulated shell valves of Brachidontes exustus larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 82. Scanning electron micrographs of the hinge of disarticulated shell valves of Brachidontes exustus larvae seen in Figure 81. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 83. Scanning electron micrographs of disarticulated shell valves of Brachidontes exustus postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 84. Scanning electron micrographs of the hinge of disarticulated shell valves of Brachidontes exustus postlarvae seen in Figure 83. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 85. Scanning electron micrographs of disarticulated shell valves of Geukensia demissa larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).

LUTZ ET AL.342

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 86. Scanning electron micrographs of the hinge of disarticulated shell valves ofGeukensia demissa larvae seen in Figure 85. Numbers indicate the

maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 87. Scanning electron micrographs of disarticulated shell valves of Geukensia demissa postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 88. Scanning electronmicrographs of the hinge of disarticulated shell valves ofGeukensia demissa postlarvae seen in Figure 87. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 89. Scanning electron micrographs of disarticulated shell valves of Ischadium recurvum larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 90. Scanning electron micrographs of the hinge of disarticulated shell valves of Ischadium recurvum larvae seen in Figure 89. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 91. Scanning electron micrographs of disarticulated shell valves of Ischadium recurvum postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 92. Scanning electron micrographs of the hinge of disarticulated shell valves of Ischadium recurvum postlarvae seen in Figure 91. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 93. Scanning electron micrographs of disarticulated shell valves of Leiosolenus bisulcatus larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 94. Scanning electron micrographs of the hinge of disarticulated shell valves of Leiosolenus bisulcatus larvae seen in Figure 93. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 95. Scanning electron micrographs of disarticulated shell valves of Modiolus americanus larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 96. Scanning electron micrographs of the hinge of disarticulated shell valves ofModiolus americanus larvae seen in Figure 95. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 97. Scanning electron micrographs of disarticulated shell valves of Modiolus modiolus larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).

LUTZ ET AL.354

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 98. Scanning electronmicrographs of the hinge of disarticulated shell valves ofModiolus modiolus larvae seen in Figure 97. Numbers indicate the

maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 99. Scanning electron micrographs of disarticulated shell valves of Modiolus modiolus postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 100. Scanning electron micrographs of the hinge of disarticulated shell valves of Modiolus modiolus postlarvae seen in Figure 99. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 101. Scanning electron micrographs of disarticulated shell valves ofMytilus edulis larvae. Numbers indicate the maximum linear shell dimension

in micrometers. Modified from Fuller and Lutz (1989).
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Figure 102. Scanning electron micrographs of the hinge of disarticulated shell valves ofMytilus edulis larvae seen in Figure 101. Numbers indicate the

maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 103. Scanning electron micrographs of disarticulated shell valves of Mytilus edulis postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 104. Scanning electron micrographs of the hinge of disarticulated shell valves ofMytilus edulis postlarvae seen in Figure 103. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Fuller and Lutz (1989).
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Figure 105. Scanning electron micrographs of disarticulated left shell valves of Crassostrea gigas larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).

Figure 106. Scanning electron micrographs of disarticulated right shell valves of Crassostrea gigas larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).
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Figure 107. Scanning electron micrographs of the hinge of disarticulated shell valves of Crassostrea gigas larvae seen in Figures 105 and 106. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Hu et al. (1993).
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Figure 108. Scanning electron micrographs of disarticulated shell valves of Crassostrea gigas postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).
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Figure 109. Scanning electron micrographs of the hinge of disarticulated shell valves of Crassostrea gigas postlarvae seen in Figure 108. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Hu et al. (1993).
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Figure 110. Scanning electronmicrographs of disarticulated left shell valves ofCrassostrea virginica larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).

Figure 111. Scanning electron micrographs of disarticulated right shell valves of Crassostrea virginica larvae. Numbers indicate the maximum linear

shell dimension in micrometers. Modified from Hu et al. (1993).
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Figure 112. Scanning electron micrographs of the hinge of disarticulated shell valves of Crassostrea virginica larvae seen in Figures 110 and 111.

Numbers indicate the maximum linear shell dimension in micrometers. Modified from Hu et al. (1993).
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Figure 113. Scanning electronmicrographs of disarticulated shell valves ofCrassostrea virginica postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).
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Figure 114. Scanning electron micrographs of the hinge of disarticulated shell valves of Crassostrea virginica postlarvae seen in Figure 113. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Hu et al. (1993).
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Figure 115. Scanning electron micrographs of disarticulated left shell valves of Ostrea edulis larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).
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Figure 116. Scanning electron micrographs of disarticulated right shell valves of Ostrea edulis larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).
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Figure 117. Scanning electron micrographs of the hinge of disarticulated shell valves of Ostrea edulis larvae seen in Figures 115 and 116. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Hu et al. (1993).
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Figure 118. Scanning electron micrographs of disarticulated shell valves of Ostrea edulis postlarvae (top) and higher magnification scanning electron

micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers. Modified from Hu et al.

(1993).
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Figure 119. Scanning electron micrographs of disarticulated left shell valves of Ostrea stentina larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).

Figure 120. Scanning electron micrographs of disarticulated right shell valves of Ostrea stentina larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).
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Figure 121. Scanning electron micrographs of the hinge of disarticulated shell valves of Ostrea stentina larvae seen in Figures 119 and 120. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Hu et al. (1993).
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Figure 122. Scanning electron micrographs of disarticulated shell valves of Ostrea stentina postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Hu et al. (1993).
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Figure 123. Scanning electron micrographs of the hinge of disarticulated shell valves ofOstrea stentina postlarvae seen in Figure 122. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Hu et al. (1993).
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Figure 124. Scanning electron micrographs of disarticulated shell valves of Anomia simplex larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 125. Scanning electron micrographs of the hinge of disarticulated shell valves ofAnomia simplex larvae seen in Figure 124. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 126. Scanning electron micrographs of disarticulated shell valves of Anomia simplex postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 127. Scanning electronmicrographs of the hinge of disarticulated shell valves ofAnomia simplex postlarvae seen in Figure 126. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 128. Scanning electronmicrographs of disarticulated shell valves ofArgopecten irradians larvae (top) and higher magnification scanning electron

micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 129. Scanning electronmicrographs of disarticulated shell valves ofArgopecten irradians postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 130. Scanning electron micrographs of the hinge of disarticulated shell valves of Argopecten irradians postlarvae seen in Figure 129. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 131. Scanning electron micrographs of disarticulated shell valves of Argopecten irradians concentricus larvae. Numbers indicate the maximum

linear shell dimension in micrometers.
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Figure 132. Scanning electron micrographs of the hinge of disarticulated shell valves of Argopecten irradians concentricus larvae seen in Figure 131.

Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 133. Scanning electron micrographs of disarticulated shell valves of Argopecten irradians concentricus postlarvae. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 134. Scanning electronmicrographs of the hinge of disarticulated shell valves ofArgopecten irradians concentricus postlarvae seen in Figure 133.

Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 135. Scanning electron micrographs of disarticulated shell valves of Pecten maximus larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 136. Scanning electron micrographs of the hinge of disarticulated shell valves of Pecten maximus larvae seen in Figure 135. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 137. Scanning electron micrographs of disarticulated shell valves of Pecten maximus postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 138. Scanning electronmicrographs of the hinge of disarticulated shell valves ofPectenmaximus postlarvae seen in Figure 137. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 139. Scanning electron micrographs of disarticulated left shell valves of Placopecten magellanicus larvae. Numbers indicate the maximum linear

shell dimension in micrometers.

Figure 140. Scanning electron micrographs of disarticulated right shell valves of Placopecten magellanicus larvae. Numbers indicate the maximum

linear shell dimension in micrometers.
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Figure 141. Scanning electron micrographs of the hinge of disarticulated shell valves of Placopecten magellanicus larvae seen in Figures 139 and 140.

Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 142. Scanning electron micrographs of disarticulated shell valves ofPlacopecten magellanicus postlarvae. Numbers indicate the maximum linear

shell dimension in micrometers.
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Figure 143. Scanning electron micrographs of the hinge of disarticulated shell valves of Placopecten magellanicus postlarvae seen in Figure 142.

Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 144. Scanning electron micrographs of disarticulated shell valves of Lyonsia hyalina postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 145. Scanning electronmicrographs of the hinge of disarticulated shell valves ofLyonsia hyalina postlarvae seen in Figure 144. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 146. Scanning electron micrographs of disarticulated shell valves of Periploma leanum postlarvae (top) and higher magnification scanning

electron micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 147. Scanning electron micrographs of disarticulated shell valves of Solemya velum postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Gustafson and Lutz (1992).
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Figure 148. Scanning electron micrographs of the hinge of disarticulated shell valves of Solemya velum postlarvae seen in Figure 147. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Gustafson and Lutz (1992).
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Figure 149. Scanning electron micrographs of disarticulated shell valves of Arctica islandica larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Lutz et al. (1982).
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Figure 150. Scanning electronmicrographs of the hinge of disarticulated shell valves ofArctica islandica larvae seen in Figure 149. Numbers indicate the

maximum linear shell dimension in micrometers. Modified from Lutz et al. (1982).
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Figure 151. Scanning electron micrographs of disarticulated shell valves of Arctica islandica postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Lutz et al. (1982).
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Figure 152. Scanning electron micrographs of the hinge of disarticulated shell valves of Arctica islandica postlarvae seen in Figure 151. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Lutz et al. (1982).
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Figure 153. Scanning electron micrographs of disarticulated shell valves of Mulinia lateralis larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 154. Scanning electronmicrographs of the hinge of disarticulated shell valves ofMulinia lateralis larvae seen in Figure 153. Numbers indicate the

maximum linear shell dimension in micrometers.
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Figure 155. Scanning electron micrographs of disarticulated shell valves of Mulinia lateralis postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 156. Scanning electronmicrographs of the hinge of disarticulated shell valves ofMulinia lateralis postlarvae seen in Figure 155. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 157. Scanning electron micrographs of disarticulated shell valves of Rangia cuneata larvae (top) and higher magnification scanning electron

micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers.
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Figure 158. Scanning electron micrographs of disarticulated shell valves of Rangia cuneata postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 159. Scanning electron micrographs of the hinge of disarticulated shell valves ofRangia cuneata postlarvae seen in Figure 158. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 160. Scanning electron micrographs of disarticulated shell valves of Spisula solidissima larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 161. Scanning electron micrographs of the hinge of disarticulated shell valves of Spisula solidissima larvae seen in Figure 160. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 162. Scanning electron micrographs of disarticulated shell valves of Spisula solidissima postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 163. Scanning electron micrographs of the hinge of disarticulated shell valves of Spisula solidissima postlarvae seen in Figure 162. Numbers

indicate the maximum linear shell dimension in micrometers.

LUTZ ET AL.416

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 164. Scanning electron micrographs of disarticulated shell valves of Mesodesma arctatum larvae. Numbers indicate the maximum linear shell

dimension in micrometers.

LARVAL AND POST-LARVAL BIVALVE IDENTIFICATION 417

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 165. Scanning electron micrographs of the hinge of disarticulated shell valves of Mesodesma arctatum larvae seen in Figure 164. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 166. Scanning electron micrographs of disarticulated shell valves of Mesodesma arctatum postlarvae. Numbers indicate the maximum linear

shell dimension in micrometers.
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Figure 167. Scanning electron micrographs of the hinge of disarticulated shell valves of Mesodesma arctatum postlarvae seen in Figure 166. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 168. Scanning electron micrographs of disarticulated shell valves of Chione cancellata larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 169. Scanning electron micrographs of the hinge of disarticulated shell valves of Chione cancellata larvae seen in Figure 168. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 170. Scanning electron micrographs of disarticulated shell valves of Chione cancellata postlarvae (top) and higher magnification scanning

electron micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers. Modified from

Goodsell et al. (1992).
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Figure 171. Scanning electron micrographs of disarticulated shell valves of Gemma gemma postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 172. Scanning electron micrographs of the hinge of disarticulated shell valves ofGemma gemma postlarvae seen in Figure 171. Numbers indicate

the maximum linear shell dimension in micrometers.
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Figure 173. Scanning electron micrographs of disarticulated shell valves of Mercenaria mercenaria larvae (top) and higher magnification scanning

electron micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers. Modified from

Goodsell et al. (1992).
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Figure 174. Scanning electron micrographs of disarticulated shell valves of Mercenaria mercenaria postlarvae. Numbers indicate the maximum linear

shell dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 175. Scanning electron micrographs of the hinge of disarticulated shell valves ofMercenaria mercenaria postlarvae seen in Figure 174. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 176. Scanning electron micrographs of disarticulated shell valves of Mercenaria campechiensis larvae (top) and higher magnification scanning

electron micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers. Modified from

Goodsell et al. (1992).

LARVAL AND POST-LARVAL BIVALVE IDENTIFICATION 429

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 25 Feb 2020
Terms of Use: https://bioone.org/terms-of-use	Access provided by IFREMER



Figure 177. Scanning electron micrographs of disarticulated shell valves of Mercenaria campechiensis postlarvae. Numbers indicate the maximum

linear shell dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 178. Scanning electron micrographs of the hinge of disarticulated shell valves of Mercenaria campechiensis postlarvae seen in Figure 177.

Numbers indicate the maximum linear shell dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 179. Scanning electron micrographs of disarticulated shell valves of Mercenaria campechiensis texana larvae (top) and higher magnification

scanning electron micrographs of the hinge of these shell valves (bottom). Numbers indicate the maximum linear shell dimension in micrometers.

Modified from Goodsell et al. (1992).
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Figure 180. Scanning electron micrographs of disarticulated shell valves of Mercenaria campechiensis texana postlarvae. Numbers indicate the

maximum linear shell dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 181. Scanning electron micrographs of the hinge of disarticulated shell valves ofMercenaria campechiensis texana postlarvae seen in Figure 180.

Numbers indicate the maximum linear shell dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 182. Scanning electron micrographs of disarticulated shell valves of Petricola pholadiformis larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 183. Scanning electron micrographs of the hinge of disarticulated shell valves of Petricola pholadiformis larvae seen in Figure 182. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 184. Scanning electron micrographs of disarticulated shell valves of Petricola pholadiformis postlarvae. Numbers indicate the maximum linear

shell dimension in micrometers.
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Figure 185. Scanning electron micrographs of the hinge of disarticulated shell valves of Petricola pholadiformis postlarvae seen in Figure 184. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 186. Scanning electron micrographs of disarticulated shell valves of Pitar morrhuanus larvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 187. Scanning electron micrographs of the hinge of disarticulated shell valves of Pitar morrhuanus larvae seen in Figure 186. Numbers indicate

the maximum linear shell dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 188. Scanning electron micrographs of disarticulated shell valves of Pitar morrhuanus postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 189. Scanning electron micrographs of the hinge of disarticulated shell valves of Pitar morrhuanus postlarvae seen in Figure 188. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Goodsell et al. (1992).
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Figure 190. Scanning electron micrographs of disarticulated shell valves ofRuditapes philippinarum larvae. Numbers indicate the maximum linear shell

dimension in micrometers.
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Figure 191. Scanning electron micrographs of the hinge of disarticulated shell valves of Ruditapes philippinarum larvae seen in Figure 190. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 192. Scanning electron micrographs of disarticulated shell valves of Ruditapes philippinarum postlarvae. Numbers indicate the maximum linear

shell dimension in micrometers.
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Figure 193. Scanning electronmicrographs of the hinge of disarticulated shell valves ofRuditapes philippinarum postlarvae seen in Figure 192. Numbers

indicate the maximum linear shell dimension in micrometers.
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Figure 194. Scanning electron micrographs of disarticulated shell valves of Corbicula fluminea postlarvae. Numbers indicate the maximum linear shell

dimension in micrometers. Modified from Kennedy et al. (1991).
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Figure 195. Scanning electron micrographs of the hinge of disarticulated shell valves of Corbicula fluminea postlarvae seen in Figure 194. Numbers

indicate the maximum linear shell dimension in micrometers. Modified from Kennedy et al. (1991).
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