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Abstract :   
 
Demographic compensation arises when vital rates change in opposite directions across 
populations,  buffering the variation in population growth rates, and is a mechanism often invoked to 
explain the  stability of species geographic ranges. However, studies on demographic compensation have 
disregarded  the effects of temporal variation in vital rates and their temporal correlations, despite 
theoretical  evidence that stochastic dynamics can affect population persistence in temporally varying 
environments.  We carried out a seven-year-long demographic study on the perennial plant Arabis alpina 
across six  populations encompassing most of its elevational range. We discovered demographic 
compensation in  the form of negative correlations between the means of plant vital rates, but also 
between their  temporal coefficients of variation, correlations and elasticities. Even if their contribution to 
demographic  compensation was small, this highlights a previously overlooked, but potentially important, 
role of  stochastic processes in stabilizing population dynamics at range margins. 
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INTRODUCTION 50 

One of the processes shaping population performance across species ranges is demographic 51 

compensation between different vital rates, such as recruitment, survival, growth and reproduction 52 

(Doak & Morris 2010; Villellas et al. 2015). Demographic compensation arises when different vital rates 53 

change in opposite directions across populations in response to environmental gradients, and has been 54 

proposed as a mechanism increasing the range of environments over which a species can occur and to 55 

explain the apparent stability of species range margins despite strong temporal environmental changes 56 

(Doak & Morris 2010; Sheth & Angert 2018). So far, the paradigm of demographic compensation has 57 

considered spatial differences in vital rates averaged over years, while disregarding the role of spatial 58 

differences in temporal variation of vital rates (Villellas et al. 2015). However, because temporal 59 

variation in vital rates can be higher in some parts of a species geographical range (for example, at range 60 

margins; Angert 2009; Pironon et al. 2017), population growth rates might vary across species ranges not 61 

only because of spatial variation in mean vital rates, but also in their temporal variability. 62 

Population dynamics in temporally varying environments have received much attention in ecology and 63 

conservation (Tuljapurkar 1990; Lande et al. 2003). Theory predicts that temporal variability should 64 

decrease population growth rates in both structured and unstructured populations (Lewontin & Cohen 65 

1969; Tuljapurkar 1990) and empirical studies support these predictions (Morris et al. 2008). In addition, 66 

positive temporal covariations between vital rates can potentially amplify the effects of environmental 67 

stochasticity on population dynamics, while negative temporal covariation can buffer it (Doak et al. 68 

2005; Jongejans et al. 2010; Compagnoni et al. 2016). For example, positive covariances between 69 

reproduction and survival rates tend to magnify the effect of variability and lead to lower population 70 

growth rates than in the case of zero or negative covariances (Jongejans et al. 2010). Finally, the 71 

elasticities of population growth rates, which measure the change in population growth rate caused by a 72 
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change in demographic parameters, determine the ultimate effects of temporal variation and vital rate 73 

correlations on the population growth rate (Caswell 2001; Tuljapurkar et al. 2003). The interplay of these 74 

factors is perhaps best summarized by writing the stochastic population growth rate logλs using the 75 

small-noise approximation, as a function of the intrinsic growth rate logλd (calculated using the temporal 76 

means of vital rates) minus a product containing temporal coefficients of variation of vital rates (CVk  and 77 

CVl), correlations between vital rates (ρkl) and vital rate elasticities (ek and el) (Tuljapurkar 1990): 78 

𝑙𝑜𝑔𝜆𝑠 ≈ 𝑙𝑜𝑔𝜆𝑑 −
1

2
∑ 𝐶𝑉𝑘𝐶𝑉𝑙𝜌𝑘,𝑙𝑒𝑘𝑒𝑙𝑘,𝑙       (eq. 1) 79 

Thus, a full picture of how population dynamics change across populations requires quantifying the 80 

differences in how mean vital rates, their temporal variation, their correlations and the elasticities 81 

change between populations. Such differences between populations can ultimately determine processes 82 

of demographic compensation and can thus inform on the stability and dynamics of species ranges (Doak 83 

& Morris 2010; Villellas et al. 2013). 84 

Elevational ranges offer a unique opportunity to study range-wide variation in vital rates and population 85 

dynamics at a tractable spatial scale. For plants, elevational ranges have been associated with large 86 

differences in life-histories (Laiolo & Obeso 2017). Species living at lower elevations have often larger 87 

sizes, higher mortality rates, shorter lifespans and higher fecundities, while species living at higher 88 

elevations have smaller sizes, lower mortality rates, longer life spans and reduced flowering rates (Nobis 89 

& Schweingruber 2013; Laiolo & Obeso 2017). These life-history patterns have been related to 90 

predictions from the r-K selection theory (Pianka 1970), the metabolic theory of ecology (Brown et al. 91 

2004) and the acquisitive and stress-tolerant strategies of functional ecology (Read et al. 2014). While 92 

many studies have uncovered elevational patterns in plant life-histories across species, studies on 93 

population dynamics are less common, and patterns of variation in plant population growth rates along 94 

elevational gradients are less clear. Indeed, the few studies focusing on dynamics of herbaceous plant 95 
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populations on elevational gradients report increasing (Miller et al. 2009; Giménez-Benavides et al. 96 

2011), decreasing (Kim & Donohue 2011; Pena-Gomez & Bustamante 2012) and stable (García-Camacho 97 

et al. 2012) patterns of population growth rates with elevation. 98 

Here, we aimed at testing whether spatial patterns in temporal variation, temporal correlations and 99 

elasticities could be involved in demographic compensation beyond the spatial variation of average vital 100 

rates, thereby contributing to the stabilization of species elevational ranges. To this end, we carried out a 101 

population dynamics study on Arabis alpina (Brassicaceae), a broadly distributed arctic-alpine perennial 102 

herb, across most of its elevational range in the European Alps. Specifically, our goals were twofold. First, 103 

we aimed at quantifying the spatial variation of four different descriptors of stochastic population 104 

dynamics (means, coefficients of variation, correlations and elasticities of plant vital rates) across an 105 

elevational gradient. Second, we aimed at quantifying the contributions of each of the four descriptors 106 

to the stochastic population growth rate and test for demographic compensation between different 107 

descriptors.   108 
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MATERIALS AND METHODS 109 

Model species 110 

Arabis alpina (L., Brassicaceae) is emerging as a new model organism in plant ecology and evolutionary 111 

biology (e.g. Wang et al. 2009; de Villemereuil et al. 2018) due to its perennial life-cycle and wide 112 

elevational distribution. It occurs primarily in the subalpine and alpine belts, predominantly in open, 113 

unstable, moist sites with low vegetation cover such as glacier forelands, scree slopes, rock ledges, 114 

footpaths and small streams, often in association with calcareous soil (Lauber et al. 2018). Seedlings 115 

germinate and establish throughout the growing season, plants flower for a few weeks and produce 116 

fruits (siliques), and flowering stems eventually wilt and die (Wang et al. 2009). Seeds can persist in the 117 

soil and form a permanent seed bank (Diemer & Prock 1993; Philipp et al. 2018). 118 

Data collection 119 

This study was conducted in six sites spanning most of the elevational range of A. alpina in the European 120 

Alps using permanent plots (Table 1, Figure S1), which were visited once a year after flowering between 121 

2008 and 2014 to record the number of stems and siliques of each individual (See Appendix S1.1 in 122 

Supporting Information). In-situ germination tests were not successful, so germination rates could not 123 

be estimated locally and seed bank dynamics was disregarded in the matrix population model, but we 124 

conducted a sensitivity analysis to assess the effects of uncertainty in seed germination on the results 125 

(Nguyen et al. 2019; Appendix S1.5, S2.2). 126 

Microclimatic conditions, soil chemistry and species composition of the vegetation were measured in 127 

each plot to model plant vital rates in function of environmental conditions. Temperature data loggers 128 

(iButton® Hygrochron, Maxim Integrated™) provided estimates of summer daily mean temperature 129 

(Tmean) and daily temperature range (Trange; Table 1). Missing records (due to malfunctioning of the data-130 

loggers) were imputed using data from nearby weather stations, resulting in ten resampled datasets 131 
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(Appendix S1.2). Soil acidity (pH), total soil carbon and nitrogen content were determined following 132 

standard methods (Schinner et al. 1996). Abundance-dominance (Braun-Blanquet) lists of plant species 133 

were used to calculate abundance weighted means for vegetative height and specific leaf area (SLA), 134 

using values from the ANDROSACE (Thuiller et al. 2014) and the TRY (Kattge et al. 2011) databases. After 135 

performing a principal component analysis on the three soil variables and the two vegetation variables 136 

(Appendix 2.1, Figure S3, S4), we retained the first two axes to predict plant vital rates: SoilVeg1 137 

(explaining 52% of the variance), positively related to acidic soils with high C and N content, and SoilVeg2 138 

(explaining 29% of the variance), summarizing variation from slow-growing short vegetation to fast-139 

growing tall vegetation. 140 

Analysis 141 

We used a five-step approach to test how four descriptors (µ: means; CV: coefficients of variation; e: 142 

elasticities; ρ: temporal correlations) of seven life-cycle components (S: survival; G-: retrogressive growth; 143 

G=: stasis; G+: progressive growth; F0: reproduction; F1: fecundity; F2: recruit size) contribute to 144 

demographic compensation across the elevational range of A. alpina. First, we constructed matrix 145 

population models for each site and year using statistical models predicting plant vital rates from 146 

environmental variables (Step 1). Second, we used the matrix models to calculate the seven life-cycle 147 

components, stochastic population growth rate logλs and elasticities of logλs (Step 2). Third, we tested 148 

for significant relationships between elevation and population dynamics variables (Step 3). Fourth, we 149 

performed a stochastic life-table response experiment (SLTRE) in order to decompose the differences in 150 

logλs between sites into contributions 𝐶𝑙
𝑘 of each life-cycle component l and each descriptor k (Step 4). 151 

Finally, we assessed demographic compensation by testing for negative and positive correlations 152 

between the SLTRE contributions 𝐶𝑙
𝑘 (Step 5).  153 
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Step 1. Prediction of plant vital rates 154 

The plant vital rates used to construct the matrix population models were survival (whether the plant 155 

survives to t + 1 or not), size (the size of the plant at time t + 1, conditional on survival), reproduction 156 

(whether the plant bears siliques or not at time t), reproductive output (the number of siliques of the 157 

plant at time t, conditional on reproduction) and recruit size. Plant vital rates were predicted using 158 

generalized linear mixed models (GLMMs; Zuur et al. 2009) as a function of plant size at time t (except 159 

for recruit size that, by definition, did not exist at time t), Tmean, Trange, SoilVeg1 and SoilVeg2 treated as 160 

fixed effects; plant size at time t and Tmean were also included as quadratic terms. Site, year nested within 161 

site and plot nested within site were included as random effects on the intercept and the slopes when 162 

significant. The error structure of the models was Gaussian (for log10-transformed reproductive output), 163 

Bernoulli (for survival and reproduction), or negative binomial (for growth and recruit size). We 164 

accounted for uncertainty in the data using a total 2000 bootstrap samples over the ten imputed climatic 165 

datasets. For each bootstrap sample, we fitted the 27=128 models corresponding to the combinations of 166 

the predictors, sampled one of them according to its Akaike weight (Burnham & Anderson 2002), 167 

obtained site- and year-specific predictions of vital rates (by setting predictors to their mean values over 168 

the plots of each site and year) and constructed matrix models to perform all the subsequent population 169 

dynamics analyses. Means and 95% confidence intervals for the reported results were calculated from 170 

the 2000 predicted values using the percentile method. All analyses were run in R 3.6.0 with packages 171 

lme4 1.1-21 and MuMIn 1.43.6 (Bartoń 2009; Bates et al. 2015; Appendix S1.3).  172 

Step 2. Population dynamics analyses  173 

We defined a matrix population model (Caswell 2001) with 50 size classes of one-stem each, which 174 

covered the range of variation in plant sizes observed in the field. The projection matrix A was the sum 175 

of the transition matrix P = [pij] and the fecundity matrix F = [fij], which were constructed using the 176 

predicted vital rates obtained in Step 1: 177 
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𝑝𝑖𝑗 = 𝑠𝑗𝑔𝑖𝑗  178 

𝑓𝑖𝑗 = 𝜀𝐹0,𝑗𝐹1,𝑗𝐹2,𝑖          (eq. 2) 179 

where j is plant size in year t; i is plant size in year t+1; sj (survival) gij (growth), F0,j (reproduction), F1,j 180 

(reproductive output) and F2,i (recruit size) are the predicted vital rates. ε = 0.02 is a seedling 181 

establishment coefficient converting the number of fruits in one year to the number of seedling in the 182 

following year, and was set equal to the median value of the ratio of the observed number of seedlings 183 

to the number of fruits in the previous year over all plots and sites. 184 

Life-cycle components for each site and year were calculated as averages of the predicted vital rates over 185 

size classes weighted by the stable stage distribution vector (Salguero-Gómez et al. 2016). Specifically, S, 186 

F0 and F1 were calculated as weighted averages of the sj’s, F0,j’s and F1,j’s (eq. 2), respectively. G- 187 

represents transitions from larger to smaller size classes and was calculated as the weighted average of 188 

all the gij’s for which i < j. Similarly, G= (representing individuals not changing in size) and G+ (representing 189 

transitions to larger size classes) were calculated as weighted averages of all the gij’s for which i = j and i 190 

> j, respectively. F2 was calculated as the mean recruit size distribution F2,i. 191 

For each site, we calculated the temporal means and coefficients of variation of each life-cycle 192 

component and temporal correlations between pairs of life-cycle components (Pearson’s correlation) 193 

over years. The stochastic population growth rate logλs was calculated via the simulation method by 194 

randomly sampling one of the year-specific matrix at each iteration (Caswell 2001, p. 396). We then 195 

calculated the elasticities of logλs to changes in the mean and standard deviation of the stage-specific 196 

vital rates (Tuljapurkar et al. 2003). We obtained the elasticities to the mean and standard deviation of 197 

life-cycle components by summing the elasticities of the respective vital rates (Franco & Silvertown 2004; 198 

Appendix S1.4). 199 



11 
 

Step 3. Elevational patterns 200 

We used linear regressions to test for significant relationships between elevation and population 201 

dynamics variables: mean life-cycle components, coefficients of variation of life-cycle components, 202 

temporal correlations between life-cycle components, logλs and elasticities.  203 

Step 4. Stochastic life-table response experiment (SLTRE) 204 

We calculated the differences in logλs (∆ log λs
(m)

) between each site m and a common reference site 205 

defined by the means of vital rates over sites. The ∆ log λs
(m)

 were decomposed into the contributions 206 

𝐶𝑥𝑖,𝑥𝑗
𝑘,(m)

 of differences of each descriptor k (mean µ; coefficient of variation CV; temporal correlations ρ; 207 

elasticities e) of stage-specific vital rates xi (survival sj, growth gij, reproduction F0,j, reproductive output 208 

F1,j and recruit size F2,i) according to the SLTRE of Davison et al. (2013; Appendix S1.6): 209 

∆ log λs
(m)

≈ ∑ 𝐶𝑥𝑖
𝜇,(m)

𝑖 + ∑ 𝐶𝑥𝑖,𝑥𝑗
𝐶𝑉,(m)

𝑖,𝑗 +∑ 𝐶𝑥𝑖,𝑥𝑗
𝜌,(m)

𝑖,𝑗 +∑ 𝐶𝑥𝑖,𝑥𝑗
𝑒,(m)

𝑖,𝑗     (eq. 3) 210 

From this decomposition, we derived the net contributions 𝐶𝑙
𝑘 of each life-cycle component l and each 211 

descriptor k by summing the 𝐶𝑥𝑖,𝑥𝑗
𝑘,(m)

 according to the definition of life-cycle components given above. The 212 

total effect 𝐶𝑙 of each life-cycle component was calculated by summing the absolute values of its 213 

contributions over the four descriptors, 𝐶𝑙 = ∑ |𝐶𝑙
𝑘|𝑘 . Similarly, the total effect 𝐶𝑘 of each descriptor was 214 

calculated by summing the absolute values of its contributions over life-cycle components, 𝐶𝑘 = ∑ |𝐶𝑙
𝑘|𝑙 . 215 

Finally, we used linear regressions to test for significant relationships between elevation and the net 216 

contributions 𝐶𝑙
𝑘. 217 

Step 5. Demographic compensation 218 

To test for demographic compensation and its effectiveness in reducing the spatial variation in 219 

population growth rates, we extended the approach of Villellas et al. (2015) to all descriptors of life-cycle 220 

components. We tested for demographic compensation by testing for negative and positive Spearman 221 
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correlations between the net contributions 𝐶𝑙
𝑘. The occurrence of a significantly higher number of 222 

significant negative correlations (or a significantly lower number of significant positive correlations) than 223 

expected by chance is indicative of demographic compensation and was tested by permuting 1000 times 224 

the 𝐶𝑙
𝑘 over sites. This permutation test assesses only the occurrence of demographic compensation but 225 

not its effectiveness in reducing the variance in logλs among sites, 𝜎logλs
2 . We then performed additional 226 

randomization tests where we calculated 𝜎logλs
2  following the permutation of each net contribution 𝐶𝑙

𝑘 227 

at a time (thus 28 parameters). Higher values of 𝜎logλs
2  in the randomization indicated that the focal 228 

parameter reduced 𝜎logλs
2  through its negative correlations; conversely, lower values for 𝜎logλs

2  indicated 229 

that the focal parameter increased 𝜎logλs
2  through its positive correlations. Finally, we ran a 230 

randomization test where we permuted only those 𝐶𝑙
𝑘 that reduced 𝜎logλs

2 : this randomization 231 

procedure eliminates as much as possible the negative correlations while preserving the important 232 

positive correlations and indicates the overall effectiveness of demographic compensation (Villellas et al. 233 

2015).   234 
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RESULTS 235 

Step 1. Prediction of plant vital rates 236 

Plant size had significant effects on all vital rates (Table 2). Size and reproductive output were positively 237 

affected by SoilVeg2, which was itself positively related to vegetative height and SLA of the surrounding 238 

vegetation (Appendix S2.1). Survival was positively affected by mean temperature squared (𝑇𝑚𝑒𝑎𝑛
2 ), 239 

while recruit size was negatively affected by temperature range (Trange). However, the models for survival 240 

and recruit size had remarkably low explanatory power (marginal R2 = 0.07 and 0.04, respectively). All 241 

vital rates showed considerable spatial and temporal variation that was unexplained by our 242 

environmental variables (conditional R2 larger than marginal R2). 243 

Step 2. Population dynamics analyses 244 

On average, survival probability was S = 0.5 (except in GAL where S = 0.75), progressive growth (G+) was 245 

larger than retrogressive growth (G-) and stasis (G=), reproduction was F0 = 0.5, reproductive output was 246 

F1 = 12 siliques and recruit size was F2 = 1.5 stems (Figure 1 and S5). Coefficients of variations (CV) were 247 

mostly comprised between 0.1 and 0.6 across all life-cycle components. Over all sites and pairs of life-248 

cycle components, we observed 21 (17%) significant negative temporal correlations and 21 (17%) 249 

significant positive temporal correlations (Figure S6).  250 

The stochastic population growth rate logλs was negative in all sites (Table 1). One site (GAL) had higher 251 

logλs than the other sites. The largest elasticities of logλs to the temporal means of life-cycle components 252 

were associated with S, while the elasticities to G+ were the second-largest (Figure 1). The elasticities of 253 

logλs to the standard deviation of life-cycle components were largest and negative for S, intermediate for 254 

G+ and F1, and smallest for G-, G=, F0 and F2. 255 
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Step 3.  Elevational patterns 256 

Mean survival (S), retrogressive growth (G-) and stasis (G=) increased significantly with elevation (Figure 257 

1), while mean progressive growth (G+), reproductive output (F1) and recruit size (F2) decreased 258 

significantly with elevation. The CV of S, G- and G= decreased significantly with elevation. 259 

While the elasticities to mean S did not change with elevation, the elasticities to mean G+ significantly 260 

decreased with elevation. The elasticities to the means of the other life-cycle components were much 261 

smaller and showed significant positive (G- and G=) or negative (F0, F1 and F2) relationships with elevation. 262 

The elasticities to the standard deviation of life-cycle components did not change significantly with 263 

elevation, nor did the temporal correlations between life-cycle components.  264 

The stochastic growth rate logλs did not change significantly with elevation (Figure S7). 265 

Step 4. Stochastic life-table response experiment (SLTRE) 266 

The SLTRE showed that all four descriptors of life-cycle components (means, coefficients of variation, 267 

temporal correlations and elasticities) contributed to differences in logλs between sites (Figure 2). Means 268 

had the largest total effects in all sites, but the other descriptors were not negligible and could account 269 

for up to 50% of the difference in the stochastic growth rate (Figure 2a): the largest effects were due to 270 

coefficients of variation, while elasticities and correlations had smaller effects. When looking at the total 271 

effects of each life-cycle component (Figure 2b), the largest ones were due to survival (S) and 272 

progressive growth (G+), while the other life-cycle components had smaller effects. 273 

The net contributions of means and coefficients of variation of S (𝐶𝑆
𝜇

 and 𝐶𝑆
𝐶𝑉) increased (became more 274 

positive) with elevation,  while the net contributions of mean G+ (𝐶
𝐺+
𝜇

 ) decreased (became more 275 

negative) with elevation (Figure S8). 276 
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Step 5. Demographic compensation 277 

There were 18 significant positive correlations and 22 significant negative correlations between the net 278 

contributions of life-cycle components across sites. This constitutes substantial evidence for the 279 

existence of demographic compensation according to the criterion proposed by Villellas et al. (2015), 280 

since the number of negative correlations was much higher than expected by chance (permutation test, 281 

Figure 3). 282 

The negative correlations involved all four descriptors of population dynamics. While the correlations 283 

linking G-, G= and G+ together are trivial as they emerge from the same vital process (growth), the other 284 

correlations are ecologically meaningful (Figure S9). Among these, there were significant negative 285 

correlations involving mean life-cycle components (S, G+, F1 and F2), their coefficients of variation (S), 286 

temporal correlations (S, G- and G=) and elasticities (G- and G+). Significant negative correlations linked 287 

together the same descriptor of different life-cycle component (e.g. mean S and mean F1), different 288 

descriptors of the same life-cycle component (e.g. mean G+ and its elasticity) and different descriptors of 289 

different life-cycle components (the CV of S and the mean of G+, F1 and F2). 290 

The parameters contributing the most to demographic compensation were mean S, mean G+ and mean 291 

F1, as their permutation generally increased the variance of logλs between sites, 𝜎logλs
2  (Figure 4a-d). 292 

Conversely, the permutation of the CV of S led to smaller 𝜎logλs
2 , indicating that this parameter increases 293 

the variance in logλs relative to what would be expected by chance; this was the result of the numerous 294 

positive correlations involving the CV of S (Figure 3). The other parameters did not change 𝜎logλs
2  295 

considerably. Randomizing only the parameters that reduced the variance in logλs between sites 296 

indicated that the observed 𝜎logλs
2  was 59% of the median 𝜎logλs

2  expected under the hypothesis of 297 

minimal negative correlations, but not significantly smaller (p = 0.17; Figure 4e).  298 
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DISCUSSION 299 

In this work, we studied variation in population dynamics of A. alpina across most of its elevational range 300 

in the European Alps (2000m). Contrary to the expectation that peripheral populations have lower 301 

demographic performance than central populations (Pironon et al. 2017), A. alpina showed surprisingly 302 

little variation in population growth rates logλs across its full elevational range. Conversely, most life-303 

cycle components significantly varied with elevation. We showed that this pattern could be partly 304 

explained by demographic compensation, i.e. negative correlations between the contributions of 305 

different life-cycle components to spatial differences in logλs. In particular, compensatory effects across 306 

the elevational range did not arise only through opposite spatial patterns in mean vital rates, but also in 307 

their temporal variation, elasticities and temporal correlations. This highlights a previously overlooked, 308 

but potentially important, role of stochastic processes in offsetting mean changes in vital rates and 309 

stabilizing population dynamics at range margins. We now discuss the origin, significance and 310 

generalities of the patterns of demographic compensation observed in this study. 311 

The origin of negative correlations between the different descriptors of life-cycle components should be 312 

searched in their patterns of variation along the elevational gradient (Figure 1). First, mean vital rates 313 

changed in opposite directions:  survival (S) increased along the elevational gradient while reproductive 314 

output (F1) decreased, resulting in a negative correlation between 𝐶𝑆
𝜇

 and 𝐶𝐹1
𝑒  (Figure S9). However, 315 

stochastic descriptors also contributed to demographic compensation along elevation. For example, the 316 

decrease in mean progressive growth (G+), by itself, should have resulted in lower population growth 317 

rates logλs at higher elevations. However, the elasticity to mean G+ also decreased with elevation and 318 

counterbalanced the negative effects of lower G+, because smaller elasticities dampen the effects of 319 

changes in life-cycle components on logλs. The CV of survival also decreased with elevation, further 320 

offsetting the negative effects of lower G+, since smaller CV have positive effects on logλs. The resulting 321 
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negative correlations between the net contributions of these parameters to logλs (namely, between 𝐶
𝐺+
𝜇

 322 

and 𝐶𝐺+
𝑒  and between 𝐶

𝐺+
𝜇

 and 𝐶𝑆
𝐶𝑉) partly explain why population growth rates did not change with 323 

elevation despite marked elevational gradients in life-cycle components. Overall, the observed patterns 324 

are in agreement with the known higher occurrences of smaller and longer lived species and individuals 325 

at higher elevations (Nobis & Schweingruber 2013; Laiolo & Obeso 2017) and higher variability of survival 326 

at lower elevations (Angert 2009).  327 

Such elevational patterns could be due to opposite responses of vital rates to common environmental 328 

drivers (Knops et al. 2007). The main environmental driver of variation in growth and reproductive 329 

output was SoilVeg2, which summarizes variation in specific leaf area (SLA) and vegetative height 330 

(Appendix S2.1), meaning that A. alpina tends to grow larger and produce more fruits when the 331 

surrounding vegetation is composed of tall plants with large SLA. This relationship could indicate a 332 

response to high competitive pressure or a common effect of temperature, because SLA and vegetative 333 

height in plants tend to increase with temperature and decrease with elevation (Moles et al. 2014; Read 334 

et al. 2014; Rosbakh et al. 2015). In contrast, the environmental drivers of survival are not easy to 335 

identify, because the statistical model linking plant survival probability to environmental variables had 336 

very low explanatory power. These results seem corroborated by a common garden experiment using 337 

the same six populations as this study, which found that temperature was significantly associated with 338 

total fruit length (a measure of reproductive output) but not with survival (de Villemereuil et al. 2018). 339 

Elevational patterns in survival, growth and reproductive output could also be driven by other 340 

environmental factors not considered in our analysis, such as soil phosphorus content, diversity of root 341 

microbiota or herbivore damage, all of which affect various traits of A. alpina across its range (Almario et 342 

al. 2017; Buckley et al. 2019). Negative correlations between life-cycle components could also be due to 343 

energetic trade-offs and structural constraints (Williams et al. 2015). In A. alpina, higher rates of 344 

flowering are associated with reduction of plant survival, because all stems wilt and die after setting 345 



18 
 

seeds, to the point that mutants for perpetual flowering show an annual life-cycle (Wang et al. 2009). 346 

Slower rates of stem production and/or lower rates of flowering could thus increase the longevity of the 347 

entire plant, resulting in negative correlations between growth, reproduction and survival. 348 

Spatial patterns in elasticity are not very documented, but increasing elasticities to survival with 349 

elevation could result from their positive correlation with longevity (Silvertown et al. 1993; Franco & 350 

Silvertown 2004) and from the positive correlation between longevity and elevation (Nobis & 351 

Schweingruber 2013). In contrast, decreasing elasticities to fecundity and growth with elevation, as 352 

found in our study, could be expected given that these elasticities correlate with SLA (Adler et al. 2014) 353 

and SLA is known to decrease with elevation (Read et al. 2014). However, within-species patterns of 354 

elasticities are also influenced by the level of environmental disturbance (Oostermeijer et al. 1996; 355 

Silvertown et al. 1996), which may not show consistent variation with elevation. 356 

The correlations between life-cycle components involved all descriptors of population dynamics but their 357 

effectiveness for reducing the variance in logλs (𝜎logλs
2 ) was higher in the case of mean life-cycle 358 

components. The effectiveness of a single descriptor for reducing 𝜎logλs
2  through demographic 359 

compensation depends on the strength and number of its negative correlations relative to its positive 360 

correlations (Figure 3) and its contribution to the differences in logλs between sites, Δlogλs (Figure 2). 361 

Only parameters making large contributions change 𝜎logλs
2  through their correlations, decreasing it when 362 

most of their correlations are strong and negative. Mean progressive growth was the most important 363 

parameter for demographic compensation by offsetting variation in survival. Mean survival and mean 364 

reproductive output were the second most important parameters, thanks to their large contributions to 365 

Δlogλs and the negative correlation between them. Conversely, temporal correlations and elasticities 366 

showed many significant negative correlations but they were not as important for demographic 367 

compensation because the net contributions to Δlogλs were small, in line with what is observed in other 368 
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plant species (Jongejans et al. 2010; Compagnoni et al. 2016; Davison et al. 2019). Finally, the CV of 369 

survival made relatively large contributions to Δlogλs, but showed too many positive correlations that led 370 

to an increase of 𝜎logλs
2 rather than a reduction. 371 

Although our results are comparable to findings over multiple species in the deterministic case (Villellas 372 

et al. 2015), our study is the first assessing demographic compensation in a stochastic framework. 373 

Assessing whether the results obtained here are representative of other species will require additional 374 

studies quantifying both the contributions of all descriptors of population dynamics to Δlogλs and their 375 

pairwise correlations. The first exercise has been done by Davison et al. (2019) on a set of 62 species, 376 

showing that more than one quarter of contributions to Δlogλs can be attributed to the effect of 377 

coefficients of variations, elasticities and temporal correlations. However, the importance of these 378 

descriptors of population dynamics for demographic compensation remains unknown, as it depends 379 

critically on the relative number and strength of negative vs. positive correlations in which they are 380 

involved.  381 

Even with demographic compensation, the stochastic population growth rate was negative in all sites, 382 

indicating that populations are projected to decline in size and eventually go extinct locally. However, A. 383 

alpina could persist thanks to germination from its persistent seed bank and immigration from other 384 

sites (Hastings & Botsford 2006). Its frequent occurrence in unstable sites suggests that populations 385 

could show an extinction-recolonization dynamics typical of metapopulations (Ouborg & Eriksson 2004). 386 

The inclusion of a seed bank led to higher, sometimes positive population growth rates and confirmed 387 

the existence of demographic compensation (Appendix S2.2). The effects of immigration are more 388 

difficult to study in absence of estimates of seed dispersal rates, but the strong spatial genetic structure 389 

of the populations (FST = 0.6, de Villemereuil et al. 2018) suggests that dispersal rates might be low. The 390 

patterns of demographic compensation revealed here could thus be different in models integrating 391 

empirical estimates of seed dormancy and germination rates and extinction-recolonization dynamics, 392 
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potentially unmasking greater importance for coefficients of variation, elasticities and temporal 393 

correlations. 394 

So far, demographic compensation has been discussed mainly in terms of spatial variation in mean vital 395 

rates (Doak & Morris 2010; Villellas et al. 2015; Sheth & Angert 2018). Our study is the first to highlight 396 

that temporal variation, elasticities and temporal correlations can be involved in demographic 397 

compensation, even if their effect was smaller than that of means. Nonetheless, temporal variation in 398 

vital rates could become more important under future expected increasing frequencies of extreme 399 

climatic events (Meehl & Tebaldi 2004; Schär et al. 2004), such as summer heatwaves and drought, that 400 

can cause large temporal variation in vital rates (Smith 2011; Andrello et al. 2012). Assessing the 401 

importance of all descriptors of population dynamics for demographic compensation could thus provide 402 

a more complete understanding of the dynamics of elevational as well as geographical species ranges in 403 

a context of global change.  404 
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Figure legends 569 

Figure 1. Elevational patterns in life-cycle components and elasticities. Elevational patterns in mean 570 

life-cycle components, coefficients of variation (CV) of life-cycle components, elasticities to means (µ) 571 

and elasticities to standard deviation (σ) of life-cycle components. Life-cycle components are survival (S), 572 

retrogressive growth (G-), stasis (G=), progressive growth (G+), reproduction (F0), reproductive output (F1) 573 

and recruit size (F2). Dots are mean values and bars extend over 95% confidence intervals. The blue lines 574 

are fitted linear regressions between values and elevation, and the gray areas are 95% confidence 575 

intervals. Solid lines indicate significant regressions (p < 0.05). Confidence intervals and significance 576 

values were calculated by randomly sampling statistical models over 200 bootstrapped demographic 577 

datasets and 10 resampled imputed climatic datasets 578 

Figure 2. Stochastic life-table response experiment (SLTRE). Total effects of each descriptor (a) and life-579 

cycle component (b) to differences in stochastic population growth rates (logλs) between the focal site 580 

and a reference site constructed by taking the mean of vital rates over all sites. (c) to (h), net 581 

contributions 𝐶𝑙
𝑘 of each descriptor k of each life-cycle component l to the difference in logλs. Negative 582 

and positive contributions are plotted separately. Colours indicate the descriptor (µ, means; e, 583 

elasticities; CV, coefficients of variation; ρ, temporal correlations) or the life-cycle component (S, 584 

survival; G-, retrogressive growth; G=, stasis; G+, progressive growth; F0, reproduction; F1, fecundity; F2, 585 

recruit size). 586 

Figure 3. Demographic compensation. Correlogram of Spearman’s correlation coefficients between the 587 

net contributions of different descriptors of life-cycle components to differences in stochastic population 588 

growth rates (logλs) between sites (SLTRE contributions). Negative correlations are in red, positive 589 

correlations are in blue. Boxes with thicker borders and an asterisk indicate significant correlations at p < 590 

0.05. The insets show the number of observed significant positive and negative correlations (vertical 591 
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dotted lines) compared to the distribution of the number expected by chance obtained through a 592 

permutation test (histograms). See Figure 2 for definitions of descriptors and life-cycle components.  593 

Figure 4. Effectiveness of demographic compensation. (a), variance of population growth rate logλs 594 

between sites, 𝜎logλs
2 , obtained by permuting each descriptor of each life-cycle component at a time. 595 

Dots are mean values and bars extend over 95% confidence intervals over 1000 permutations. Values 596 

higher than the observed 𝜎logλs
2  (horizontal dashed line) indicate that the corresponding parameter 597 

effectively reduces 𝜎logλs
2  through demographic compensation. (b), observed 𝜎logλs

2  (vertical dotted 598 

lines) compared to the distribution of 𝜎logλs
2 expected by chance obtained through permuting only the 599 

parameters effectively reducing it (histograms). See Figure 2 for definitions of descriptors and life-cycle 600 

components.  601 
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FIGURE 1 602 

  603 
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FIGURE 2 604 
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FIGURE 3 606 

  607 
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FIGURE 4 608 

 609 
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Table 1. Characteristics of the study sites.  

Site BRU CHA VIL LAU GAL PIC 

Longitude 5.61112 5.59267 5.57083 6.39034 6.40375 6.38426 

Latitude 45.15065 45.07117 45.01809 45.02846 45.06049 45.06385 

Elevation (m) 930 1480 1980 2090 2590 2930 

Aspect South North South North North South 

Habitat Calcareous scree 
Calcareous 
grassland, scree Calcareous scree Schists, torrent Calcareous scree Schistose scree 

Initial N 46 145 104 90 110 50 

Number of plots 2 3 3 3 3 4 

       

Tmean 14.7 (12.8, 17.5) 15.7 (12.9, 18.2) 12.9 (9.3, 17.5) 10.4 (8.0, 12.1) 7.7 (5.3, 10.3) 9.1 (5.9, 12.1) 

Trange 11 (6.0, 18.6) 16.9 (11.5, 21.9) 15.9 (9.7, 36.1) 6.3 (3.1, 9.6) 8.1 (5.8, 13.3) 16.3 (11.8, 23.2) 

logλs -0.4 (-0.5, -0.2) -0.3 (-0.5, -0.2) -0.5 (-0.6, -0.4) -0.5 (-0.8, -0.3) -0.2 (-0.2, -0.1) -0.5 (-0.8, -0.3) 

 

N, number of individuals. Daily mean temperature (Tmean) and daily temperature range (Trange) were measured with in-situ data-loggers. Values 

are means and (minimum and maximum) over plots and years for the month of July. Means and 95% confidence interval for the stochastic 

population growth rate (logλs) were calculated by randomly sampling the values calculated using matrix populations models constructed using 

predicted vital rates from 200 bootstrapped demographic datasets and 10 resampled imputed datasets. The N per site per year is shown in 

Figure S2. 
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Table 2. Statistical analysis of plant vital rates.  

Predictor Survival Growth Reproduction Reproductive output Recruit size 

 mean 95% CI mean 95% CI mean 95% CI mean 95% CI mean 95% CI 

Fixed effects           

   Intercept 0.50 (0.31, 0.72) 1.35 (1.24, 1.44) 0.75 (0.35, 1.26) 1.05 (0.99, 1.10) -0.76 (-1.11, -0.50) 

   SoilVeg1 -0.27 (-0.69, 0.19) 0.17 (-0.18, 0.35) 0.10 (-0.36, 0.77) 0.03 (-0.06, 0.15) 0.57 (-0.16, 1.07) 

   SoilVeg2 -0.29 (-0.77, 0.05) 0.17 (0.03, 0.38) 0.14 (-0.26, 0.69) 0.10 (0.01, 0.18) -0.04 (-0.80, 0.49) 

   Plant size 0.79 (0.47, 1.09) 1.26 (1.09, 1.43) 3.78 (3.04, 4.61) 0.58 (0.49, 0.69) - - 

   (Plant size)2 -0.56 (-0.88, -0.3) -0.71 (-0.87, -0.57) -1.37 (-2.21, -0.74) -0.26 (-0.37, -0.18) - - 

   Tmean -3.52 (-5.08, 0.22) 0.35 (-0.24, 1.75) 0.04 (-2.34, 2.53) -0.06 (-0.58, 0.41) 0.55 (-2.47, 3.33) 

   (Tmean)2 3.37 (0.17, 5.04) -0.51 (-1.76, 0.16) -0.13 (-2.66, 2.24) -0.02 (-0.42, 0.52) 0.52 (-2.67, 3.20) 

  Trange -0.40 (-0.95, 0.05) 0.01 (-0.23, 0.25) 0.33 (-0.10, 1.19) 0.11 (0.00, 0.20) -0.63 (-1.78, -0.07) 

           

Random effects           

   Site (Intercept) 0.00 (0.00, 0.55) 0.08 (0.00, 0.55) 0.00 (0.00, 0.72) 0.12 (0.00, 0.23) 0.00 (0.00, 0.40) 

   Year (Intercept) 0.51 (0.22, 0.86) 0.41 (0.33, 0.50) 1.09 (0.84, 1.40) 0.15 (0.11, 0.19) 0.00 (0.00, 0.70) 

   Year (SoilVeg2) 1.27 (0.82, 1.83) - - - - - - - - 

   Year (Intercept * SoilVeg2) 0.15 (-0.48, 0.98) - - - - - - - - 

   Plot (Intercept) - - - - 1.28 (0.87, 1.88) - - - - 

   Plot (Plant size) - - - - 1.52 (0.85, 2.56) - - - - 

   Plot (Intercept * Plant size) - - - - 0.95 (0.74, 1.00) - - - - 

   Residual - - 1.62 (1.39, 1.89) - - 0.36 (0.34, 0.38) 2.61 (0.86, 13436) 

           

Marginal R2 0.07 (0.03, 0.12) 0.25 (0.2, 0.31) 0.46 (0.38, 0.56) 0.44 (0.36, 0.53) 0.04 (0.00, 0.10) 

Conditional R2 0.41 (0.29, 0.56) 0.36 (0.3, 0.49) 0.80 (0.69, 0.88) 0.57 (0.51, 0.64) 0.05 (0.02, 0.18) 
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For each of the five vital rates, the table reports the standardized coefficients of fixed effect, the standard deviation of random effects (intercepts 

and slopes), the correlations between random intercept and slopes and marginal and conditional R2 (Nakagawa et al. 2017). Only the random 

effects that were retained after model selection on the random structure are shown. Means and 95% confidence intervals were calculated by 

randomly sampling statistical models over 200 bootstrapped demographic datasets and 10 resampled imputed datasets. The predictors whose 

confidence intervals do not overlap with zero are in bold. 

 
 




