Supplementary information

Differing marine animal biomass shifts under 21st century climate change between Canada's three oceans

Andrea Bryndum-Buchholz¹⁰⁰*, Faelan Prentice¹⁰⁰, Derek P. Tittensor^{1,2}, Julia L. Blanchard³, William W. L. Cheung⁴, Villy Christensen⁵, Eric D. Galbraith^{6,7}, Olivier Maury^{8,9}, and Heike K. Lotze¹

Table S1. Overview of marine ecosystem models included in the ensemble projections (modified from Tittensor et al. (2018a) and Bryndum-Buchholz et al. (2019)).

Marine	Model description	Key ecological	Spatial and temporal	Vertical	Taxonomic	Reference
ecosystem model		processes	scale for Fish-MIP	resolution	scope	
			simulations			
BiOeconomic	Size-structure model.	Applies empirical	1 x 1° grid	None (2-	3 size groups	Carozza et al.
mArine Trophic	Combines marine	parameterizations to	Monthly mean timestep	dimensional	(small, medium,	(2016)
Size-spectrum	biogeochemistry with	describe phytoplankton		domain). NPP is	large) defined by	
(BOATS)	size-based trophic theory	community structure,		vertically-	their asymptotic	
	and metabolic	trophic transfer of		integrated through	mass of all	
	constraints to calculate	primary production		the water column.	commercial fish.	
	the production of	from phytoplankton to		Temperature		
	commercially-harvested	fish, fish growth rates,		changes with		
	fish across multiple size	and natural mortality of		SST.		
	spectra.	fish.				
		No direct or passive				
		movement of fish,				
		larvae or eggs between				
		grid cells.				
Macroecological	Static size-structure	Simple characterization	1 x 1° grid	Single vertical	180 body mass	Jennings and
Model	model. Uses minimal	of marine ecosystems in	Annual mean timestep	(surface-	classes. Species	Collingridge
	input parameters	terms of body mass		integrated) layer.	are not resolved.	(2015)

	together with ecological and metabolic scaling theory to calculate mean size composition and abundance of marine animals (including fish).	distribution and marine animal abundance based on estimates of predator-prey mass ratios, transfer efficiency and changing metabolic demands with body mass and temperature.				
		Animal movement is				
D D. I	Duralit	not included.	1 1° '1	2	1	D111t
Dynamic Pelagic Bonthic Model	based model	production food	1 X 1 grid Monthly mean timester	2 vertical layers	r pelagic	Blanchard et (2012)
(DPRM)	Incorporates a pelagic	dependent growth	wonting mean timestep	(sea surface and sea floor) No	benthic	al. (2012)
	predator size-spectrum	natural mortality, and		vertical transport	detritivore size	
	with a benthic detritivore	reproduction give rise to		or movement.	spectrum, with	
	size-spectrum.	emergent size spectra			100 size classes	
	I I I I I I I I I I I I I I I I I I I	for each functional			each.	
		group (pelagic predator				
		and benthic detritivore).				
Dynamic	Species distribution	Population dynamics	0.5 x 0.5° grid	Vertical layers	892 commercial	Cheung et al.
Bioclimate	model based on	are dependent of habitat	Annual mean ocean	(sea surface and	fish and	(2010)
Envelope Model	bioclimatic envelopes	suitability and	conditions	bottom) defined	invertebrate	
(DBEM)	(niche) defined for each	movement of adult		by species niche	species.	
	species. Simulates	species driven by a		preferences.		
	changes in species	gradient of habitat				
	abundance and carrying	suitability and				
	capacity (as a function of	population density.				
	the environment and	Larval dispersal is				
	species' habitat	driven by currents and				
	preferences) under	temperature. Growth,				
	environmental change.	reproduction, and				
		natural mortality are				

		dependent on oxygen,				
		pH, and temperature.				
EcoOcean	Trophodynamic model,	Combines a food web	1 x 1° grid	Vertical layers	51 trophic	Christensen
	based on species	model comprising a	Monthly mean timestep	defined by food	biomass groups;	et al. (2015)
	interactions and energy	mass-balance		web interactions	including all	
	transfer across trophic	component (Ecopath;		and habitat	trophic level and	
	levels. Ecosim-with-	input: biomass,		preference	taxonomic	
	Ecopath (EwE)	production/biomass		patterns;	groups (marine	
	framework designed to	ratio,		vertical	mammals, birds,	
	evaluate the impacts of	consumption/biomass		movement and	fish,	
	fisheries and climate	ratio, diet composition,		transportation	invertebrates,	
	change on marine	catches), a temporal		through the	primary	
	resources and	dynamic predator-prey		establishment of	producers and	
	ecosystems.	component (Ecosim),		trophic links and	bacteria)	
		and a spatio-temporal		the generation		
		dynamic component		and consumption		
		which is a function of		of dead organic		
		grid cell specific habitat		matter linking		
		attributes i.e. pH, water		pelagic organisms		
		depth, temperature, and		to demersal and		
		bottom type (Ecospace).		benthic		
				organisms.		
Apex Predators	3D dynamic energy	Size-based predation,	1 x 1° grid	3D explicit	Explicit size-	Maury
ECOSystem	budget Eulerian model of	food- and temperature-	Monthly mean timestep	vertical	based	(2010)
Model	size-structured marine	driven growth,		movement	communities	
(APECOSM)	populations and	reproduction and		considered.	including 3	
	communities, based on	senescence. Includes			communities	
	individual	environmental impacts			(epipelagic,	
	environmentally driven	on vertical and			migratory,	
	bio-energetics, trophic	horizontal movements			mesopelagic); 95	
	interactions and	and schooling.			species length	
	behaviors, that are				classes and 100	
	upscaled to populations				size classes	
	and communities.					

Fig. S1. Individual ecosystem model projections for GFDL-ESM2M and IPSL-CM5A-LR under
RCP8.5 in Canada's three oceans. All trends are relative to 1990-1999. The vertical grey line
indicates the separation of historical and future projections.

Fig. S2. Spatial patterns of APECOSM, DBEM, DPBM, and BOATS projections of total marine
animal biomass under RCP2.6 (left) and RCP8.5 (right) in Canada's three oceans. For better
visualization of patterns, percent biomass change values were capped at +/-75%. Country
shapefile retrieved from www.diva-gis.org. EEZ outline modified from Flanders Marine Institute
(2018).

11

Fig. S3. Spatial patterns EcoOcean and Macroecological projections of total marine animal

biomass RCP2.6 (left) and RCP8.5 (right) in Canada's three oceans. For better visualization of

- 14 patterns, percent biomass change values were capped at +/-75%. Country shapefile retrieved
- 15 from <u>www.diva-gis.org</u>. EEZ outline modified from Flanders Marine Institute (2018).

16

17