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Abstract :   
 
The assessment of mesh resistance to opening is a key factor when coming to fishing gear design to 
study or optimize the fishing selectivity process. Different authors proposed methodologies to achieve 
twine flexural rigidity identification and mesh opening angle at rest. Their experimental protocols could 
rely on complex installations and instrumentation, and identification needs dedicated models or software 
with possible important set up time. Sometimes, different flexural rigidity and rest angle values for a given 
netting type were proposed depending on identification or experimental conditions, leading to difficulties 
to choose a value for implementation in netting structures simulation software. The new methodology 
proposed in this article is based on a simplified experimental protocol taking plasticity into account and 
an identification method derived from an end user dedicated software, to determine mechanical and 
dimensional characteristics of common netting materials. Identified flexural rigidity and rest angle values 
fall inside the interval provided by authors using similar methods. Identified parameters have been used 
to predict the geometry of two T90 netting cylinders with errors lower than 3%. 
 
 

Highlights 

► Selectivity of fishing nets can be improved through the modeling of their shape. ► Netting shape and 
tension are highly dependent on parameters like twine flexural rigidity. ► A new netting twine flexural 3D 
model is proposed and implemented in a proven algorithm. ► An experimental protocol including plasticity 
and identification method are used to identify parameters. ► Identified flexural rigidity and rest mesh 
angle are coherent with literature results for common nettings. ► Applied to larger netting structures, 
model and experimentation differ by 3%. 
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1 Introduction 
 

The reform of the European Common Fisheries Policy (CFP) of 2013 has increased the pressure on 

fishers, compelling them to reduce the catch of untargeted species. A technical way to avoid fishing 

untargeted species is to improve the selection capability of the fishing gear.  For fishing gear like trawls 

made of nettings, mechanical properties of braided twines have a strong influence on net meshes 

opening (Herrmann et al., (2013)) and consequently on the selectivity properties, especially in the 

terminal part of the fishing gear:  the codend is pulled into a bulb-shape as it is loaded by fish, which 

provides more open meshes in the front part of the bulb which enables the fish to escape (Robertson 

and Stewart, (1988)).  

The mesh opening mechanism is complex and involves the twine bending stiffness. A direct 

measurement of bending stiffness is not possible and needs an inverse identification process where a 

set of mesh characteristics, including bending stiffness, is adjusted till the model best reproduces a 

series of experiments. Experimental protocols and numerical modeling are involved in this process. 

Several experimental protocols have been tested by different authors to assess the value of the 

bending stiffness of twine composing fishing nets.  Sala et al., (2007) developed a complex and 

expensive experimental system to measure the forces needed to uniformly deform a sample of netting. 

Bending stiffness could be deduced using the beam theory. Priour and Cognard, (2011) proposed to 

measure the deformation of a vertical netting sample under different loads and the flexion of a netting 

sample as a cantilever under its own weight. De La Prada and González, (2016) proposed a way to 

establish a relation between the height of a netting sample and the force applied in its lower part in a 

vertically suspended and uniaxial configuration using a tensile test bench. Morvan et al., (2016) used 

a similar configuration where each lower node of the netting sample had its own weight to simulate a 

force, with no need of a tensile test bench. The sample heights were measured for the different loads 

but the sample width was not considered to identify the bending stiffness. 

De La Prada and González, (2016) state that axial rigidity (EA) for common netting twines ranges 

between 500N and 3000N and that its effect on netting deformation is negligible compared to flexural 

deformations, except for deformations that hardly happen in real marine applications. In parallel, the 

theory used by O’Neill, (2002) does not involve axial elasticity and value of axial rigidity are not 

provided by Morvan et al., (2016) .  

Mechanical and geometrical properties of netting samples can be identified by the optimization of a 

set of parameters used in a physical oriented approach model. Priour, (2001); Priour and Cognard, 

(2011) modeled the flexural rigidity with a torque located at the physical knot supposing that the 

twines remain straight. De La Prada and González, (2016) used two different approaches: (1) 

asymptotic development of a model of the twine as a bi-dimensional double-clamped beam developed 

by O’Neill. This model was based on the beam bending equations under several hypothesis: (i) the 

bending moment is proportional to the twine curvature and (ii) no axial elasticity. (2) A finite element 

model allows the assessment of the force – displacement response, then fitting techniques have been 

used to set bi-dimensional dimensionless models that compare accurately (“spline” model) and 

reasonably accurately (polynomial model, 5% to 10% of deviation), with the exact solution previously 
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given by O’Neil. These models express the reaction force as an explicit function of the twine 

deformation and can be used to solve large deformations of the net. These models assume uniform 

deformations and are not applicable to 3 dimensional problems. A finite element model in Abaqus for 

a small number of meshes have been developed by Morvan et al. Mesh sides are assumed to behave 

like Timoshenko beams, taking into account the mesh resistance to the net’s opening, allowing the 

simulation of non-uniform deformation. Again, the optimization does not consider the relation 

between the sample width and the load. The length of the physical knots is not considered. These 

models are specifically designed to identify netting mechanical properties. Thus, the identification of 

netting mechanical parameters by the final user of the netting modelling software can be difficult. In 

this context, this work proposes to apply identification results to larger structures simulation, by 

comparing the numerical and experimental results. 

Nettings used in fishing gear can be loaded with high forces able to generate permanent plastic 

deformations in twines and knots (De La Prada, (2014)). Plasticity has been taken into consideration in 

De La Prada and Gonzalez, (2015) in a single load/unload cycle. For each load the operator waited until 

the sample length becomes stable. Moreover, the maximum force (leading to stretch the sample to 

80% of its maximum stretched length) was applied during one hour after the last load increment and 

before the first unload increment. The relations between sample height and forces for the load and 

the unload phases were then analyzed separately. Plasticity was not taken into consideration by 

Morvan et al., (2016). 

In the present work, we attempt to establish a practical methodology to estimate the mechanical and 

geometrical properties of netting materials. The proposed method is original as it is based on the use 

of artificially intelligent algorithms applied to the algorithm used in netting structure simulation in 

marine environment. This netting structure simulation algorithm is implemented in a widely used 

commercial software (DynamiT) specialized in trawl simulation presented by Nguyen et al., (2015); 

Nguyen and Winger, (2016) and thus does not rely on any other theory nor software. Moreover, it is 

proposed to overcome some of the drawbacks of previous methods: (1) the present method considers 

eventual flexural forces and deformations normal to the two normalized netting directions N and T 

(Fig. 1),  (2) the simple experimental protocol proposed by De La Prada and Gonzalez, (2015)  was 

slightly simplified to enable the end users to identify by themselves the properties of nettings without 

the need of laboratory facilities, (3) the plasticity is taken into account in a more realistic way, (4) 

identified parameters for some common nettings are applied to larger netting structures simulation 

and compared to experimental results. Finally, an original metaheuristic optimization algorithm based 

on artificial intelligence is used to identify the constitutive parameters of the fishing net model. 
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2 Fishing net mechanical modelling 
 

2.1 Modelling of meshes 

 

In the present work, netting is modelled by using the work of Bessonneau and Marichal, (1998) and Le 

Bris and Marichal, (1999) where an axial elasticity model has been added for the present work. Net 

meshes are considered as twines and nodes. Each twine, or mesh side, can be split into two or more 

rigid bars to model its suppleness. Thus, a mesh is broken down in a set of mass nodes linked by rigid 

bars supporting a tension. Additional forces are added to model gravity forces or any external force 

(Fig. 1). 

 

 

 

 

 

 

 

 

 

Fig. 1 : a net is split into elementary meshes which are split again in a set of rigid bars. Normalized netting directions N and T 
denote the knot direction (Normal) and the Transverse direction.   

 

2.2 Dynamical equilibrium of netting elements  

 

Let’s consider a system constituted by N nodes and M rigid bars. The mass of a bar is concentrated at 

each end nodes. Forces applied on bars (weights and internal forces for instance) are located at end 

nodes. Bessonneau and Marichal proposed a method to solve the dynamic equilibrium of this system 

using the second law of Newton applied to each node in a Galilean frame. If we consider the bar j linked 

to the node i, then half the mass of the bar j and half the external forces applied on bar j, are assumed 

to be applied directly on node i. Thus N equations can be written as follows: 

  
jbarsneigbour

ijijii HTm


    ],1[ Ni    [1] 

N 

T 
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 where im is the pseudo mass of node i taking into account half masses of bars j, 
i
 is its acceleration, 

ijT


is the tension applied  by neighbor bars j on node i and ijH


is half an external force applied to bar 

j. 

The so called length condition is imposed by solving the following equation where kl is the length of 

the bar limited by nodes k and l : 

 22

lkkl XX


     [2] 

where kX


is the position of node k in a Galilean frame.  

Using a simple semi implicit first order Euler scheme for velocity to express the velocity of node k at 

time n+1 using the know time step h, it follows: 

n
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 [3] 

We get an explicit expression for velocity from eq. [2]: 
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Using again an Euler scheme for acceleration in eq. [1] and substituting velocities in eq. [4] we get a 

linear equation for each structure bar, where bar tensions are the unknown variables to be solved 
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where NB(k) is the set of neighbor bars of the node k, 
kp is the length of bar kpB . 

The matrix equation for T is symmetrical and is efficiently solved with Gauss method for law rank matrix 

(lower than 1000 unknown variables) and by considering conjugate gradient methods for higher ranks. 

Bessonneau and Marichal and later LeBris have used the following algorithm to solve this system of 

stiff equations in the time domain: from initial positions and velocities verifying the length conditions, 

external forces are calculated, tensions are solved from the linear equation [5]. Acceleration, velocities 

and positions are calculated at the time step n+1. This iteration is repeated until a convergence 

criterion is reached. This algorithm has been used in this work to solve internal forces and positions of 

the netting twine and nodes.  
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2.3 External forces 

 

The application considered in this study only requires weight forces due to the material specific weight 

and punctual weights applied in some structure nodes.  Damping force due to hydrodynamic load is 

not considered. 

 Weight 

 

Twine weight forming mesh bars and netting knots is applied to calculation nodes. Weights attached 

to the lower part of the netting model are applied to the lower nodes of the model. 

2.4 Internal forces  

 Axial elasticity 

 

In order to have a more realistic modeling and to increase the diagonal dominance of the matrix 

equation, a linear axial elasticity term has been added in equation [2]. 

 klklklkl Tk 10        [6] 

Where 
klk is the inverse of the bar axial stiffness and the length of bar free of load kl0 . These length 

conditions are linearized, assuming kT << 1, which means that relative axial elongation of a mesh side 

is low, which is verified in most cases of practical use of fishing nets application. 

Length condition at time n+1 becomes: 
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We get a new explicit expression for velocity from eq. [6] 
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This leads to a new set of matrix equations 
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where the dominance of the diagonal is increased with elasticity terms making it easier to solve. 
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Coefficient k can be elongation-dependent depending on the material constituting the netting. Other 

authors chose to neglect the axial rigidity or concluded that this parameter has negligible effects for 

standard marine applications. To feed the proposed model with this parameter, the knot deformation 

when loading a mesh side is then taken into account. The assumption is made that the knot behavior 

is not depending on the twine.  Wanchana et al., (2002) has established a linear load–elongation curve 

resulting from breaking strength tests by considering the “English knot” for PE twines. The relative 

knot strength is 65% of the tensile breaking strength and the elongation at breaking is 22.8%. A first 

approximation of the k coefficient in equation [2b] is thus 𝑘 =
0.228

0.65 𝐵𝑠
 where Bs is the tensile breaking 

strength in Newton. The breaking load of the 3mm twine used in this work is 120 kgw, which leads to 

1/k=3356 N. The breaking load of 4mm PE twine is 180 kgw, which leads to 1/k=5034 N. 

 

 Flexural forces 

 

The connected structure made of bars as described above is not a representative model of an actual 

net as it does not take into account the twines flexural resistance. According to elementary beam 

theory, the relationship between the applied bending moment M and the resulting curvature of the 

center line of the beam is given by: 

 

where   is the radius of curvature, E is the elastic modulus, I is the inertia of the beam’s section. The 

expression of the bending moment is valid under the assumption of a symmetrical beam and if its 

transverse sections remain normal to the bended centerline. Thus, the bending moment is assumed 

to be proportional to the curvature of the twine at each location of the twine, the bending stiffness is 

EI also known as the flexural rigidity. For present work and like authors cited in this work, the same 

assumptions are made, leading to good results. 

Flexural rigidity of twines is taken into account to model its resistance to bending in these two 

situations:  (1) to model the suppleness of the twine and (2) when the twine is embedded into a netting 

node.  

 

2.4.2.1 Curvature radius to model the suppleness of a twine 

 

In Fig. 2, the green line is supposed to be a bended netting twine. The bar 
kiB defined by its two ends 

nodes ik NN  and the bar
ijB defined by ji NN are two adjacent bars discretizing the bended twine 

element. 

 

 

M
EI



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Fig. 2: discretization of 2 adjacent bars (blue) to model the bending moment of a twine (green curve). 

 

The rotation angle of the discrete bar ji NN from its non-bended position is i . The radius of 

curvature  is assumed to be the radius of the osculating circle to the local twine shape. The circle is 

the circumcircle to the triangle (Ni Nj Nk). Thus its center is located at the intersection of the bisectors 

to  (Ni Nj) and (Nj Nk). Consequently, i is also the angle between the bisectors. Thus, it follows: 
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A general expression using triangle points co-ordinates to calculate the radius of the circumcircle of a 

triangle could also be used. 
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2.4.2.2 Curvature radius to model a twine embedded in a netting knot 

 

 

Fig. 3 : piece of netting: knots underlined in red cannot be considered as points. 

 

The observation of a piece of netting shows that knots cannot be considered as punctual objects (Fig. 

3). They have an extension in the netting normal direction.  Consequently, it is proposed to model 

netting knots with a bar as shown in Fig. 4. Observation also show that twines are not embedded in 

knots with a null angle between two adjacent twines.  

In order to define the angle of twine free of load, we define a local referential linked to the knot (Fig. 

4). 

                                                       

 Fig. 4 : local numbering and referential to define the orientation of bars. Green lines denotes actual twines and blue lines 
denote modeled lines. 

 

The local orthonormal referential is defined by vectors N  andT . N is aligned with the so-called 

normal direction of the netting, which defines the orientation of netting nodes. N  is simply defined 

1B
2B

3B
4B

N

T

2R
1R

3R
4R

)(knotBij

R



9 
 

by the bar  ijB  and is normalized. Vector T is first approximately defined with 

)( 4132 BBBBnormalisedt   where iB is the vector oriented from the central node to the 

other end of bar iB , and the normalization function is defined by
u

u
unormalised )( . All iB have 

the same length in this application. 

 

Vector t  is a unit vector close to T  but that does not ensure orthogonality with N . Using Ntn 

defining a unit vector normal to the average mesh plan, NnT  can be calculated which is normal 

to N . Thus ( N ,T ) defines a local orthonormal system to the node and is used to define the rest 

position of bars linked to this node.   

Vectors iR denote the rest orientation of bar i. Assuming the rest angle 
R is known and a knot and its 

4 bars are symmetrical at rest, iR is simply calculated as follows: 

NTR RR  cossin1   

NTR RR  cossin2   

13 RR   

24 RR   

The shape of the bended twine embedded in knot ijB  is supposed to be approached by the circle 

tangent to kR  at the node
iN and passing through the node

kN  (Fig. 5). We obtain the following 

expression of the radius of curvature: 

 
)sin(2 i
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sin2
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Fig. 5 : assessment of the curvature of a twine embedded in a knot.  kR


 is not aligned with ijB , we consider the circle 

tangent to kR


and passing through 
kN  and 

iN . Green lines denote actual twines and blue lines bars model twines or 

knots. 

 

 

We assume that angles and moments are positive when turning counterclockwise on Fig. 2 Fig. 4 and 

Fig. 5 . Then 0ijM is the moment applied on 
kiB by 

ijB and 0 ijM  is the moment applied on 

ijB by 
kiB . 

 

 Tridimensional Implementation 

 

Explanations given from Fig. 2-6 are valid for a 2D sketch. When considering 3D models, bending 

moments are applied on each bar by the mean of forces normal to the plan defined by the two bars 

(Fig. 6). 

O 
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For instance, the bending moment M applied by bar 
kiB on bar 

ijB is 
ijijFM  where 

ij  is the length 

of bar
ijB . Force 

ij

ij

M
F


 is applied on node jN and 

ijF is applied on node iN to keep the resultant 

of forces applied on the bar
ijB constant. 

 

 

 

 

 

Fig. 6 : forces applied on bars to implement bending moments  

 

Forces applied on 
ijB and on

kiB have then to be calculated. These forces are coplanar to (
kiB ,

ijB ) as no 

torsion moment is assumed. 

We need to calculate a unit vector having the same direction and orientation of the force. Let’s call iju  

the unit vector normal to 
ijB , coplanar to (

kiB ,
ijB ), being oriented so that ik NN .  iju  > 0  

and kiu is the unit vector normal to 
kiB , coplanar to (

kiB ,
ijB ), being oriented so that  ij NN . kiu >0 

The unit vector normal to (
kiB ,

ijB ) is defined as follows: 
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
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 If ij NN and ik NN  are collinear, the bending moment is zero. 

The unit vectors supporting the forces applied on 
kiB and 

ijB can be calculated with: 
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Forces applied to model the bending torque are calculated from the moment FdM
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
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the so-called moment arm. Using the relation of the double cross product:  
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Consequently, forces to implement are: 

ijk

ikij

i

i mEIM
 











2

sin4


  for modelling twine bending force, which leads to:

  ij

ikij

i

i uEIF
 











2

sin4


 

 
ijk

ik

i
i mEIM



sin2
     for modelling embedded twine bending, which leads to: 

 
ij

ik

i
i uEIF



sin2
  

With   is denoting the bar length where the force torque is applied. 

 

3 Determination of the physical properties of the netting model by 

inverse identification  
 

3.1 Particle Swarm Optimization algorithm 

 

In the Particle Swarm Optimization (PSO) algorithm (J. Kennedy;R. Eberhart, (1995); Reynolds, (1987)), 

particles are defined that represent, each, a potential solution to the optimization problem to be 

solved. These particles are defined in the solution domain by a position, noted X, and their speed1, 

noted V. They are then flying smartly through the solution domain, by following each other to finally 

converge together to the global minimum of the considered objective function.  The speed and the 

position of particle i are then re-calculated at each iteration t+1 of the optimization process, as follows: 

𝑽𝑖
𝑡+1 = 𝜔 × 𝑽𝑖

𝑡 + 𝑐1 × 𝑟1 × (𝑷𝑖,𝑏𝑒𝑠𝑡
𝑡 − 𝑿𝑖

𝑡) + 𝑐2 × 𝑟2 × (𝑮𝑏𝑒𝑠𝑡
𝑡 − 𝑿𝑖

𝑡) 

𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡 + 𝑽𝑖
𝑡+1 

where 𝑷𝑖,𝑏𝑒𝑠𝑡
𝑡  is the personal best position of particle i found so far, given in terms of a position in the 

solution domain, 𝑮𝑏𝑒𝑠𝑡
𝑡  is the global best position found so far by the swarm. 𝜔 is an inertia, that is the 

influence of the previous speed on the calculation of the new one, 𝑐1 and 𝑐2 are confident parameters, 

weighing the influence of the entire swarm versus the personal memory of the particle, 𝑟1 and 𝑟2 are 

random parameters defined in [0; 1]. 𝜔 is balancing the abilities of the algorithm to (i) explore the 

                                                           
1 Called « the speed » in the literature, V is actually a displacement 
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solution domain with a high value of 𝜔, (ii) exploit promising areas of the solution domain with a lower 

value. Then, 𝑐1 and 𝑐2 have to be chosen carefully to optimize the capabilities of the algorithm to 

converge to the global minimum of the objective function. Moreover, the positions and speeds of the 

particles have to be constrained for the calculation to converge. The speed is then defined in 

[−𝑉𝑚𝑎𝑥; 𝑉𝑚𝑎𝑥], where 𝑉𝑚𝑎𝑥 is defined as a function of the solution domain, to be given in the same 

order of magnitude, such as 𝑉𝑚𝑎𝑥 = (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)/2 where 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the extremal values 

defining the solution domain. 

As it has been demonstrated in Di Cesare et al., (2015), the PSO particles can be seen as a Markov 

chain, and the transition probabilities can be seen as the influence of the particles on each other. The 

transition probability matrix can then be recalculated at each iteration of the optimization process, by 

considering the particles’ respective performance regarding the best one as the steady-state of the 

Markov chain to be fitted. In a previous work Di Cesare et al., (2015) , this inverse PageRank-PSO 

algorithm has been proposed, using the PageRank – an artificial intelligence algorithm used by the 

world famous search engine Google – to redefine the influences of all the particles on all the others at 

every iteration of the optimization process. The PSO equations are then modified in the following way: 

𝑽𝑖
𝑡+1 = 𝜔 × 𝑽𝑖

𝑡 + 𝑐1 × 𝑟1 × (𝑷𝑖,𝑏𝑒𝑠𝑡
𝑡 − 𝑿𝑖

𝑡) + 𝑐2 × 𝑟2 × ∑ 𝐶𝑖𝑗 ×

𝑛

𝑗=1

(𝑷𝑗,𝑏𝑒𝑠𝑡
𝑡 − 𝑿𝑖

𝑡) 

𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡 + 𝑽𝑖
𝑡+1 

where C is the transition probability matrix, defined by the inverse PageRank algorithm, and defining 

the influence of all the particles on the others. 

The Inverse-PageRank-PSO algorithm has been used in this work to identify the constitutive 

parameters of the flexural rigidity model of the fishing net. 

 

3.2 Choice of variables to optimize  

 

The numerical model described in previous sections is driven by a set of variables representing the 

mechanical and dimensional properties of the tested netting material: axial rigidity k, flexural rigidity 

EI, length of the bar used to model the physical knot, mesh side length and rest angle (half mesh angle 

when the mesh is free of load), twine weight and the amount of twines contained in a knot.  

Some of these variables have been determined by simple measurements or approximations. This 

choice reduces the complexity of the optimization step and avoids potentially negative angles or 

distance (De La Prada and Gonzalez, (2015); Sala et al., (2007)).   Mesh side length has been measured 

as the distance between the centers of two adjacent knots. An averaging process is described in the 

experimental protocol. Linear axial rigidity can be measured through a “stress-strain” experiment. 

Alternatively, the approximation proposed in section 2.4.1. has been used in the present work.  Twine 

linear weight is a known characteristic supplied by the net maker, known as the twine “runnage”. It 

has been weighed as detailed in the experimental protocol. The amount of twine contained in a knot 

is needed to calculate the weight of a netting piece. We have used the netting “braiding factor” 
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approximately equal to
c

8D
1 where D is the twine diameter and c in the mesh side (Prado, 

J.;Dremière, (1988)).  

Other variables have been identified: the length of the bar used to model the physical knot could be 

set to 3 times the twine diameter (Prado, J.;Dremière, (1988)). However, physical knots are not 

symmetrical, their shape depends on twine angle. Thus this variable has been identified through the 

optimization process. Morvan has measured the rest angle of a piece of netting put on a horizontal 

vibrating table to ensure that friction forces have a negligible effect. Taking into account the plasticity 

effects, we assume that the rest angle cannot have a constant value and cannot be measured at rest 

before deformation cycles, as a traction experiment will definitely modify the shape of the netting 

model. Thus the rest angle has been  identified by the optimization process. EI has also been identified. 

The flexural rigidity, the length of the bar used to model the physical knot and the rest angle are 

defined as the design variables to be identified through the optimization process. 

 

3.3  Numerical test case and effects of discretization 

 Size of the test case 

 

The test problem is chosen to be easily reproduced by a physical experiment. By knowing the possible 

variation of dimensional characteristics of netting material, the test case used has 3 meshes in the 

normal direction and 6 meshed in the transverse direction. 

De La Prada and Gonzalez, (2015) used a netting section of 3 x 8 meshes and Morvan et al., (2016) used 

a section of 5 x 10 meshes. In section 4.1 it is shown that experimental results are reproducible with 

different netting sections taken on the same netting panel or sell unit. 

In order to simulate the physical netting model, the 3x6 virtual meshes model is suspended vertically 

to a horizontal support, where the 3 upper nodes are free to move only in the support direction with 

no friction (Fig. 8). Different vertical forces are applied to the 3 lower nodes to model the effect of 

calibrated weights that will stretch the net during the experiment. The length of the model is defined 

by the average distance between upper nodes and lower nodes and its width is defined by the average 

distance between left nodes and right nodes.  

 

 Discretization effects 

 

The choice for the sample model discretization is a compromise between accuracy of equations 

resolution, particularly the calculation of twines curvature radius, and the complexity of the 

calculation. Six different mesh discretization are compared for PE4x40 samples: 3, 4, 6, 8, 12 and 20 

bars per mesh side. Calculated values of Heights (Hi) and Widths (Wi) for weight i (see Table 2) are 

shown on Fig. 7. One can observe a rapid convergence to a nearly constant value for discretization 

finer than 6 bars. For each discretization, Table 1 shows the sample width and height relative 
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differences with the finest discretization values. Compared to the finest discretization, the 6 bars 

discretization leads to a maximum difference of -4.34% (width) and 2.5% (height) which seems a 

reasonable compromise. Consequently, the discretization level has been set to 6 bars and the all 

presented results are obtained with this mesh side discretization. 

 

    

Fig. 7 : calculated width Wi and height Hi for different loads as a function of the discretization. 

Number of bars H1 W1 H2 W2 H3 W3 H4 W4 H5 W5 H6 W6 

3 0.48 -0.10 3.79 -2.53 4.56 -4.46 5.40 -8.11 5.78 -11.54 5.74 -17.94 

4 0.39 -0.05 2.06 -1.32 2.52 -2.32 3.29 -4.52 3.59 -6.30 4.06 -10.90 

6 0.26 0.00 1.08 -0.66 0.94 -0.79 1.38 -1.65 1.63 -2.50 2.03 -4.34 

8 -0.17 0.10 0.61 -0.39 0.29 -0.18 0.65 -0.57 0.79 -0.97 1.10 -1.97 

12 0.30 -0.10 0.40 -0.22 -0.06 0.12 0.15 0.00 0.22 0.00 0.40 -0.53 

20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 1 : relative difference (%) between Hi (Wi) with the finest discretization  

 

3.4 Experimental protocol 

 

The netting samples dimensional characteristics were measured with a sliding caliper and a mm scale. 

Twelve twines (6 meshes in the T direction) were set together side by side on a plane and the average 

diameter was measured as the sample thickness. This measurement was repeated 6 times per sample 

for the 3 meshes in the N direction, thus each twine of the sample was taken into account. Notice that 

the measured diameter is not used in the calculations. Average mesh length was calculated from the 

measurement of 6 aligned mesh sides, between 2 knot centers (6 measurements per sample of 3 x 6 

meshes). Uncertainties were deduced from min and max values. 

The experimental setup (Fig. 8) was made of a netting sample with 3 meshes set horizontally and 6 

meshes set vertically. Normal netting direction was horizontal and transverse direction was vertical. 

The 3 upper meshes were linked to 3 hooks that were manually moved on the horizontal support to 

set them vertically. This prevents the induction of transversal force components to the netting sample. 
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The netting sample was stretch using lead weights. In order to apply uniform loads on the lower 3 

knots, each weight was eventually adjusted by removing some lead with a small diameter drill. The 

weights were checked using a calibrated balance PE6000 Mettler Toledo. The maximum uncertainty 

of weights value is 0.4 gr. Six different charges were set to the 3 lower knots to stretch the netting 

sample, the mass in grams of the weights are shown in Table 2: 

Load number W1 W2 W2 W4 W5 W6 

Mass [gr] 0 144.6 300.5 605.4 906.0 1735.0 

Total load [N] 0 1.43 2.99 5.94 8.89 17.02 

Load per mesh [N] 0 0.477 0.983 1.980 2.963 5.677 

Table 2 : applied loads, number, mass and weight in newton   

The maximum weight value has been determined so as to produce the maximum stretch of the netting 

section, due to flexural deformation. Larger weights lead to axial elongation and the model width does 

not decrease significantly. No pre-loading stage is processed, except the one applied during the netting 

manufacturing process. Two samples of each netting type were tested. Their characteristics are 

detailed in Table 3. 

Plasticity effects were studied through a series of charge and discharge cycles. For each cycle, the 

following operations were performed on the experimental setup for each of the 6 loads W1 to W6 and 

then for the 5 loads from W5 to W1 as follows: 

1. Set the charge at the 3 lower knots 

2. Move the hooks to ensure that there is no transversal load on the upper knots 

3. Wait 50 min and periodically check hooks are still vertical, otherwise move them accordingly  

4. Measure the 3 distances between the upper and lower knots, 2 by 2, and calculate the average 

height 

5. Measure the 6 distances between the left and right knots, 2 by 2, and calculate the average 

width 

6. Go to step 1 using next charge case or go to next cycle if unload is finished 

 

Distances were measured with a mm precision ruler. The estimated measurement uncertainty is ± 1 

mm.  

The duration of 50 minutes has been chosen to ensure that the sample reached an almost constant 

height so that the plastic deformation is taken into account. The criterion used was the height 

increased/decreased by less than 1% in a 10 minutes interval. 

Cycles were repeated until the experimental protocol produces repeatable height and width 

measurements with a maximum relative difference of 3% on the height. Following this criterion, we 

observed that the cycles 3 and 4 were reproducible. Heights (widths) are then averaged for the cycles 

3 and 4 for each weight. The lengths measured in the load process are averaged with the lengths 

measured in the unload process. Finally, for each load, measured deformations for the 2 samples are 
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averaged to be used in optimization process in the objective of suppling the end user with averaged 

nettings characteristics.  

 

       

Fig. 8 : experimental setup made of a 3x6 meshes piece of netting. The model is set with normal direction horizontally and 
transverse direction vertically (so-called T90 usage). The 3 upper nodes are free to move in the horizontal direction and 
blocked in other directions. 

 

4 Results  

4.1 Experimental results  

 

Three different netting types have been studied (Table 3). Measured heights and widths for the 4 

load/unload cycles are presented on Fig. 9 for PE4 40.  Graphics for other nettings and detailed values 

are presented in the Supplementary material. The maximum relative height difference between cycles 

3 and 4 is 2.16% for PE4x40 sample.  

 

Sample designation and material 
Diameter 

[mm] 

Avg Mesh 

side [mm] 

Sample number 

and Sample size 

[mesh number N 

x mesh number T] 

Avg. sample 

mass [kg] 

Green polyethylene  

PE3 40 
2.6±0.1 39.33±0.3 

2 sample of 3x6 

meshes 
0.0191 

Green polyethylene  

PE4 40 
3.7±0.2 38.83±0.3 

2 sample of 3x6 

meshes 
0.0265 
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Green polyethylene  

PE4 60 
3.4±0.2 60.80±0.5 

2 sample of 3x6 

meshes 
0.0365 

Table 3 : tested netting dimensional characteristics and mass 

 

  

Fig. 9 : measured heights and widths for different loads on PE4 40, sample 1 and sample 2 

 

Fig. 10 : Averaged measures (sample 1 and sample 2 for cycles 2 and 3) for the different loads  

 

4.2 Inverse identification results 

 

Heights and widths presented in Fig. 10 are used to identify EI, the rest angle and the length of the 

virtual knot for PE4 40 netting. The quality of the identification is tested through the standard 

determination coefficient R² and the mean absolute percentage error (MAPE): 
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Where iy


are the experimental points (the objectives of the optimization) and iy are the simulated 

points. y


is the average objective. During the optimization process, MAPE was used to calculate the 

error function. 

The parameters of Inverse-PageRank PSO are the following: 𝑐1 = 𝑐2 = 2 and ω is linearly decreasing 

from 0.8 to 0.4 as the iterations are going. The boundaries of the design domain are defined separately 

for each design variable as given in Table 4, and the extremal particles’ displacements are defined as 

20% of these design domains. 

 

 Extrema position 

Angle [°] [0;70] 

Stiffness [N/m2] [1e-5 ;1e-3] 

Knot length [mm] [0.002 ;0.015] 
 

Table 4 : Design domain definition 

 

Table 5 shows the identified values for the 3 parameters for the different tested nettings and Fig. 11 

shows the simulation results with identified parameters compared to experimental results. 

 EI [N/m²] Angle [°] Knot length [mm] R² MAPE% 

PE3x40 4.30E-05 33.50 5.34 0.9968 2.69 

PE4x40 8.66E-05 32.4 5.02 0.9957 2.27 

PE4x60 8.84e-05 40.21 8.86 0.9986 2.08 
 

Table 5 : optimization results for PE3x40 PE4x40 and PE4x60 
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Fig. 11 : Simulation with optimal parameters and experimental results for PE3x40, PE4x40 and PE4x60 

 

4.3 Comparison with other author’s results  

 

The current methodology was applied to identify parameters from experimental results established 

by Morvan Morvan et al., (2016) with a different experimental protocol. The author measured the 

vertical elongation of netting sample made of different materials ( 

Table 6). 

Material and designation 
Diameter 

[mm] 

Mesh 

side 

[mm] 

Sample number 

and Sample size 

[mesh number N x 

mesh number T] 

Average mass 

sample [kg] 
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Green polyethylene  

PE4x40_b 
3.14 40.44 

10 samples of 

4x10 meshes 
0.0618 

Double twine green polyethylene 

DPE4x50_A 
3.14 49 

5 samples of 4x10 

meshes 
0.164 

Double twine green polyethylene 

DPE4x50_B 
3.14 49 

5 samples of 5x25 

meshes 
0.486 

Breztop polyethylene 

BTPE2.5x40 
2.5 40 

10 samples of 

4x10 
0.0184 

Brezline polyethylene 

BLPE4x60 
4 59.84 

10 samples of 

4x10 
0.1176 

 

Table 6 : description of samples used by other authors. Brezline and Breztop are trademarks of LE DREZEN Company. 

The two main differences between the experimental protocols used by Morvan and the one used in 

the present work are (1) the measurement of the rest angle on the sample at rest on a vibrating table 

to remove friction effects vs. the identification of the rest angle in present work and (2) no particular 

care to take into account plasticity effects vs. the use of the last repeatable cycles after several load / 

unload cycles in the present work. This last difference can be the cause of differences between 

parameters identified in the present work experiments and Morvan’s experiments. Moreover, 10 

samples of each material where tested by the author. 

An important modeling difference comes from the node length:  it is not taken into account by Morvan 

(there is no virtual knot) while it is taken into account in the present work 

The 3 variables (EI, angle at rest and node length) have been identified with a 6 bars model from the 

average elongation of all samples for each load. Measured average samples and calculated elongations 

with the optimized parameter are shown in Fig. 12. 
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Fig. 12 : sample elongation as a function of load per mesh, experimental results (points) and calculation results for optimal 
parameters set. 

 

Table 7 summarizes the results and shows the values of identified parameters. Roughly we can observe 

EI values are smaller for present methodology, as expected 

 Present work results Morvan results 

 R² EI [N/m²] 
Rest angle 

[°] 
EI [N/m²] 

Rest Angle 
[°] 

PE4x40_b 0.998425 8.07E-05 7.08 1.80E-04 7.00 

DPE4x50_A 0.999522 3.22E-04 30.7 6 to 8e-4 24.29 

DPE4x50_B 0.994542 3.88E-04 12.9 6 to 8e-4 24.29 

BTPE2.5x40 0.999312 1.71E-05 1.35 3.5 to 5.5e-5 6.13 

BLPE4x60 0.997388 1.30E-04 0.68 2.5 to 3.5e-4 6.32 
 

Table 7 : Optimization results from other authors experiments 
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De La Prada and Gonzalez, (2015) have studied different netting materials. One sample of 4x8 meshes 

for each netting. It cannot be stated that fibers constituting twines are the same than the one used in 

present work. Measured heights and widths are not detailed, thus identification using present method 

cannot be undertaken from her measurements. Moreover, she has presented different results derived 

from different modelling, with or without optimization parameters constraints and the parameters 

were identified separately for the load and unload processes. De La Prada results with min/max 

constrain on all parameters and present work results are compared in Table 8.  

 Present work results     De La Prada results  

 R² EI [N/m²] 
Rest 

angle 
[°] 

EI [N/m²] 
Rest 

Angle [°] 

 
 

R² 
 

PE3x40 0.9968 4.30E-05 33.5 3.4 to 5.7 e-5 7 to 15 0.9931 to 0.9984 loading 

    1.2 to 3.1 e-5 44 to 50 0.9635 to 0.9903 unloading 

PE4x40 0.9957 8.66E-05 32.4 6.6 to 11.9 e-5 15 to 19 0.9949 to 0.9996 loading 

    2.2 to 4.2 e-5 44 to 50 0.9860 to 0.9930 unloading 

 

Table 8 : comparison for PE3x40 and PE4x40 with other author’s results, loading and unloading cycles  

 

4.4 Sensitivity analysis 

 

The value of each of the three variables (flexural rigidity, mesh angle at rest, knot length) is separately 

increased by 10% from its optimal value to assess the effect on the calculated sample width and height 

for each load. This can be interpreted as assessing the error on geometry parameters (samples width 

and height) resulting from an identification error of a driving parameter. 

EI, the rest angle and the node length are increased by 10% from their respective optimal values. Errors 

on height and width, and maximum errors observed are given in Table 9. 

Charge [N] 
EI Rest angle Node length 

errHeight [%] errWidth [%] 
errHeight 

[%] 
errWidth 

[%] 
errHeight 

[%] 
errWidth 

[%] 

0.00 -0.50 0.14 8.28 -1.97 -2.48 0.33 

1.42 -1.94 2.02 2.52 -2.61 -3.03 1.94 

2.95 -1.55 3.34 1.37 -2.36 -2.74 2.95 

5.94 -0.83 3.89 0.79 -2.39 -2.55 4.13 

8.89 -0.42 3.13 0.58 -2.26 -2.38 4.38 

17.02 -0.19 2.64 0.32 -1.72 -2.33 5.64 
Max. error 

[%] 
3.9 8.3 

5.6 
 

Table 9 : effect on height and width of a 10% overestimation of EI  

 



24 
 

4.5 Application to the simulation of netting tubes shape  

 

Two tubes were built from PE4 40 and PE3 40 netting. Each tube has 29 meshes in circumference and 

is 35 meshes high. So as to ensure the circular shape continuity, knots of each sides were welded 

together two by two. Each tube was attached to a horizontal rigid 65 cm diameter circular frame with 

regular spacing between knots. The protocol used to assess the load-geometry relation was similar to 

the one described in 0 : the total load (among 0N, 8.84N, 20.15N, 30.03 N, 41.91N) was attached to 

the lower knots. After a period of 50 minutes, the following characteristics were measured with a mm 

ruller: 

 Average height,  

 Minimum diameter at the neck of the tube 

 Distance from the upper part of the position of the minimum diameter 

 Average diameter of the lower part of the tube, 

Heights and diameters were measured 3 times (at 120°) and averaged. The first cycles were ignored 

until repeatable geometrical characteristics could be measured. 

The simulations were achieved with the 6-bars model. Fig. 13  shows the measurement and simulation 

results with identified parameters for each netting.  

    

Fig. 13 : PE3 40 and PE4 40 netting tubes. Measured height, diameter and position of minimum diameter [m] as a function 
of the load per mesh [N] (points) and simulation (lines).  
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Fig. 14 : PE4 40 netting tube under the load of 1.04 N per mesh. From left to right, photo taken during experiment, 3D view 
of the simulation result, simulated profile in a symmetry plane. 

 

Results provided by the model are in reasonably good agreement with measures for height and 

diameters. Large relative errors were sometimes found for the position of the tube neck. It must be 

noticed that the cylinders are not perfectly symmetrical, due to the welding process and 

inhomogeneous netting. This brings to measurement uncertainties. Moreover, this result can be 

explained by the difficulty to accurately measure the neck position.  
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5 Discussion 
  

This article presents a new method to identify flexural rigidity, rest angle, knot length and enables 

the simulation of large deformation of nettings constructions including 3D flexural rigidity. The two-

dimensional flexural rigidity EI has already been addressed in previous studies (De La Prada, 2014; De 

La Prada and Gonzalez, 2015; De La Prada and González, 2016; Morvan et al., 2016),  as well as the 

mesh angle at rest (De La Prada and Gonzalez, (2015); De La Prada and González, (2016)).  The length 

of the physical knots has been added taking into account plasticity effects. 

Present method was applied to the set of experimental data of Morvan et al., (2016), where the 

netting knots length is null and identification results were compared.  The stretch mesh length being 

the same in both approaches, mesh sides (excluding the knot length) are then slightly shorter when 

modeling a virtual node in the present work. Consequently, we could anticipate over estimated EI 

values for Morvan: his mesh sides being longer, higher EI values leads to the sample height for a 

given load. This assumption is verified for each netting type: Morvan’s EI values are roughly 2 times 

greater than values identified by present method on his experimental values. Rest angle has been 

measured with no load (vs. identified in present work) but values are not significantly different (Table 

7). As expected, rest angle value for same netting types are greater for the present work (33.5° vs. 7° 

for PE4x40 and 40.21° vs. 6.32°). Taking plasticity effect into consideration, identified EI value for 

PE4x40 and PE4x60 using present experimental protocol (respectively 8.66E-05 and 8.84E-5 N/m²) 

are expected to be smaller than Morvan’s values. Indeed, the sample heights for load/unload cycles 3 

and 4 are greater than for a single cycle (Morvan’s protocol). This assumption is also verified.  

Identified parameters for PE3x40 and PE4x40 were compared to De La Prada and Gonzalez, (2015) 

results. The comparison is easier as the methodologies are closer. The two methods differ by a 

separate identification for load and unload and by different (constrained, unconstrained parameters) 

optimization approaches. Results are quite comparable: EI and mesh angle at rest for the present work 

are inside the extrema depending on the modeling method used by the author, averaged De La Prada 

EI (load and unload, min/max constrain) for PE3x40 is 3.35E-05 N/m² (vs. 4.30E-05) and 6.22E-05 N/m² 

for PE4x40 (vs.8.66E-05). Average angle at rest is 29° (vs.33.5°) for PE3x40 and 32° (vs. 32.4°) for 

PE4x40. 

EI values for different mesh sides with same twine diameter should be close. In the case of 4mm 

diameter netting, this assumption is verified in present work (8.66E-05, 8.84E-5 N/m², 2% difference) 

but is not verified for Morvan’s 4mm samples (8.07E-05, 3.22E-04, 3.88E-04, 1.30E-04 N/m²). 

Furthermore, inertia varies with the 4th power of the diameter. The ratio between EI (4mm) and EI 

(3mm) is around 2 in present work and for averaged De La Prada values, but is expected to be around 

3.2 (around 3.3 when considering measured diameters). Possible characteristic dispersion of the fibers 

constituting the different twines, twine diameter reduction when load increases could explain this 

result. 

The number of samples (2 samples in present work compared to 1 sample studied by De La Prada and 

10 or 5 (double twine) samples studied by Morvan) and the size of each sample (3x6 meshes for each 

netting vs. 4x8 meshes for De La Prada and 4x10 or 5x25 (double twine) meshes for Morvan) does not 

seem to have a major influence on EI results: less than 5% variation for the 10 samples of Morvan). It 
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confirms our choice for sample number and size. It also confirms our choice to consider the average 

height and width values for each sample pair. Moreover, identified values applied to larger netting 

structures (cylinders made of 29 meshes in circumference and is 35 meshes height) lead to calculated 

cylinder heights that compare with experimental values with MAPE errors of 2.98% for 4x40 cylinder 

and 1.92% for 3x40 cylinder.  

Nevertheless the identified node length (5.34 5.02 and 8.86 mm respectively for PE3x40 PE4x40 and 

PE4x60) differ from expected values, about 3 times the diameter (De La Prada and Gonzalez, (2015); 

Prado, J.;Dremière, (1988)). This can be interpreted as an attempt to optimize driving parameters so 

as to compensate imperfect mechanical model, for instance plasticity which is not modelled. 

The capacity of the developed model to reproduce experimental data is not perfect (R² <0.999, 

MAPE>2%) especially with larger loads. This can be explained by (1) modeling hypothesis: the twines 

diameter is supposed to be constant but it decreases when tension increases; friction among fibers 

constituting twines is not taken into account, thus EI is not constant as it has been shown by Morvan 

et al., 2016 :EI varies by less than 6% for single twine PE and less than 10% for other materials with 

larger variations for lowest loads. (2)  The model does not take into account plasticity effects and 

consequently cannot not reproduce them. Thus, when averaging load and unload cycles, the resulting 

optimization objectives become more difficult to fit. In the same way, the number of objectives has 

been increased with the measured sample width, which reduces the possibility to perfectly fit them. 

However, the precision observed for cylinder models (MAPE<3%) makes this methodology a good 

candidate for fisheries applications by taking into consideration the uncertainties of nettings and 

fishing gear characteristics. 

A rapid sensitivity study has shown that the more sensitive variable is the mesh angle at rest but 

however with no amplification effect: the output model uncertainty remains lower than the angle 

uncertainty. In the meantime, there is a lack of unified methodology among different authors to 

identify the mesh rest angle.  

Future work should consider the plasticity in the modeling and a more realistic model for the netting 

knot: the way twines are embedded in an actual knot is different for the 4 twines, knots are not 

symmetrical and their shape change with the mesh load. This could lead to improve of the 

experimental protocol. Studying artificially aged netting materials could be complementary to the 

plasticity study. Taking into account twine torsion effects are also potential improvements for better 

understanding and implementation of netting structures simulation. 
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