FN Archimer Export Format PT J TI Linking Danube River Activity to Alpine Ice-Sheet Fluctuations during the Last Glacial (ca. 33-17 ka BP): insights into the continental signature of Heinrich Stadials BT AF MARTINEZ-LAMAS, Ruth TOUCANNE, Samuel DEBRET, Maxime RIBOULOT, Vincent DELOFFRE, Julien BOISSIER, Audrey CHERON, Sandrine PITEL, Mathilde BAYON, Germain GIOSAN, Liviu SOULET, Guillaume AS 1:1,2;2:2;3:1;4:2;5:1;6:2;7:2;8:2;9:2;10:3;11:2; FF 1:;2:PDG-REM-GM-LGS;3:;4:PDG-REM-GM-LAD;5:;6:PDG-REM-GM-LCG;7:PDG-REM-GM-LCG;8:;9:PDG-REM-GM-LGS;10:;11:PDG-REM-GM-LGS; C1 Normandie Univ, UNIROUEN, CNRS, UNICAEN,M2C, F-76000 Rouen, France. IFREMER, Unite Rech Geosci Marines, F-29280 Plouzane, France. Woods Hole Oceanog Inst, Dept Geol & Geophys, 266 Woods Hole Rd, Woods Hole, MA 02543 USA. C2 UNIV ROUEN, FRANCE IFREMER, FRANCE WHOI, USA SI BREST SE PDG-REM-GM-LGS PDG-REM-GM-LAD PDG-REM-GM-LCG IN WOS Ifremer UPR copubli-france copubli-univ-france copubli-int-hors-europe IF 4.112 TC 18 UR https://archimer.ifremer.fr/doc/00613/72556/71612.pdf LA English DT Article CR GHASS MD 139 / ASSEMBLAGE - 1 BO Pourquoi pas ? Marion Dufresne DE ;Danube river;Floods;Hyperpycnites;Alpine ice sheet;Heinrich stadials;Seasonality;Black sea AB Offshore archives retrieved from marine/lacustrine environments receiving sediment from large river systems are valuable Quaternary continental records. In the present study, we reconstruct the Danube River activity at the end of the last glacial period based on sedimentological, mineralogical and geochemical analyses performed on long-piston cores from the north-west Black Sea margin. Our data suggest that the Danube River produced hyperpycnal floods throughout the ca. 33-17 ka period. Four main periods of enhanced Danube flood frequency, each of 1.5-3 kyr duration, are recorded at ca. 32.5 30.5 ka (equivalent to the first part of Heinrich Stadial HS 3), at ca. 29-27.5 ka (equivalent to Greenland Stadial 4), at ca. 25.3-23.8 ka (equivalent to HS 2) and at ca. 22.3-19 ka. Based on mineralogical and geochemical data, we relate these events to enhanced surface melting of the Alpine Ice Sheet (AIS) that covered -50,000 km2 of the Danube watershed at the Last Glacial Maximum (LGM). Our results suggest that (i) the AIS growth from the inner Alps to its LGM position in the northern Alpine foreland started from ca. 30.5 ka, ended no later than ca. 25.3 ka, and was interrupted by a melting episode ca. 29 27.5 ka; (ii) the AIS volume drastically decreased from ca. 22.3 to 19 ka, as soon as summer insolation energy at the AIS latitude increased; and (iii) HSs strongly impacted the AIS mass balance through enhanced summer surface melt. This, together with evidence of severely cool winters and the rapid expansion of sea ice in the North Atlantic, implies strong seasonality in continental Europe during stadials. (C) 2019 Elsevier Ltd. All rights reserved. PY 2020 PD FEB SO Quaternary Science Reviews SN 0277-3791 PU Pergamon-elsevier Science Ltd VL 229 UT 000514018700016 DI 10.1016/j.quascirev.2019.106136 ID 72556 ER EF