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Figure S1. Composite of the probability distribution functions (PDFs) of TC genesis
anomalies in the observations (left column; IBTrACS) and in PD simulation (right
column) for El Nino (first row) and La Nina (2" row) phases. To generate PDFs, we
compute anisotropic Gaussian functions, with an associated standard deviation in
meridional and zonal directions respectively of 2.5° and 5°.

To assess the sensitivity of our results to index selection, we compared the TCGI with

two others cyclogenesis index (Fig. S2), the GPI and GPI* defined as follows:

3

RHN\? Vyor\®
GPI = |1057|3/2 (5) ( ;’St) (14 0.11,)72

and,

GPI® = 0%/ (5) () (@ 07 (572),

50 70 0.1

where 1 is the absolute vorticity at 850hPa (s1), RH is the relative humidity at 700hPa
(%), Vpot is the maximum potential intensity (m.s), Vs is the magnitude of the vertical

wind shear between 850 and 200 hPa (m.s™), and w is the vertical wind velocity (Pa.s™2).
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Figure S2: Same as figure 3 but for the 3 TC genesis indices: TCGI, GPI and GPI*. In
GPI* the contribution of vertical wind velocity at 500hPa is also evaluated (red bar).
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Figure S3. Precipitation under TCs (in mm.day™) as a function of the 10m wind speed category
(in m.s™) for PD (blue), CC (red) and COR (green) simulations.
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Figure S4. Top: Probability Density Function of TC genesis (shading) and occurrence
(contour lines) for a) observations (IBTrACS), and (b) PDgm; simulation. The annual
mean TC genesis and occurrence are annotated in the corresponding panel. Bottom: (c)
Annual mean frequency of TC occurrence (in TC.days .year?) as a function of the
maximum 10-m wind speed (in m.s™) and (d) the seasonal cycle of monthly TC genesis
number (in TC.year™?) for observations (gold) and PDgm; (blue) simulation.
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Figure S5. Top: DJF climatology (shading, in °C) of (a) ASSTcmie and (b) ASSTcor. The
contours represent the precipitation changes (in mm.d?) between (a) CCgms and PDgwy,
(b) CORBm; and PDgwmy simulations. The dashed lines indicate negative values, and the
thick lines indicate positive values. Middle: Probability density functions of TC genesis
(shading) and occurrence (contour lines) between (c¢) CCgms and PDemy and (d) CORgwmy
and PDgmy simulations. The values of annual mean TC genesis and occurrence are
annotated in the corresponding panel. Bottom: (e) Annual mean frequency of TC
occurrence (in TC.days .year?) as a function of the maximum 10-m wind speed (in m.s™)
and (f) the seasonal cycle of monthly TC genesis number (in number of TC.year?) for
PDgwmy (blue), CCgwm; (red) and CORgwmy simulations.
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Figure S6. Barplots of three metrics used to select the model for the lateral boundary
condition sensitivity experiment: (a) pattern correlation between ASSTcor and ASST of

each CMIP5 model over the entire domain; (b) difference between the area-average of
ASSTcor and ASST of each CMIPS model (in °C); (c) precipitation difference (in

historical precipitation bias (panels b and c), absolute values are displayed to facilitate
comparison. On each panel, the red bar and dashed line shows the value of ACCESS1-0

equatorial Pacific [160°E-170°W;2°S-2°N]. For the SST warming difference and the
model, which has been selected for our sensitivity test.

mm.day?) between CMAP observations and each CMIP5 model in the Western

44
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Figure S7. Annual climatology of SST warming pattern (in °C) for (a) ASSTcor and (b)
ASSTaccessi-0. The black box on each panel represents the nested domain [145°E-
130°W;32°S-2°S] over which the TCs are simulated.
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Figure S8. Annual climatology of the difference between ACCESS1-0 model and the
CMIP5 MMM at each lateral boundary (west, east, south and north) for (left) air
temperature (in °C) and (right) specific humidity (in kgwater/KQmoist air). Contours represent
the projected changes for the CMIP5 MMM.
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Our TC projections in our bias-corrected simulation may be sensitive to the changes
applied to the lateral boundary conditions. While we applied a correction to the projected
SST change based on the existing statistical relation with the dry equatorial bias, we
indeed could not apply the same type of correction to the atmospheric lateral boundaries
because there no robust statistical relationship between the lateral boundary conditions
projected changes and the dry equatorial bias. To test the sensitivity of our results to the
lateral boundary conditions applied, we did a sensitivity experiment where we applied the
lateral boundary conditions from the ACESS1-0 model instead of the CMIP5 MMM in
the COR experiment. We did select this specific CMIP5 model because it has a projected
SST change that is closest to the bias-corrected MMM SST projection. To identify that
model, we indeed calculated three indices evaluating how close the projected SST change
is from the MMM corrected SST change (pattern correlation and domain-averaged
difference, Figure S6a,b), and how small the present-day precipitation bias is (domain
averaged precipitation bias, Figure S6¢c). ACCESS1-0 has one of the closest projected
SST change to that of the “COR” experiment, with a SST pattern correlation of 0.94 (1%
rank) and SST difference of 0.23°C (10" rank). It also has one of the smallest present-day
precipitation biases (0.53mm.d?, 2" rank). The fact that ACCESS1-0 displays a
projected SST change (Figure S7b) that is close to the corrected MMM SST change
(Figure S7a) ensures that its boundary conditions are more physically consistent with the
corrected MMM SST change than those of the CMIP5 MMM. As shown on Figure S8,
those lateral boundary conditions deviate from the CMIP5 MMM by up to +/- 1.5°C for
temperature and 0.0005 Kgwater/KQOmoist air for specific humidity (i.e. +/-30% relative
changes for both variables).

We thus performed a 10-year climate-change simulation where we applied ASSTcor at
the surface and projected lateral boundary changes from ACCESS-1-0 model instead of
the CMIP5 MMM, to test the sensitivity to lateral boundary conditions. As illustrated on
Figure S10, our results indicate that the projected change in the TCs number is insensitive
to the change of lateral boundary conditions (1.8 vs 1.7 TC.year™), the spatial pattern
being also very similar between the two experiments. l.e. the projected change in

southwest Pacific TCs number is much less sensitive to changes in lateral boundary
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conditions than to correcting SST using the method of Li et al. (2016). This weak
sensitivity to lateral boundary conditions is likely related to the fact that the lateral
boundary conditions (at 42°S, 26°N, 101°E and 59°W) in our experimental setup are
quite far from the southwest Pacific nested domain over which we examine the TC
projections (32°S to 2°S, 145°E to 130°W).
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Figure S9. Probability Distribution Functions (PDFs) of TC genesis (shading) and
occurrence (contour lines) computed over the 1980-1990 period between (a) PD and
COR and (b) PD and ACCESS1-0 (which is an experiment similar to COR except that
projected changes in the lateral boundary conditions are those from ACCESS1-0 model
instead of CMIP5 MMM). The values of annual mean TC genesis and occurrence in
COR and ACCESS1-0 are shown in the corresponding panels.
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Figure S10: Multi model mean of all terms of the equation 3, (a) ASST(s), (b) R(s) *
Pr'ygp and (c) res(s). To highlight the spatial pattern, the tropical Pacific mean warming

of SST for each model is removed in a—c.
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