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INTRODUCTION

Quorum sensing (QS) is a cell-to-cell bacterial
communication mechanism, allowing bacteria to
sense their population density (Nealson 1977) and
coordinate their gene expression levels (Bassler
1999, Fuqua & Greenberg 2002) and physiological
activities (Miller & Bassler 2001). To perform QS-
based communication, bacteria produce, secrete and
accumulate small hormone-like molecules called
autoinducers (AI) in the nearby environment (Fuqua
et al. 1994). As cell density increases, the concentra-
tion of these AI increases. When a given threshold

concentration is reached, targeted bacterial partners
can respond to these compounds and modify their
gene expression, and thus their behaviour and phe-
notype (Withers et al. 2001, Bassler 2002). It has been
shown that QS systems regulate and synchronize
activities like biofilm production (Parsek & Green-
berg 2005, Dickschat 2010), nodulation (Cha et al.
1998, Loh et al. 2002), bioluminescence (Waters &
Bassler 2005), virulence factor production (Smith &
Iglewski 2003) and many others (Diggle et al. 2007).
The coordination of bacterial community activities
conveys an ecological advantage to the population
(Case et al. 2008).
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ABSTRACT: Quorum sensing (QS) is a cell-to-cell signalling pathway that allows bacteria to syn-
chronize their genetic expression. It is mediated by autoinducers (AI), including (1) acyl-homoser-
ine lactones (AHLs or AI-1), produced by Proteobacteria using AinS, LuxI and HdtS synthase fam-
ilies and (2) furanosyl-diester-borate (FDB or AI-2), produced by a large range of phylogenetically
diverse bacteria and synthetized by the LuxS family. Few data have been collected about the pres-
ence and importance of QS in marine waters using culture independent methods. In this study, we
examined the presence and the diversity of AI-1 and AI-2 synthases in the Global Ocean Sampling
(GOS), a large metagenomic database, covering 68 stations across 3 oceans. We built 4 reference
protein databases with maximal phylogenetic coverage containing all known AI synthase
sequences to retrieve AI synthases sequences from the GOS metagenomes. We retrieved 29 envi-
ronmental sequences affiliated to LuxI (synthesizing AI-1), 653 related to HdtS (AI-1), 31 related
to LuxS (AI-2) and only one for AinS (AI-1). AI synthases sequences were found in the 3 oceans
covered by the GOS cruise and spanned a large phylogenetic diversity. These data revealed a
large number of new marine AI sequences, suggesting that QS based on AI-1 diffusion is a wide-
spread mechanism in the marine environment.
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QS mechanisms are well described in medical or
agronomic model bacterial strains (Cha et al. 1998,
Loh et al. 2002) known for their pathogenicity (de
Kievit & Iglewski 2000) or bioengineering potential
(March & Bentley 2004, Brenner et al. 2008). By con-
trast, little attention has been paid to QS in the func-
tioning of natural microbial communities, including
in marine waters (Decho et al. 2010). This is because
bacterial densities in seawater (105 to 106 cells ml−1)
are typically below the known thresholds that enable
QS (Mohamed et al. 2008). However, at a micrometer
scale many ecological niches (such as organic matter
particles or microalgal blooms) harbour bacterial
concentrations compatible with QS (Gram et al. 2002,
Mohamed et al. 2008). In support of this hypothesis,
the potential for QS in planktonic marine bacteria
has been reported in many cultivated strains. These
results were acquired either by directly detecting
communication compounds or inferred by sequen-
cing genes involved in QS in Proteobacteria (Gram et
al. 2002, Wagner-Döbler et al. 2005).

The AI synthases are the key enzymes involved in
AI production. It is now well established that the
acylhomoserine lactone synthases (AHL or AI-1 syn-
thases) are encoded by 3 groups of genes: luxI-like
(Engebrecht & Silverman 1984), ainS-like (Gilson et
al. 1995) and hdtS-like (Laue et al. 2000, Burton et al.
2005, Rivas et al. 2007). By contrast, luxS-like genes
encode the (2S,4S)-2-methyl-2,3,3,4-tetrahydroxy -
tetrahydrofuran-borate synthase or S-THMF-borate
synthase or furanosyl diester borate synthase or
(2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofu-
ran synthase or R-THMF synthase, also known as the
AI-2 synthases (Xavier & Bassler 2003, Miller et al.
2004). The AI-1 synthases have been identified in
cultivated marine strains from the groups Roseobac-
ter and Vibrio (Gram et al. 2002, Schaefer et al. 2002,
Wagner-Döbler et al. 2005) and the AI-2 (Chen et al.
2002) have been observed in the Vibrio genus
(Bassler et al. 1997, Bassler 1999). By contrast, very
little attention has been paid to the diversity of AI
synthases in whole marine microbial communities.
As only 1% of marine bacterial communities in the
water column are readily cultivable by standard
methods (Amann et al. 1995), an overview of poten-
tial QS mechanisms in the marine environment
remains largely incomplete.

The Global Ocean Sampling (GOS) database is a
large collection of marine metagenomes from 68
sampling sites. A total of 6.3 billion bp were Sanger
sequenced from microplankton samples (Rusch et al.
2007) from which the metaproteome (all coding
sequences) was also predicted (Yooseph et al. 2007).

The GOS datasets mainly comprise sequences from
the free-living fraction (FL) of bacterioplankton (0.1
to 0.8 µm pore size filter). Additionally, for 8 stations
the particle-attached fraction (PA) (0.8 to 3 µm) has
been sequenced (GS000, GS001, GS048, GS108,
GS110, GS112, GS117 and GS122). The GOS offers a
large snapshot of the diversity and functional poten-
tial of marine microbial communities and has been
successfully explored, for example, for the potential
to utilize selenium (Zhang & Gladyshev 2008) or to
metabolize various chemical forms of iron (Toulza et
al. 2012).

In this study, we investigated the diversity patterns
of QS AI synthases in the bacterial communities rep-
resented in the GOS metagenomes. We report the
presence, the large diversity of both AI-1 and AI-2
synthase sequences and their distribution throughout
the 3 oceans covered by the GOS expedition, and we
highlight new sequences of AI synthases.

MATERIALS AND METHODS

Construction of reference databases for 
AI synthase proteins

We built a total of 4 databases, one for each fam -
ily of AI synthases: AinS-like, LuxI-like, HdtS-like
and LuxS-like. Following the approach described
in Toulza et al. (2012), we first selected protein
sequences that have been functionally characterized
in previous publications. To improve taxonomic cov-
erage, we added to our reference databases addi-
tional sequences annotated as AI synthase from the
GenBank non-redundant (NR) database (www.ncbi.
nlm.nih.gov/). Each database was aligned using
Clustal W (Larkin et al. 2007) in Jalview (Waterhouse
et al. 2009) to discard redundant and partial se -
quences. Our final AI databases comprised 569 LuxI,
30 AinS, 214 HdtS and 297 LuxS annotated protein
sequences.

Screening for AI synthases in the GOS
metagenome

The GOS expedition and its subsequent meta -
genome analysis have been described previously
(Rusch et al. 2007, Yooseph et al. 2007). Briefly, 200 l
of seawater was collected at 68 different sampling
stations and filtered onto 4 different successive filters
with a porosity of 20, 3, 0.8 and 0.1 µm. In this work,
we discarded 10 stations where no AI sequences
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were found (GS006, GS038-040, GS042-046, GS050).
In our study, we also focused on both FL (0.1 to
0.8 µm) and PA (0.8 to 3 µm) fractions, which consti-
tute the most complete sequence datasets in terms
of sequencing effort. The GOS database contains
sequences collected from various habitats within the
Atlantic, Pacific and Indian Oceans. A total of 11 dif-
ferent habitat types were sampled, including open
ocean (23 stations), coastal (22 stations), coral reefs
(4 stations), estuary (2 stations) and 7 others (Rusch
et al. 2007). Environmental variables were also
retrieved from Venter et al. (2004) and Rusch et al.
(2007).

The detection of AI-1 and AI-2 synthases from the
GOS database (proteins predicted from reads) was
conducted by sequence homology searches using the
BLAST (Basic Local Alignment Search Tool) algo-
rithm (Altschul et al. 1990) and our AI synthase data-
bases as the query sequences. All our AI protein
BLAST searches were performed using the CAM-
ERA portal (http:// camera. crbs. ucsd. edu/ projects/
details. php?id=CAM_PROJ_GOS) (Sun et al. 2011)
using blastall default parameters (Seshadri et al.
2007) (including FL and PA fractions). A Reciprocal
Best BLAST Hit (RBH) analysis (Moreno-Hagelsieb &
Latimer 2008) was then performed on the sequences
retrieved from the GOS dataset. Briefly, putative
environmental AI synthases were searched against
NR database and those GOS sequences with a RBH
to the same annotated AI synthases were assigned to
the gene and designated as most related to that
taxon.

We also compared the distribution of AI environ-
mental protein sequences in both the FL and PA frac-
tions from the 8 GOS sampling stations for which
these data are available. We pooled all the retrieved
AI protein sequences from PA and FL fractions from
all 8 sites, and clustered the environmental and
annotated protein sequences using CD-HIT (Li &
Godzik 2006, Fu et al. 2012). The clustering parame-
ters were 40% sequence identity and a word size
equal to 2. The differences in the number of environ-
mental sequences affiliated to HdtS between the FL
and PA fractions were tested for significance using a
Wilcoxon test with R (www.r-project.org).

Normalization of AI counts in GOS metagenomes
to single copy genes

The number of sequences matching to AI synthases
in the GOS was normalized to the number of RpoB
protein sequences present in the sample. That gene

is present in only a single copy in bacterial genomes
and is not prone to horizontal transfer and thus is also
a good taxonomic marker (Case et al. 2007). Follow-
ing the same procedure as described for the AI
sequences, we built an RpoB protein reference data-
bases with a large taxonomic coverage containing
1000 sequences. We finally reported the number of
each family of AI environmental sequences related to
our reference sequences relative to the number of
RpoB protein sequences in the GOS dataset. This
allowed normalization to the number of bacterial
genomes in the dataset.

Phylogenetic analysis

Phylogenetic analyses were conducted for each
targeted family of AI synthase. All environmental
and annotated sequences were aligned using Clustal
W (Larkin et al. 2007) in MEGA v.5.1 software
(Tamura et al. 2011), and alignments adjusted manu-
ally. Phylogenetic trees were constructed using both
Neighbour-Joining (NJ) and Maximum Likelihood
(ML) methods for each kind of AI synthase protein
sequence alignments. NJ analyses were conducted
with gamma correction and 1000 bootstrap repli-
cates. Protein model selection was performed from
each protein dataset, and phylogenetic analyses
were then conducted with the selected models (WAG
model for LuxI, HdtS and LuxS) using gamma correc-
tion and 100 bootstrap replicates. As we obtained
similar topologies from the 2 methods, only those
obtained by NJ are presented here, but when useful,
percentage of bootstrap supports obtained by ML
searches are also mentioned.

RESULTS

Features of AI synthase protein reference
 databases

All our reference databases were built to have as
broad a taxonomic coverage as possible, consisting of
protein sequences assignable to AI synthases from
the NR database at the time this study was con-
ducted. The LuxI, LuxS and HdtS-like protein family
databases had a large taxonomic coverage, which
included the alpha-, beta-, gamma- and delta -
lineages of Proteobacteria. The LuxS protein refer-
ence database also contained annotated sequences
from Spirochaetes, Bactero idales and the Gram-posi-
tive Firmicutes and Actino bacteria. The AinS family,
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limited to the Vibrionaceae, contained not only AinS
but also LuxM and VanM synthases (AinS-like syn-
thases). A total of 634 annotated protein sequences
from the National Center for Biotechnology Informa-
tion (NCBI) were affiliated to LuxI with a mean iden-
tity of 27% (number of conserved amino acids
divided by total amino acids), 214 sequences to HdtS
with a mean identity of 27%, 297 sequences to LuxS
with a mean identity of 78% and 30 sequences to the
AinS with a mean identity of 34% (Table 1). The
mean length of these sequences was about 380
amino acids for AinS, 200 for LuxI, 250 for HdtS and
170 for LuxS.

Abundance and diversity of LuxI synthases in the
GOS dataset

We retrieved 29 sequences related to LuxI AHL
synthases in the GOS dataset. Those sequences were
distributed over 10 stations of the GOS cruise
(Table 1, Fig. 1) and appeared related to a large tax-
onomic diversity of AI-1 sequences in NCBI. These
GOS sequences were aligned with annotated se -
quences and phylogenetic reconstruction was per -
formed (Fig. 2). All affiliated environmental sequences
arose from Alphaproteobacteria (Fig. 2). A total of
19 environmental sequences (65%) matched with
sequences belonging to Rhodobacterales (Rhodobac-
teraceae family), 2 (7%) with sequences belonging to
Sphingomonadales (Sphingomonadaceae family) and
3 (14%) with sequences belonging to Rhizobiales
(Bradyrhizobiaceae and Beijerinckiaceae families)
(Fig. 2). These affiliations were supported by strong

NJ bootstrap percentages (>99 for Rhodobacterales;
100 for Sphingomonadales; 97 and 100 for Rhizo-
biales; Fig. 2) and also in some cases by strong ML
bootstrap percentages. Although well identified as
AI-1 synthases by RBH, a large fraction of environ-
mental sequences (14%) could not be unambigu-
ously related to any annotated sequences.

LuxI sequences arising from PA fractions repre-
sented 10% of total retrieved LuxI sequences in the
GOS dataset. These sequences were present at Stns
GS048 and GS110. All these sequences appear
enclosed in a larger phylogenetic group (defined
with bootstraps values of 53/86 for NJ/ML, respec-
tively; Fig. 2) comprising members of the Sphin-
gomonodaceae family.

Abundance and diversity of HdtS synthases in the
GOS dataset

A total of 653 environmental sequences related
to HdtS were retrieved from the GOS meta -
genomes (Table 1). Those sequences were found in
all oceans crossed by the GOS expedition and in a
large number of stations (57 different stations from
a total of 58 sampled by the expedition) (Fig. 1).
Collectively, all of these sequences were related to
Alpha-, Beta- and Gammaproteobacteria. More
precisely, a large fraction (19% or 127 sequences)
of these sequences were related to the SAR11
group (Alphaproteobacteria, with bootstrap supports
of 100 and 96 for NJ and ML, respectively), includ-
ing its cultivated representative member Pelag-
ibacter ubique (indicated by ‘SAR11’ se quences;
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Protein families

Features AinS LuxI HdtS LuxS RpoB

Number of annotated sequences 30 569 214 297 1000
Conservation (%) 34 27 27 78 62
Average number of amino acids 380 200 250 170 1200

Taxonomic affiliation Vibrio- Proteo- Alpha-, Beta- All bacterial All bacterial 
naceae bacteria and Gamma- phyla phyla

proteobacteria

Number of Global Ocean Sampling (GOS) 1/58 9/58 57/58 3/58 58/58
stations where sequences were found

Total number of environmental sequences 1 29 653 31 4293
retrieved in GOS

Ratio: number of environmental sequences to 0.02 0.7 14.8 0.7 100
number of RpoB copies (%)

Table 1. Protein families and features of environmental sequences
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Fig. 3). A lower fraction (3% or 21 se quences) of
these sequences was related to the SAR116 group
(Alphaproteobacteria, with bootstrap supports of
95 and 67 for NJ and ML, respectively; Fig. 3).
Interestingly, one sequence was strongly associated
to a sequence from Oceanicaulis (Rhodo-bacte ra -
les), which belongs to the Hypho monadaceae fam-
ily (bootstrap supports of 100 and 83 for NJ and
ML, respectively). Among Gamma proteobacteria, a
large fraction of sequences were related to the
SAR86 group (23% or 153 sequences) with high
bootstrap supports both in NJ and ML methods
(100 and 62, respectively; Fig. 3). One sequence
was related to Pseudomonadales, and a large frac-
tion (21% or 140 sequences) appeared more closely
related to other orders within Gamma proteo -
bacteria (Oceanospirillales, Chro matiales, Acidi th i -
o bacillales and Triotrichales). Lastly, a significant
number of se quences appeared closely re lated to
the Betaproteobacteria (represented by the Burk-
holderiales order, 19% or 126 sequences) and un -
classified Gammaproteobacteria (5% or 32 se -
quences) with relatively strong bootstrap supports
(63 and 57 for NJ and ML, respectively; Fig. 3).

A few environmental sequences (19%) were recov-
ered from the 8 sampling stations covering both the
FL and PA fractions. Overall, a total of 63 sequences
were recovered from the PA fraction. Interestingly,
the 2 sequences GS051 FL and GS117 PA were
more closely related to (NJ bootstrap support of 98),
and found within, the SAR11 Alphaproteobacteria
group. Six sequences from the PA fraction of the
GS110 sampling site were recovered together and
closely related to the Gammaproteobacteria, Fran-
cisella tularensis (NJ bootstrap support of 97; Fig. 3).
To test whether there was any difference in the taxo-
nomic composition between the FL and the PA frac-
tions, we clustered all HdtS sequences using a
threshold of 40% sequence identity, and found a total
of 14 clusters (Table 2). As an example, cluster 6 con-
tains environmental sequences related to SAR86
clade in the 2 fractions of the GOS Stns GS000,
GS110 and GS112 (Table 2). In the environmental
sequences, of which 11% were from the FL fraction
and 15% from the PA fraction, we did not find any
significant difference between the cluster affiliations
of environmental sequences distributed in the 2
metagenome fractions (Wilcoxon test, p = 0.83).
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Fig. 1. Geographic distribution of AI-1 (LuxI, HdtS and AinS-like sequences) and AI-2 (LuxS sequences) retrieved from the
Global Ocean Sampling (GOS) metagenomes. Black dots: GOS sampling stations where no AI sequences were found; blue
diamonds: AinS affiliated sequences; green triangles: LuxI affiliated sequences; red squares: HdtS affiliated sequences; yel-
low dots: LuxS affiliated environmental sequences. To display the geographic distribution of the environmental sequences
related to the 4 different protein families (AinS, LuxI, HdtS and LuxS) a geographic map was built using Ocean Data View 

software v.4 (ODV Schlitzer, R, Ocean Data View, http://odv.awi.de, 2013)
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Abundance and diversity of LuxS synthases in the
GOS dataset

A total of 31 environmental sequences related to
LuxS were detected in the GOS dataset at 3 sampling
sites: GS000, GS013 and GS033 (Table 1, Fig. 1). All
environmental sequences affiliated to LuxS were

retrieved from the FL fractions. As previously noted,
the LuxS family showed the widest taxonomic cover-
age compared to the other families. The environ -
mental sequences found were related to Gamma -
proteobacteria (97% or 30 sequences, NJ and ML
bootstraps support of 100 and 99%, respectively;
Fig. 4) and to the Gram-positive bacteria from the
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 GS008 FL (3 sequences) 
 GS032 FL (2 sequences) 

 Sagittula stellata WP_005858901.1 
 GS033 FL 1105114474943 

 Citreicella sp. WP_009504445.1 
 Salipiger mucosus WP_020038895.1 

 Phaeobacter gallaeciensis WP_019297045.1 
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 Ruegeria pomeroyi YP_165635.1 
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 Thalassobacter arenae WP_021101062.1 
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 GS033 FL (6 sequences) 
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 Citromicrobium bathyomarinum WP_010239386.1 
 GS048 FL 1112697696758 

 GS048 PA 1112698395350 
 Kordiimonas gwangyangensis WP_020400047.1 

 GS033 FL 1105150100565 
 Loktanella vestfoldensis WP_007205119.1 

 Rubellimicrobium thermophilum WP_021096725.1

 Octadecabacter antarcticus AGI67812.1 
 Oceanicola granulosus EAR52229.1 

 GS033 FL 1105142081951 
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Fig. 2. Phylogenetic tree of annotated and environmental sequences predicted from Global Ocean Sampling (GOS) metapro-
teome LuxI protein sequences produced using the Neighbour-Joining method with 1000 bootstrap replicates. Only bootstrap
support > 50 are shown. Values above branches are those obtained from NJ method; values under branches are those obtained
from ML methods. Black squares: environmental sequences; FL: sequences retrieved from free-living fractions; PA: sequences 

retrieved from particle-attached fractions



Doberva et al.: Quorum sensing in GOS metagenome 113

Deinococcales (3% or 1 sequence, NJ and ML boot-
straps support of 100 and 90%, respectively; Fig. 4).
Among Gammaproteobacteria, 4 se quences (13%)
group inside a clade found in both NJ and ML phylo-
genies, comprising sequences from Alishewanella
and Rheinheimera species (ML bootstrap support of
92%; Fig. 4), but which were more closely related to

Reinheimera (NJ and ML bootstraps support of 93
and 91%, respectively; Fig. 4). A large number of
environmental sequences (65% or 20 sequences)
seemed related to Shewanella species, although it
was not well supported (except 3 GS000 FL se -
quences with Shewanella frigidimarina, ML boot-
strap support of 60%).

 Luminiphilus syltensis WP_009019386.1  
 GS033 FL (5 sequences) 

 Congregibacter litoralis WP_008295363.1   
 GS stations (23 sequencesFL and 4 sequences PA) 
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Fig. 3. Phylogenetic tree of annotated and environmental HdtS protein sequences produced using the Neighbour-Joining
method with 1000 bootstrap replicates. Only bootstrap support > 50 are shown. Values above branches are those obtained 

from NJ method; values under branches are those obtained from ML methods. See Fig. 2 for definitions of symbols
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Diversity of AinS synthases in the GOS dataset

We retrieved only 1 sequence of AinS in the GOS
dataset, located at Stn 148, in the Indian Ocean close
to the Zanzibar coast in a fringing reef. The top
high scoring BLAST pair was ‘N-(3-hydroxybu-
tanoyl)-L-homoserine lactone synthase luxM’ (WP_
002541906.1) (70% sequence coverage and 90%
identity) from Grimontia sp., a Vibrionaceae family
member.

Correlation with environmental variables

For the LuxI group, we found no correlation with
the environmental data. For HdtS family there was a
positive correlation with metagenome size, and neg-
ative correlation between chlorophyll (Spearman ρ =
−0.425, p = 0.002), nitrate (Spearman ρ = −0.553, p =
5.475 × 10−5), silica concentration (Spearman ρ =
−0.573801, p = 2.481 × 10−5), primary production
(Spearman ρ = −0.374, p = 0.01) and the number of
environmental sequences related to HdtS. A link
with LuxS-related environmental sequences and
salinity was also observed (Spearman ρ = 0.341, p =
0.020). We did not find any correlation with the other
environmental variables (temperature, iron concen-
tration, habitat type) (Table 3).

DISCUSSION

Our study revealed the presence of AI-1 and 2 syn-
thases, key enzymes in QS pathways, within the
GOS predicted metaproteome. To date, QS genes
have only been directly found in cultured marine
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Cluster Phylogenetic affiliation of Fraction (%)
no. protein sequence clusters FL PA

1 Luminiphilus/Congregagibacter 0 3.1
2 Alcalinivorax 7.1 8.7
3 Oceanocaulis/SAR116 3.1 1.6
4 Roseobacter clade 0.8 0
5 Hahella/Methyloglobulus 7.1 5.5
6 SAR11 8.7 9.5
7 SAR86 11.1 15
8 3.9 2.3
9 3.1 0.8
10 3.1 0.8
11 Non-affiliable environmental 0 1.6
12 sequences 0 0.8
13 0.8 0
14 0.8 0

Total 50 50

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

Table 2. Comparison of HdtS phylogenetic cluster abun-
dances (in % of total sequences) in the free-living (FL) and
particle-attached (PA) fractions over 8 Global Ocean Sam-
pling (GOS) stations. HdtS sequences were clustered with
CD-HIT software at 40% identity. Statistical analysis on
these data revealed no significant difference of HdtS diver-
sity between the 2 fractions (see ‘Materials and methods’ 

and ‘Results’ for details)

Variable HdtS LuxI LuxS

Station metagenome size
Observed stat 10795.42 29835.53 21963.30
p-value 4.425 × 10−8 0.8070 0.0297
ρ 0.6501 0.0331 0.2882

Temperature
Observed stat 25650.83 28923.05 29455.69
p-value 0.5881 0.7531 0.6497
ρ 0.0746 −0.0434 −0.0626

Salinity
Observed stat 17155.63 17576.5 10683.97
p-value 0.7018 0.579 0.0203
ρ −0.0580 −0.0840 0.3411

Chlorophyll
Observed stat 27924.82 16952.69 17674.31
p-value 0.0023 0.3548 0.5018
ρ −0.4247 0.1350 0.0967

Fe
Observed stat 18117.4 21233.64 15623.73
p-value 0.7512 0.1238 0.5179
ρ −0.0474 −0.2277 0.1239

NO3

Observed stat 26867.15 15388.56 14099.07
p-value 5.475 × 10−5 0.4605 0.34
ρ −0.5534 0.1102 0.1848

Si
Observed stat 27220.46 12747.96 16131.44
p-value 2.481 × 10−5 0.0741 0.6529
ρ −0.5738 0.2629 0.0673

Primary production
Observed stat 23759.31 13477.96 14815.8
p-value 0.0097 0.1359 0.3363
ρ −0.3737 0.2207 0.1434

Habitat type
χ2 235.216 239.168 172.158
p-value 0.0737 0.0665 0.3061
df 15 15 15

Table 3. Correlation tests between sequencing effort or
environmental variables and AI synthase abundance. For
each station, we first checked whether the number of envi-
ronmental sequences was related to metagenome size with
the Spearman coefficient. Then, we verified the existence of
a significant relationship between environmental variables
and the number of environmental sequences retrieved for
each AI family, normalized by the number of potential bac-
terial genomes at each Global Ocean Sampling (GOS) sta-
tion (assessed by RpoB, see ‘Materials and methods’ for
details) using a Spearman correlation test (discrete quantita-
tive variables, non-normal). For sequence−habitat correla-
tions, a Kruskal-Wallis test was used (non-parametric, qual

itative data against quantitative)
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bacteria (Engebrecht et al. 1983, Gilson et al. 1995,
Gram et al. 2002, Wagner-Döbler et al. 2005) or indi-
rectly inferred from AHL production and genome
sequence annotation (Mohamed et al. 2008,
Cuadrado- Silva et al. 2013, Doberva et al. 2014a,b).
By contrast, no previous studies have examined
the presence and diversity of those genes in the
 marine water column using culture-independent
approaches.

We detected a large phylogenetic diversity of AI
synthases in the GOS metagenomic libraries. How-
ever, it has not been possible to affiliate a large frac-
tion of the retrieved sequences at a fine phylogenetic
scale, as only a few marine cultivated strains harbour
AI synthase genes that would allow a more accurate
taxonomic association. At a higher phylogenetic
level, the AI sequences retrieved from the GOS were
affiliated to many different groups of bacteria. LuxI
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Fig. 4. Phylogenetic tree of annotated and environmental LuxS protein sequences produced using the Neighbour-Joining
method with 1000 bootstrap replicates. Only bootstrap support > 50 are shown. Values above branches are those obtained 

from NJ method; values under branches are those obtained from ML methods. See Fig. 2 for definitions of symbols
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environmental sequences were mainly related to
Rhodobacterales (Cude & Buchan 2013), Shingomon-
adales and Rhizobiales, while HdtS sequences were
mainly related to SAR11 and Pseudomonadales.
These results must be very carefully interpreted, as it
has been demonstrated that the phylogenetic signal
in AI sequences may be affected by large horizontal
transfer between bacterial groups (Gray & Garey
2001, Lerat & Moran 2004). However, our data clearly
increase the currently known diversity of AI se -
quences. This high percentage of AI sequences with-
out close relatives from known species in the GOS
datasets clearly demonstrates that QS potential is
present in a much wider diversity of marine bacteria
than previously suspected from cultivable marine
bacteria.

We may have underestimated the extent of AI
diversity present in the GOS databases. Since our
approach was based on sequence homology, we
retained only the environmental sequences that were
close to known and annotated sequences in data-
bases to avoid false positives. Because of the high
stringency of the search criteria used in this study (e-
value 10−50 for first BLAST and 10−20 for RBH), it is
possible that divergent AI environmental sequences
were missed. This means that all AI sequences
we can detect are dependent on the number and
diversity of annotated sequences currently available
in the NCBI NR database. The diversity of AI syn-
thases is probably much greater than detectable by
similarity searching. Despite this, the number of
new AI se quences detected in this study was high,
even though total diversity is still probably largely
underestimated.

Another recurrent bias to assess when working
with metagenomic datasets is the potential functional
diversity of annotated proteins (Uchiyama & Miya -
zaki 2009, Prakash & Taylor 2012). Our work indi-
cates that the majority of AI-1 synthases in the GOS
dataset are related to the hdtS gene family. HdtS is a
member of the lysophosphatidic acid acyltransferase
family (Laue et al. 2000) and harbours a dual func-
tionality: acylation of lysophosphatidic acid (Culli-
nane et al. 2005) and AHL synthesis (Laue et al. 2000,
Churchill & Chen 2011). The production of AHL
based on HdtS has been well demonstrated experi-
mentally in Pseudomonas fluorescens (Laue et al.
2000), Acidithiobacillus ferooxidans (Rivas et al.
2007) and Nitrosomonas europea (Burton et al. 2005).
When expressed in Escherichia coli, HdtS protein
enabled the production of 3-OH-C14:1-AHL, C10-
AHL and C6-AHL (Laue et al. 2000). One possible
mechanism is that HdtS could transfer acyl chains

from acyl-ACP or acyl-CoA to S-adenosylmethionine
to generate AHLs (Cullinane et al. 2005). Although
the experimental evidence accumulated from the
strains mentioned above indicates a strong link with
AHL production, the large diversity of HdtS found in
the GOS metagenomic libraries highlights the need
to further confirm a role of diverse HdtS-like proteins
in QS.

Our results did not reveal any major difference in
AI diversity for HdtS between the FL (0.1–0.8 µm)
and PA (0.8–3 µm) fractions. It is commonly thought
that bacteria in sea-water occur in low densities and
thus AHLs molecules produced by a cell would
quickly be diluted before reaching a receiving cell,
hampering QS (Hmelo & Van Mooy 2009). Thus, a
recurrent hypothesis is that QS in marine communi-
ties may have more chance to occur in particle-
attached conditions where bacteria could be concen-
trated, such as on the surface or inside a particle of
sinking organic matter (Mohamed et al. 2008, Hmelo
et al. 2011). The absence of a significant difference
(Wilcoxon test, p = 0.83) in HdtS diversity distribution
between PA and FL fractions is not surprising as mar-
ine bacterial groups can present both FL and PA
lifestyles (Ghiglione et al. 2007, Crespo et al. 2013).
As the presence of QS genes is similar between PA
and FL microenvironments, future studies should
focus on detecting differential expression of these
genes. Interestingly, recent work conducted on
Dinoroseo bacter shibae tends to support this hypoth-
esis (Patzelt et al. 2013).

The LuxI and HdtS AI-1 synthase sequences re -
trieved in this study were detected in metagenomic
libraries from the Atlantic, Pacific and Indian Oceans
covered by the GOS. This result highlights that
AI synthases were present in a wide range of marine
environmental conditions, including open and coastal
oceans, coral reefs and salt marshes. This observa-
tion supports the hypothesis that QS mechanisms
may be widespread in many marine environments,
and opens the wider question of the potential role of
QS in marine prokaryotic species. Furthermore,
the negative correlation between environmental se -
quences related to HdtS and environmental variables
linked to coastal marine habitats suggests that HdtS
was more prevalent in bacteria living in the open
ocean.

Previous studies have revealed a wide phylo -
genetic distribution of the LuxS group among Pro-
teobacteria, including the marine bacteria genera
Vibrio (Bassler 1999) and Shewanella (Bodor et al.
2008), as well as within the Firmicutes, Actinobac-
teria, Bacteroidales, Deinococcales (Deinococcus)
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and Spirochaetes (Schauder et al. 2001, Lerat &
Moran 2004). The involvement of LuxS in QS
remains a matter of debate (see Rezzonico & Duffy
2008 and Platt & Fuqua 2010 and references
therein). However, many studies also report LuxS-
based synthesized molecules as the initiators of a
bacterial Esperanto (Winans 2002), i.e. allowing
interspecies communication between bacteria.
However, our results show a low abundance and a
narrow taxonomic coverage of LuxS sequences
retrieved from the GOS dataset. This may be due to
the lifestyle of bacteria harbouring the AI-2 syn-
thases that are frequently found in association with
large organisms (Dworkin & Falkow 2006, Bodor et
al. 2008) and thus may be undetectable with the
protocols employed by the GOS cruise. Similarly,
AinS AI synthases were very poorly represented in
the GOS dataset. This result is perhaps not surpris-
ing as these AI synthases are known in only a few
members of the Vibrionaceae (Milton et al. 2001),
and therefore the low detection rate could be due
to the small search database size. Interestingly,
Rusch et al. (2007) also did not detect any member
of the Vibrionaceae family in the GOS dataset
based on 16S rRNA and rpoB gene analysis. This
makes it more likely that the low number of AinS
detected was due to the low sequence coverage of
the GOS metagenomes being unable to detect rare
members of the community such as Vibrionaceae.
Again, these biases probably underestimated the
real extent of marine AI diversity, which we have
extended with this study.

Overall, our work has revealed a large number of
new AI sequences. Our results show that diverse AI
synthase genes are present in the marine environ-
ment and that many are related to presently unculti-
vated bacteria. It appears that AI synthases are
diverse and present in all oceans crossed by the GOS
expedition, supporting the hypothesis that QS cell-
to-cell bacterial communication systems are wide-
spread in marine waters. Thus, this study opens the
door to the wider questions about the conditions
under which expression of these genes occurs and
the potential role of QS in marine bacteria and eco-
systems.
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