FN Archimer Export Format PT J TI Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019) BT AF Reul, Nicolas Grodsky, S.A. Arias, M. Boutin, J. Catany, R. Chapron, Bertrand D'Amico, F Dinnat, E. Donlon, C. Fore, A. Fournier, Severine Guimbard, Sebastien Hasson, A. Kolodziejczyk, Nicolas Lagerloef, G. Lee, T. Le Vine, D.M. Lindstrom, E. Maes, Christophe Mecklenburg, S. Meissner, T. Olmedo, E. Sabia, R. Tenerelli, Joseph Thouvenin-Masson, C. Turiel, A. Vergely, J.L. Vinogradova, N. Wentz, F. Yueh, S. AS 1:1;2:13;3:6;4:2;5:6;6:1;7:6;8:12;9:15;10:10;11:10;12:4;13:2;14:16;15:9;16:10;17:12;18:14;19:17;20:8;21:11;22:3;23:7;24:4;25:2;26:3;27:5;28:11;29:14;30:10; FF 1:PDG-ODE-LOPS-SIAM;2:;3:;4:;5:;6:PDG-ODE-LOPS-SIAM;7:;8:;9:;10:;11:;12:;13:;14:;15:;16:;17:;18:;19:;20:;21:;22:;23:;24:;25:;26:;27:;28:;29:;30:; C1 Ifremer, Univ. Brest, CNRS, IRD, Laboratoire d'Oceanographie Physique et Spatiale (LOPS), IUEM, Brest, France Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), Paris, France Institut de Ciencies del Mar -CMIMA (CSIC), Barcelona, Spain OCEANDATALAB, Brest, France ACRI-st, Guyancourt, France ARGANS, Plymouth, UK Telespazio-Vega UK Ltd for ESA, ESRIN, Frascati, Italy European Space Agency, ESA-ESRIN, Frascati, Italy Earth and Space Research, Seattle, WA, USA NASA, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Remote Sensing Systems, Santa Rosa, CA, USA NASA Goddard Space Flight Center, Greenbelt, MD, USA Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA NASA Headquarters, Washington, DC, USA European Space Agency, ESA-ESTEC, Netherlands Ifremer, Univ. Brest, CNRS, IRD, Laboratoire d'Oceanographie Physique et Spatiale (LOPS), IUEM, Brest, France Ifremer, Univ. Brest, CNRS, IRD, Laboratoire d'Oceanographie Physique et Spatiale (LOPS), IUEM, Brest, France C2 IFREMER, FRANCE UNIV PARIS 06, FRANCE CSIC, SPAIN OCEANDATALAB, FRANCE ACRI-ST, FRANCE ARGANS, UK TELESPAZIO VEGA UK LTD, ITALY ESA, ITALY EARTH AND SPACE RESEARCH, USA NASA, USA REMOTE SENSING SYSTEMS, USA NASA, USA UNIV MARYLAND, USA NASA, USA ESA, NETHERLANDS UBO, FRANCE IRD, FRANCE SI TOULON BREST SE PDG-ODE-LOPS-SIAM UM LOPS IN WOS Ifremer UMR WOS Cotutelle UMR copubli-france copubli-p187 copubli-europe copubli-univ-france copubli-int-hors-europe IF 10.164 TC 111 UR https://archimer.ifremer.fr/doc/00615/72750/71894.pdf LA English DT Article DE ;Sea surface salinity;Ocean microwave remote sensing;Radiometer;L-band;SMOS;Aquarius/SAC-D;SMAP AB Operated since the end of 2009, the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite mission is the first orbiting radiometer that collects regular and global observations from space of two Essential Climate Variables of the Global Climate Observing System: Sea Surface Salinity (SSS) and Soil Moisture. The National Aeronautics and Space Administration (NASA) Aquarius mission, with the primary objective to provide global SSS measurements from space operated from mid-2011 to mid-2015. NASA's Soil Moisture Active-Passive (SMAP) mission, primarily dedicated to soil moisture measurements, but also monitoring SSS, has been operating since early 2015. The primary sensors onboard these three missions are passive microwave radiometers operating at 1.4 GHz (L-band). SSS is retrieved from radiometer measurements of the sea surface brightness temperature (TB). In this paper, we first provide a historical review of SSS remote sensing with passive L-band radiometry beginning with the discussions of measurement principles, technology, sensing characteristics and complementarities of the three aforementioned missions. The assessment of satellite SSS products is then presented in terms of individual mission characteristics, common algorithms, and measurement uncertainties, including the validation versus in situ data, and, the consideration of sampling differences between satellite SSS and in situ salinity measurements. We next review the major scientific achievements of the combined first 10 years of satellite SSS data, including the insights enabled by these measurements regarding the linkages of SSS with the global water cycle, climate variability, and ocean biochemistry. We also highlight the new ability provided by satellites to monitor mesoscale and synoptic-scale SSS features and to advance our understanding of SSS' role in air-sea interactions, constraining ocean models, and improving seasonal predictions. An overview of satellite SSS observation highlights during this first decade and upcoming challenges are then presented. PY 2020 PD JUL SO Remote Sensing Of Environment SN 0034-4257 PU Elsevier BV VL 242 UT 000523965600024 DI 10.1016/j.rse.2020.111769 ID 72750 ER EF